Macro- and Micro-parallelism in a DBMS

Martin Kersten, Stefan Manegold, Peter Boncz, and Niels Nes

CWI
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

Abstract. Large memories have become an affordable storage medium
for databases involving hundreds of Gigabytes on multi-processor sys-
tems. In this short note, we review our research on building relational
engines to exploit this major shift in hardware perspective. It illustrates
that key design issues related to parallelism poses architectural problems
at all levels of a system architecture and whose impact is not easily pre-
dictable. The sheer size/complexity of a relational DBMS and the sliding
requirements of frontier applications are indicative that a substantial re-
search agenda remains wide open.

1 Introduction

Database management systems have become a commodity system-software com-
ponent to manage huge amounts of business data in a reliable and efficient man-
ner. Its application space encompasses the whole spectrum of storage systems,
ranging from databases fitting on a smart-card up to dealing with the peta-
byte archives produced in nuclear physics experiments. Likewise, it spans the
complete space of responsiveness, from sub-second transaction management in
telecom and financial sectors up to management of long-living transactions in
aircraft construction.

This broad applicability and wide-spread use of a DBMSs make their de-
sign still an art, balancing end-user requirements with state-of-the-art soft-
ware/hardware technology. The easy part is the functional requirement list. A
new system should support an (object-)relational data model with its algebraic
operators, transaction management and facilities to extend the system architec-
ture with application-specific code.

The more difficult part is to predict the resources needed to manage the
physical database itself and to predict hardware trends to satisfy these needs.
For over two decades, commercial database systems have been designed from
the assumption that a database is stored on disk with too little memory to keep
a hot-set resident. Furthermore, they assume that the processing power offered
by a single CPU is often insufficient to satisfy the application needs for cycles.
Given manufacturing limitations to satisfy infinite memory and CPU power, a
substantial effort has been devoted to realize parallel and distributed database
technology:.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 6-15, 2001.
© Springer-Verlag Berlin Heidelberg 2001



Macro- and Micro-parallelism in a DBMS 7

1.1 Main-Memory Database Systems

Within the solution space for DBMS architectures we have focused our atten-
tion on systems with a sizable main-memory and deployment of parallel pro-
cessing. The key assumptions underlying this part of the design space are that
the database hot-set can be economically held in main-memory, operating system
technology will evolve and should be relied upon, and commodity hardware and
parallel processing can be used to leverage the shortage of CPU power. The two
reference database architectures developed are: PRISMA and Monet.

PRISMA The PRISMA project (1986-1992) [3,22] was a large national
project geared at advancing computer science technology in the area of lan-
guage design, operating system design, database system design, and network
technology. The central theme was to develop a parallel object-oriented program-
ming language with supportive operating system on which a complete SQL-based
DBMS should run. The hardware platform consisted of 100 Motorola micropro-
cessors with a total of 1.5 GByte main-memory. A sizable amount for the era it
was constructed and used. The processors were linked into a configurable net-
work to facilitate experimentation with network topologies. Each processor pair
shared a disk (50GB) for persistence.

Monet The Monet project (1993-) was set-up to explore in more detail the
effect of main-memory database technology. Furthermore, it took an offbeat ap-
proach in the design of the DBMS internals. The relational database tables were
broken down into binary tables only, the relational algebra took a materialize all
intermediates approach, indexing and operator optimization became automatic,
and resource competition, such as transaction management, was moved to the
intermediate language. Monet has been in production both experimentally and
commercially since 1995. It runs under a variety of operating systems, i.e. NT,
Linux, Solaris, IRIX, AIX. The largest experimentation platform is a SGI Origin
2000 with 32 cpus and 64GB of RAM.

1.2 Parallel Database Technology

Both systems illustrate extreme approaches in terms of software architectures
addressing the key design issues of a DBMS:

— Persistent storage, for which conventionally disk-farms and RAID systems
are being used to secure the database content. Their capabilities define the
bandwidth and latency to be expected when access randomly data.

— Communication infrastructure, which provides the framework to offload work
over multiple systems. The full range of system architectures can be consid-
ered, e.g. shared-everything, shared-nothing, shared-disk, SIMD, etc..

— Physical layout, which encompasses the data structures to organize the rec-
ords in memory and on persistent store, as well as the index structures
needed to achieve reasonable performance.

— FExecution paradigm, which dictates the way relational algebra expressions
are being evaluated. The predominant approach is to use an operator pipe-
line, which makes resource management of intermediate results relatively



8 Martin Kersten et al.

easy at the expense of repeated context switches amongst the operators.
The alternative approach is to materialize the result of every operator before
proceeding to the next level in the algebraic expression. The advantage is a
simplified parallelism technique at the expense of possibly substantial storage
overhead.

— Transaction management, which involves all techniques to support concur-
rent access to the database and to safeguard operations against accidental
loss.

— Query optimizer, which involves the intelligence layer to derive a optimal
plan of execution for a given database query. Query optimizers commonly
generate a large portion of the semantic-equivalent formulations of a data-
base query and select a good plan by running a cost-metric over each plan.

For a more detailed introduction to these topics we refer to the excellent textbook
such as by Valduriez and Oszu [18] and the plethora of research results acces-
sible through the digital library http://www.informatik.uni-trier.de/~ley/db/
index.html.

In the remainder of this note we illustrate the choices and the lessons learned
from building and deployment of just two large-scale experimental systems.

2 Macro-parallelism

The PRISMA project [21] can be characterized as a system architecture geared
at exploring opportunities for macro parallelism, i.e. the system used functional
components and large storage fragments as the unit of distribution and parallel
processing.

The relational tables were broken down into horizontal fragments using a
hash-distribution over their primary keys. These fragments were distributed over
the processor pool by the operating system, without any influence of the DBMS
software. Each table fragment was controlled by a small-footprint relational al-
gebra engine. SQL queries where translated into a distributed relational algebra
expression, whose execution was handled by a distributed query scheduler. Like-
wise, a distributed concurrency manager was installed for transaction manage-
ment.

The implementation language POOL (Parallel Object-oriented Language)
[2,1] was developed by research groups at Philips Natlab and universities. To-
gether they realized a language-specific operating system and compiler toolkit
for this language, with the ambition that parallelism can be transparently han-
dled at those levels. It was the (contractual) target language for the database
designers. The language implementation did not provide any control over the ob-
ject granularity (initially). Rather, every object -small and large- was mapped
into a separate process, which communicates with its environment through mes-
sage passing. It was the task of the network infrastructure to resolve locality
and a distributed scheduler ensured load distribution. Typically a small POOL
program led to several thousands of objects distributed over the processor pool.



Macro- and Micro-parallelism in a DBMS 9

From the perspective of the database designers this level of transparency
and object granularity caused major problems. Traversing simple binary search
trees to organize information in the database became excessively expensive, e.g.
memory references were cast into inter-process communication. Furthermore, the
query optimizer of a DBMS is able to construct a proper execution plan, based
on size, CPU, and communicating cost estimates. The underlying platform made
this hardly useful, because the placement of intermediate results as well as the
location of the operator threads was decided by the operating system without
knowledge about the global (optimal) plan of action. Halfway of the project
this had to be rectified using an advisory scheme to ensure locality of objects
on a single processor and to identify where expensive message passing could be
replaced by memory references.

Despite the limitations and problems caused by the implementation platform,
the PRISMA project demonstrated that main-memory distributed database
techniques are effective to speed-up performance on large processor clusters.
Parallelism techniques were geared towards macro-entities in terms of size and
granules of execution. Novel relational-join algorithms were discovered [20,13] to
achieve linear speed-up over >60 processors, schemes for dynamic query schedul-
ing were developed [19], and progress was made in semantic query optimization
and reliability.

3 Micro-parallelism

The most disappointing result of the PRISMA project was the in-surmounted
problem to make macro-parallelism transparent at the system programming lan-
guage interface. In addition, the software architecture of PRISMA /DB followed
traditional lines, mimicking techniques nowadays common in commercial sys-
tems. As a result we started from scratch in 1993 with a new system architecture,
nicknamed Monet '

The main design considerations underlying PRISMA /DB were carried over,
i.e. the hot-set is memory resident, rely on the operating system, and move trans-
action decisions as high as possible in the application infrastructure. In addition,
we envisioned a need to open up the kernel to accommodate better user-defined
functions to support non-administrative applications. The most drastic steps
where taken in the physical database design and the query execution paradigm.
In combination with the coding style it lead to focusing on micro parallelism,
i.e. dealing with critical instruction threads to extract the performance offered
by a main-memory database on a multi-pipeline processor.

A long standing implementation approach is to physically cluster the fields of
database records, to group those records into pages, and subsequently map them
to segments (files or disk volumes). Instead, we took an orthogonal approach by
breaking up relational tables into collections of binary tables. The underlying
reason was that this way we simplified introduction of abstract data types, e.g.

! http://www.cwi.nl/~monet



10 Martin Kersten et al.

polygons, to organize their storage without concern on the total record layout.
Furthermore, both columns of a binary table could be easily extended with search
accelerators. Such auxiliary structures were, however, constructed on the fly and
basically never saved in persistent store.

Since the primary store for tables is main-memory, one doesn’t have the
luxury to permit sloppy programming without experiencing a major performance
degradation. Sloppy programming in disk-based systems doesn’t have that effect
unless the system becomes CPU-bound. The consequence was that the database
kernel algorithms were carefully engineered using code-expansion techniques to
avoid type-analysis at the inner layers of the algorithms. For example, Monet
version 4 contains about 55 implementations of the relational select operator,
149 for the unary operators, 355 for the relational join and group operations,
and 72 for table aggregations.

The query execution paradigm was shifted towards concrete materialization
of intermediates, thereby stepping away from the still predominant operator
pipeline approach. The primary reason was to optimize the operators in isola-
tion, i.e. each relational operator started out with just-in-time, cost-model based
optimization decisions on the specific algorithm to use and beneficial search ac-
celerators.

The primary interface to Monet became a textual-based Monet Interface
Language [4]. This language is the target for both SQL-based and object-oriented
front-ends [9,11]. The overhead incurred by textual interaction with those front-
ends was negligible, an observation shared nowadays in the community with the
broad deployment of XML-based interaction schemes.

With a mature database kernel emerging from our lab in 1996 we embarked
upon a series of performance studies. The first studies were aimed to assess the
main-memory based approach against the traditional database techniques and
its scalability beyond the main-memory size. To illustrate, in [9] we demonstrated
the achievable performance on the TPC-D benchmark, and [5] illustrates that the
engine could beneficially be used to support an object-oriented front-end. A short
side-track assessed its performance capabilities as an active DBMS kernel [14].

3.1 Architecture-Aware Optimization

Our recent studies showed that database systems — when designed and imple-
mented “the traditional way” — do not lack cPU power [16,15]. Actually, current
database system are not even able to fully exploit the massive CPU power that
nowadays super-scalar CPUs provide with their ever-rising clock speeds and
inherent micro-parallelism. Rather, when executing database code, CPUs are
stalled most of the time waiting for data to be brought in from main memory.
While memory bandwidth has been improving reasonably (though not as rapidly
as I/O-bandwidth or especially CPU speed) over the recent past, memory latency
has stagnated or even got worse. As opposed to scientific programs, database op-
erators usually create a random memory access pattern such as pointer-chasing.
Hence, the performance is limited by latency rather than by bandwidth, making
memory access the major performance bottleneck.



Macro- and Micro-parallelism in a DBMS 11

Choosing for vertically decomposed tables in Monet, was already a first
step to improve memory performance as this avoids moving “superfluous” data
around. In [0], we demonstrate, how properly designed cache-conscious algo-
rithms can eliminate the memory access bottleneck by reducing random memory
access to the fastest level of the systems cache memory hierarchy. Once mem-
ory access is optimized (i.e., the number of data cache misses is minimized), the
costs of sloppy programming become obvious. The penalties for instruction cache
misses and branch mispredictions — formerly “hidden” behind memory access —
now dominate the performance. Using code-expansion techniques in Monet, we
managed to eliminate both instruction cache misses (by having small-footprint
operators) and most branch mispredictions (by avoiding type-dependent branch-
ing and/or function calls in the innermost loops) [16]. While now being “almost”
CPU bound, the code is still not able to fully exploit the CPU inherent paral-
lelism, e.g. moving from a 4 to a 9 instruction pipeline architecture did not
significantly improve performance. We believe that there are three reasons for
this. First, algorithm-inherent conditionals still require branches and hence keep
the code “unpredictable” for compilers and the CPU itself. Second, loop bodies
are too small to provide enough “meat” for parallelism. And third, the work
to be done per data item is usually too small to keep more than one execution
pipeline busy while loading the next data from memory.

3.2 3-Tier Query Optimization

Since 1999 we have shifted our focus on the middle-tier layer of a DBMS, i.e.
its query optimizer infrastructure. The state-of-the-art in query optimization is
for over a decade dictated by cost-based optimizers [17]. However, these model
all assume that every query basically runs in isolation on a given platform, the
database is in a cold-state, and that CPU- and I/O- activity can be analytically
described. Although ideal assumptions for a laboratory setup and a sound basis
to construct analytical models, it is far from reality.

Database systems are mostly called from applications that determine a con-
text of interest, where queries are semantically related. Likewise, ad-hoc inter-
active session typically show quite an overlap amongst queries as the user suc-
cessively refines it to locate the information of interest. Aside from personal use
of a database, it is more common that at any time there are tens to hundreds
of users interacting with a database, causing quite some overlap in interest and,
indirectly, sharing/caching of critical table fragments.

To avoid inaccurate predictions and better exploit opportunities offered by
a large query stream, we developed a novel just-in-time optimization scheme.
Our hypothesis is that the optimization process can be split into a three-tier
framework without jeopardizing the effectiveness of the optimization process.
Instead of exploring a single huge search space in one optimization phase per
query, we employ three smaller optimizers — Strategic, Tactical, and Operational.

The strategic optimizer exploits the application logic and data model seman-
tic (e.g. rule constraints) for finding a good plan. At this level, the cost of a
plan is only based on factors that are independent from the state of the DBMS,



12 Martin Kersten et al.

like intermediate result size and sort order, thus making volume reduction the
prime optimization target. The plan generated by the strategic optimizer only
describes the partial order amongst the database operators. The tactical opti-
mizer consumes the query streams and minimize the resource requirements at
runtime by exploiting the overlap encountered. It rewrites the plans such that
(within the limits of the available resources, e.g. memory) the total execution
time of all plans are minimized. The operational optimization works at opera-
tor evaluation time. The decisions taken focus on algorithm selection, which is
based on the properties of their parameters and the actual state of the database.
This technique is heavily exploited in Monet [4] already and proven effective in
concrete real-life products.

This architecture is currently being build into Monet Version 5 and is ex-
pected to lead to a drastic speed-up for database intensive applications.

4 Applications

Development of novel database technology is greatly speed-up using concrete and
challenging application areas. In the context of the PRISMA project this aspect
was largely neglected, i.e. we were looking for a 'pure’ parallel SQL database
solution. During the development of Monet we used three major application areas
to steer functionality and to assess its performance: geographical information
systems, data mining, and image processing.

4.1 Geographical Information Systems

The first challenge for the Monet architecture was to support geographical appli-
cations [7]. Therefore, we realized a geographical extension module to implement
the Sequoia benchmark [12]. This benchmark, developed at University of Berke-
ley, focuses on three aspects: user-defined functions, query performance, and
scalability.

Its implementation pushed the development of extensibility features, such as
an easy to use API generator for C/C++ based extension modules. Moreover, it
demonstrated that many of the algorithms prevalent in this area could effectively
use the restricted storage model and algebraic structure.

The query performance obtained was an order of magnitude better than
reported by the competition. The queries ran in fractions of seconds without the
need to rely on parallel processing at all.

The scalability aspect of the benchmark (>1Gb) made full reliance on a
database stored in main memory impossible. The approach taken in Monet to use
memory-mapped files over binary tables turned out to be profitable. A surprise
was that clustering data in main-memory still made a big difference, effectively
killing the to date notion that access cost in main-memory can be considered
uniform. A signal that cache-aware algorithms were needed even in a database
management system.



Macro- and Micro-parallelism in a DBMS 13

4.2 Data Mining

The second challenge for the Monet architecture arose when it became the prime
vehicle for data mining in a commercial setting. In 1995 we established the
company Data Distilleries (www.datadistilleries.com), which developed and sold
solutions for the analytical CRM space using Monet at its core.

The negative effect of this move for the Monet research team was that func-
tionality and stability became somewhat dictated by the environment. In practi-
cal terms it meant that transaction processing features where put aside to focus
on query-dominant environments. Moreover, the application interface language
(MIL) was enhanced to simplify off-loading tasks to the database server. Finally,
an extensive quality control system was set up to support overnight compilations
and testing on all platforms supported.

On the positive side, early exposure to real end-user needs pushes the archi-
tecture to its limits. The database and query loads to be supported exploded in
size, filling complete disk farms, and the functionality required for data mining
called for extending the database kernel with efficient grouping and aggregation
operations.

The effects of this engineering phase became visible in 1998, when we com-
pared the behavior of Monet against Oracle. For this purpose we designed a
benchmark reflecting the typical interaction between the data mining software
and the database kernel. Subsequently we assessed the behavior of both systems
in a memory-bound and disk-bound setting. For Monet it proved to provide the
required supreme performance and also scaled beyond the main-memory limita-
tions without additional tuning of the system (see [8]).

4.3 Image Processing

Given the good performance observed in both data mining and geographical in-
formation systems stressed our desire to find application domains that could both
benefit from database technology and that posed real performance challenges.
An area satisfying this criteria is image retrieval from multi-media databases.

In this context we are currently experimenting with indexing techniques
based on traditional color-feature vectors scaled to handle over a million im-
ages. Moreover, we are looking for effective techniques that permit sub-image
retrieval, an area often ignored in the image processing community. In [11,10]
we have demonstrated that such indices can be readily supported in Monet with-
out impairing the performance.

Furthermore, we have introduced the notion of query articulation, the process
to aid querying an image database using image spots marked by the user as
relevant for retrieval. Finding such spots in the image collection is supported
by the sub-image indexing scheme. Adequate performance will be obtained with
the 3-tier query optimizer, because many interactions lead to overlapping sub-
queries.



14 Martin Kersten et al.

5 Conclusions

In this short note we have covered fifteen years of research with a focus on
database technology using large main-memories and parallelism at a macro and
micro scale. The large body of expertise obtained ? illustrate that to some ex-
tend we are confronted with a legacy problem. The commercial DBMS software
architecture and its mapping to current hardware is far from optimal. Whether
it is economical justified to replace them totally remains to be seen, but new
markets may be conquered using database solutions currently available in labo-
ratories only.

Recognition of this state of affairs provides a sufficient base to pursue system
architecture research for DBMS and the applications it supports. The parallel
research community can contribute to the evolution of database technology in
many ways. To illustrate, just-in-time optimization and scheduling techniques
at the high-end of the memory hierarchy should be improved. Likewise, cache-
aware indexing schemes and relational operator algorithms may prove to form
the basis for an order of magnitude performance improvement. But, the proof
of the eating is in the pudding, being deployment of the solution in a concrete
application setting with recognized benefit for the end-user.

References

1. P. America and J. J. M. M. Rutten. A Layered Semantics for a Parallel Object-
Oriented Language. Formal Aspects of Computing, 4(4):376-408, 1992. 8

2. P. America and F. van der Linden. A Parallel Object-Oriented Language with In-
heritance and Subtyping. In Conference on Object-Oriented Programming Systems,
Languages, and Applications / European Conference on Object-Oriented Program-
ming (OOPSLA/ECOOP), pages 161-168, Ottawa, Canada, October 1990. 8

3. P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L. Kersten,
and A. N. Wilschut. PRISMA/DB: A Parallel Main Memory Relational DBMS.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 4(6):541-554,
December 1992. 7

4. P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented World.
The VLDB Journal, 8(2):101-119, October 1999. 10, 12

5. P. A. Boncez, F. Kwakkel, and M. L. Kersten. High Performance Support for
OO Traversals in Monet. In Proceedings of the British National Conference on
Databases (BNCOD), volume 1094 of Lecture Notes in Computer Science, pages
152-169, Edinburgh, United Kingdom, July 1996. 10

6. P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 5465, Edinburgh, United King-
dom, September 1999. 11

7. P. A. Boncz, W. Quak, and M. L. Kersten. Monet and its Geographical Extensions:
a Novel Approach to High-Performance GIS Processing. In Proceedings of the
International Conference on Extending Database Technology (EDBT), volume 1057
of Lecture Notes in Computer Science, pages 147-166, Avignon, France, June 1996.
12

2 see http://www.cwi.nl/htbin/ins1/publications



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Macro- and Micro-parallelism in a DBMS 15

P. A. Boncez, T. Riihl, and F. Kwakkel. The Drill Down Benchmark. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 628632,
New York, NY, USA, August 1998. 13

P. A. Boncz, A. N. Wilschut, and M. L. Kersten. Flattening an Object Algebra
to Provide Performance. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), pages 568-577, Orlando, FL, USA, February 1998. 10
H. G. P. Bosch, A. P. de Vries, N. Nes, and M. L. Kersten. A case for Image
Querying through Image Spots. In Storage and Retrieval for Media Databases 2001,
volume 4315 of Proceedings of SPIE, pages 20-30, San Jose, CA, USA, January
2001. 13

H. G. P. Bosch, N. Nes, and M. L. Kersten. Navigating Through a Forest of
Quad-Trees to Spot Images in a Database. Technical Report INS-R0007, CWI,
Amsterdam, The Netherlands, February 2000. 10, 13

J. Dozier, M. Stonebraker, and J. Frew. Sequoia 2000: A Next-Generation In-
formation System for the Study of Global Change. In Proceedings of the IEEE
Symposium on Mass Storage Systems (MSS), pages 47-56, L’ Annecy, France, June
1994. 12

M. A. W. Houtsma, A. N. Wilschut, and J. Flokstra. Implementation and Perfor-
mance Evaluation of a Parallel Transitive Closure Algorithm on PRISMA/DB. In
Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 206-217, Dublin, Ireland, August 1993. 9

M. L. Kersten. An Active Component for a Parallel Database Kernel. In Inter-
national Workshop on Rules in Database Systems (RIDS), number 985 in Lecture
Notes in Computer Science, pages 277-291, Athens, Greece, September 1995. 10
S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Database Architec-
ture for the New Bottleneck: Memory Access. The VLDB Journal, 9(3):231-246,
December 2000. 10

S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during a Join? —
Dissecting CPU and Memory Optimization Effects. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 339-350, Cairo,
Egypt, September 2000. 10, 11

S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Optimizer for
Monet. In Proceedings of the British National Conference on Databases (BNCOD),
volume 1832 of Lecture Notes in Computer Science, pages 36-51, Exeter, United
Kingdom, July 2000. 11

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, Englewood Cliffs, NJ, USA, 1991. 8

C. A. van den Berg. Dynamic query processing in a parallel object-oriented database
system. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands,
1994. 9

A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel Evaluation of Multi-
Join Queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 115-126, San Jose, CA, USA, May 1995.
9

A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallelism in a Main-Memory
DBMS: The performance of PRISMA/DB. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), Vancouver, BC, Canada, 1995. 8
A.N. Wilschut, P. W. P. J. Grefen, P. M. G. Apers, and M. L. Kersten. Implement-
ing PRISMA /DB in an OOPL. In International Workshop on Database Machines
(IWDM), pages 97-111, Deauville, France,, June 1989. 7



	Macro- and Micro-parallelism in a DBMS
	Introduction
	Main-Memory Database Systems 
	Parallel Database Technology

	Macro-parallelism
	Micro-parallelism
	Architecture-Aware Optimization
	3-Tier Query Optimization

	Applications
	Geographical Information Systems
	Data Mining 
	Image Processing

	Conclusions


