

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-143798

Handling Irreducible
Loops: Optimized Node
Splitting vs. DJ-Graphs

S. Unger, F. Mueller

This article was submitted to
Euro-Par 2001, Manchester, UK, August 28-31, 2001

May 10, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Handling Irreducible Loops: Optimized Node

Splitting vs. DJ-Graphs ?

Sebastian Unger1 and Frank Mueller2

1 DResearch Digital Media Systems, Otto-Schmirgal-Str. 3, 10319 Berlin (Germany)
2 CASC, Lawrence Livermore Nat'l Lab, Box 808, L-561, Livermore, CA 94551, USA

frank.mueller@llnl.gov, phone: +1.925.424.3642, fax: +1.925.423.2993

Abstract. This paper addresses the question of how to handle irre-
ducible regions during optimization, which has become even more rele-
vant for contemporary processors since recent VLIW-like architectures
highly rely on instruction scheduling. The contributions of this paper
are twofold. First, a method of optimized node splitting to transform
irreducible regions of control
ow into reducible regions is derived. This
method is superior to approaches previously published since it reduces
the number of replicated nodes by comparison. Second, three methods
that handle regions of irreducible control
ow are evaluated with respect
to their impact on compiler optimizations: traditional and optimized
node splitting as well as loop analysis through DJ graphs. Measurements
show improvements of 1-40% for these methods of handling irreducible
loop over the unoptimized case.

1 Introduction
Compilers heavily rely on recognizing loops for optimizations. Most loop opti-
mizations have only been formulated for natural loops with a single entry point
(header), the sink of the backedge(s) of such a loop. Multiple entry loops cause
irreducible regions of control
ow, typically not recognized as loops by traditional
algorithms. These regions may result from goto statements or from optimizations
that modify the control
ow. As a result, loop transformations and optimizations
to exploit instruction-level parallelism cannot be applied to such regions so that
opportunities for code improvements may be missed.

Modern architectures, such as very long instruction word (VLIW) architec-
tures (Phillips TriMedia, IA-64), require aggressive instruction scheduling to
exploit their performance [6] but this requires knowledge about the structure
of a program, which contemporary compilers generally do not support for ir-
reducible regions of code. In addition, aggressive global instruction scheduling,
enhanced modulo scheduling [13], trace scheduling and pro�le-guided code posi-
tioning combined with code replication [8, 9] or applied during binary translation
may result in branch reordering and code replication, which itself may introduce
irreducible regions. This paper brie
y discusses traditional loop splitting, con-
tributes a new approach of optimized node splitting and reports on a performance
study of these approaches with DJ-graphs that recognize irreducible loops.

? Part of this work was performed under the auspices of the U.S. Department of Energy
by University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

2 Traditional Node Splitting

Node splitting is based on T1/T2-interval analysis that detects irreducible re-
gions in a
ow graph. T1/T2 are iteratively applied on the
ow graph reducing
it to a simpler one:

T1 Remove any edge that connects a node to itself.
T2 A node with only one predecessor are merged into a single abstract node

while preserving incoming edges of the predecessor and outgoing edges of
the original node.

If these transformations are applied as long as possible the resulting graph is
called the limit graph. If the �nal graph is trivial (a singleton node), then the
original
ow graph was reducible. Otherwise, all of its nodes either have none or
more than one predecessor. Node splitting de�nes a transformation T3, which
is applied on the limit graph:

T3 Duplicate a node with multiple predecessors (one copy per predecessor).
Connect each predecessor to a distinct copy and duplicate outgoing edges of
the original node.

After the application of T3, apply T1/T2 again and repeat this process. The
resulting limit graph is always trivial. If the above process is reversed, leaving the
duplicated nodes in place, the result is a reducible
ow graph that is equivalent to
the original one. This algorithm is ineÆcient because it does not consider which
nodes form the irreducible loops. In this work, algorithms will be presented that
exactly analyze the extent, structure and nesting of irreducible loops. Based on
such an analysis a much better algorithm than that above will be constructed.

3 Properties of Irreducible Regions of Code

The motivation of this work is to develop an algorithm that converts an arbitrary
irreducible control
ow graph into an equivalent reducible one with the minimal
possible growth in code size. This �rst involves the construction of an algorithm.
This work builds on Janssen and Corporaal [7] who found that each irreducible
loop has exactly one maximal subset of at least two of its nodes that have the
same immediate dominator, which in turn is not part of the loop. They also
discovered that these sets play an important role when minimizing the number
of splits. Their de�nition of so-called Shared External Dominator sets was:

De�nition 1 (Loop-set). A loop in a
ow graph is a path (n1; : : : ; nk) where
n1 is an immediate successor of nk. The nodes ni do not have to be unique. The
set of nodes contained in the loop is called a loop-set.

De�nition 2 (SED-set). A Shared External Dominator set (SED-set) is a
subset of a loop-set L whose elements share the same immediate dominator and
whose immediate dominator (idom) is not part of L. A SED-set of L is de�ned
as: SED-set(L) =

�
ni 2 L

�� idom(ni) = e =2 L
	
:

De�nition 3 (MSED-set). A Maximal Shared External Dominator set
(MSED-set) K of a loop-set L is de�ned as:
SED-set K is maximal () 6 9 SED-set M , such that K � M and K;M � L:
The MSED-set is a generalization of the single entry block in natural loops,

e

e-domain

h1 MSED-set hk

d
o
m
a
in
(h
1
)

d
o
m
a
in
(h
k
)

lo
o
p
-s
et
L

(a) Irred Loop Struct

e

e

h1

h1

MSED-set

hi

hi

hi

(b) One Step of the Recursive Algorithm Tr

Fig. 1. Analyzing Irreducible Loop Structures and Optimized Node Splitting
which consists of just one node. In the following, the nodes of MSED-sets will
be simply called the header nodes or headers. Building on that, new generalized
de�nitions can also be found for the bodies (an irreducible loop can have more
than one), backedges and the nesting of irreducible loops. Figure 1(a) illustrates
this generalized structure. Domains represent the body of a natural loop. Edges
from a domain back into the MSED-sets are backedges. The node e is the imme-
diate dominator of the header nodes. The region called e-domain will be de�ned
and used in the next section.

The following, generalized de�nitions of backedges and domains are based
on MSED-sets whose de�nition in turn depends on the loop-set. This means
that the extension of the loop-set cannot be de�ned using backedges as it is for
natural loops. This is only a problem because the de�nition of MSED-sets does
in no way require the loop-set to be maximal. However, several of the following
theorems only hold if the loop-sets are SED-maximal.
De�nition 4 (SED-maximal loop-sets). A loop-set L is SED-maximal
if there is no other loop-set L0 such that L � L0 and MSED-set(L) �
MSED-set(L0).
De�nition 5 (Domains). Let L be an irreducible SED-maximal loop-set, K be
its MSED-set and hi be the nodes of K. The domain of hi is then de�ned as:

domain(hi) =
�
nj 2 L

�� hi dominates nj

	

De�nition 6 (backedges). Let L be an irreducible SED-maximal loop-set, K
be its MSED-set and hi be the nodes of K. An edge (m;n) with m 2 L and
n 2 K is then called a back-edge of L.
Theorem 1. The nodes of L are in K or in exactly one of its domains.
Theorem 2. All edges into domain(h) n fhg originate from h.
Theorem 3. Let L1 and L2 be two di�erent, SED-maximal loop-sets, K1, K2

their respective MSED-sets and e1, e2 the external dominators. Then
{ If neither L1 � L2 nor L2 � L1 then L1 \ L2 = ;. (distinct loops)
{ If L2 � L1 then there is a node h 2 K1

such that L2 � domain(h). (nested loops)
The proofs of these theorems can be found in [12]. The results are used in

the following section to develop an optimized algorithm for node splitting.

4 Optimized Node Splitting

The knowledge about the structure of irreducible loops can be used to guide the
T3 transformation to some extend. Repeated application of T1/T2 will collapse
domains into their headers leaving an MSED-set. Applying T3 to a node in the
MSED-set then splits a header and its entire domain.

As the domains are collapsed into one abstract node, multiple edges from one
domain to a single header node will reduce to just one edge from the abstract
node to the header node. This reduces the number of copies of that node and
is also true for multiple edges from the outside. Figure 1(a) suggests by the
naming that the region called e-domain (de�ned below) should be handled just
as any other domain. That is, transformations T1 and T2 should collapse it into
e, thereby reducing multiple edges from that domain to any header node into
one edge. Of course, T3 should not be applied to this abstract node.

De�nition 7 (e-domain). Let L be an irreducible SED-maximal loop-set, K
be its MSED-set and e the external dominator. That is: If e is the immediate
dominator of the nodes in K, then the set e-domain is de�ned as:

e-domain =

8<
:ni 2 N

������
e dominates ni, ni =2 L and
9 a path p from ni into L with
e =2 p.

9=
;

Does this algorithm always produce the minimal reducible equivalent
ow
graph? Unfortunately not, as counter-examples show that selecting the nodes to
split just by their weight is not suÆcient. Another question is if there is always
an order that leads to the minimum. Alas, not even that is true. Figure 2 gives
a
ow graph where no order will split the nodes to yield a minimal graph.

A new approach has been developed, based on the observation that all of the
counter-examples contained one of the header nodes that was not split at all.
The new approach chooses a single header node (plus its domain, of course) that
not split at all. All other nodes of the loop-set are split once. This is illustrated
in Figure 1(b). The regions containing the copies of the remaining nodes of L
are not yet guaranteed to be reducible but they are guaranteed to be smaller
than L by at least one node. Hence, the above step can be applied recursively
to these copied regions. This new approach also needs a scheme for selecting the
node h1 with the advantage over the previous approach that for any
ow graph
there is a selection scheme that leads to a minimal result. All that remains is to

ab

c

d

e

f

�(a) = 1
�(c) = 1
�(d) = 1

�(b) = 4
�(f) = 10
�(G) = 17

(a) Orig. CFG

a

a

b

b

c

c

d

d

e

f

(b) freeze f and apply Tr

a3b2

c4

d5

e1

f5

levels
0

1

2

3

dominator
cross

sp� back

(c) DJ-Graph for 2(a)

Fig. 2. T3 Cannot Split this Graph with Weights � in a Minimal Way.

actually �nd this scheme. First, however, the algorithm is de�ned more precisely.
The following notation will be used in the following: If f is a function over the
nodes of any control
ow graph, then f(X), where X is a subset of these nodes,
stands for the set ff(x)jx 2 Xg.
De�nition 8 (Transformation Tr). Let G = (N;E; s) be an arbitrary (ir-
reducible) control
ow graph, L an SED-maximal, irreducible loop-set of G, K
its MSED-set, e the external dominator and h an arbitrary node from K. Then
the transformation G0 = (N 0; E0; s0) = Tr(G;L; h) is de�ned as follows (with
S = (L n domain(h))):

{ N 0 = (N � f1g) [(S � f2g)
{ E0 � N 0 �N 0 such that the following restrictions hold:

� (x; y) 2 E ^ (x; y) =2 (domain(h)� S) () ((x; 1); (y; 1)) 2 E0

� (x; y) 2 E ^ (x; y) 2 (domain(h)� S) () ((x; 1); (y; 2)) 2 E0

� (x; y) 2 E ^ (x; y) 2 (S � (N n S)) () ((x; 2); (y; 1)) 2 E0

� (x; y) 2 E ^ (x; y) 2 (S � S) () ((x; 2); (y; 2)) 2 E0

{ s0 = (s; 1)

The above transformation represents one step of the algorithm. All nodes of
the loop-set L, except for those in the selected header node's domain, are split.
The new copies of these nodes are represented by the syntactical construction
S�f2g while the old nodes are represented by N �f1g. In other words, a single
Tr transformation results in one split to copy S so that unnecessary copies
are avoided. For example, applying Tr once on the graph of Fig. 2(a) without
copying node f results in Fig. 2(b). A proof of the correctness of optimized node
splitting using Tr is beyond the scope of this paper but can be found elsewhere
[12]. The recursive algorithm for Tr is shown in the appendix.

5 Using DJ Graphs to Optimize Irreducible Loops

The representation of DJ Graphs [11] may be used for incremental data-
ow
analysis but it also provides the means to perform loop optimizations on irre-
ducible loops. By constructing the DJ Graph of a control-
ow graph, natural
and irreducible loops and their nesting hierarchy can be detected.

An example is depicted in Figure 2(c). The DJ-Graph consists of the edges of
the dominator tree (dashed), backedges, and the remaining edges of the control

ow called cross edges (solid). Furthermore, sp-back edges are control-
ow edges
x ! y where x = y or y is an ancestor of x is a spanning tree resulting from
a depth-�rst search. In the example, a search in the order of the indicies of the
nodes indicates that the edges marked with bullets are sp-back. Loops in the
DJ-Graph can then be found starting from the lowest dominator level (level 3).
If a backedge exists at the current level, then nodes corresponding to its natural
loop are collapsed into one node. Afterwards, if a cross edge is also sp-back,
all strongly connected components at the current level or below represent an
irreducible loop and are collapsed to a single node before considering the next
higher level. In the example, there are no backedges but several cross edges at
level 1 that are also sp-back. The only strongly connected component comprises
all nodes at level 1 or below, i.e., exactly one irreducible loop is found. However,
Figure 2(b)shows that an inner loop fa; bg and an outer loop fa; b; cg may be

distinguished by optimized node splitting. Nonetheless, DJ-Graphs still allow the
distinction of irreducible loop bodies either if they comprise di�erent levels or if
they represent distinct strongly connected components. Furthermore, DJ-Graphs
also allow the detection of reducible loops within irreducible ones. Had there been
an edge d ! c in Figure 2(c), then this edge would have been recognized as a
backedge whose source and sink comprise a loop at level 2.

There are other di�erences between natural loops and DJ-graphs representa-
tions of irreducible loops. Instead of one loop header for natural loops, irreducible
loops have multiple entry blocks with predecessor blocks outside the loop. Fur-
thermore, there is no block in an irreducible loop that dominates all other blocks
within the loop. Notice, however, that we allow a natural loop to share a header
with an irreducible loop. We still distinguish both loops in this case. These dif-
ferences require changes to other loop optimizations.

Code motion moves invariant operations out of the body of a natural loop
into the preheader block. For irreducible loops, the set of entry blocks can be
augmented by a set of preheader blocks. Then, a copy of a loop-invariant oper-
ation is moved into all preheaders at once. Code motion as stated in [1] applies
with minor changes, e.g., to �nd invariant statements in loop l:
1. dst = src is invariant if src is constant or its reaching de�nitions are outside

l, as indicated by registers live on entry for each preheader of l.
2. transitively mark statements in step 3 until no more unmarked invariant

statements are found.
3. dst = src is invariant if src is constant, if its sole reaching de�nition inside

l is marked invariant or if its reaching de�nitions are outside l.
For each entry of an irreducible loop, we delete all other entries and collect the
sources of all backedges within the resulting region. Notice that such a region
may contain more than one natural loop now. We call the collected blocks the
sources of pseudo-backedges of the irreducible loop. A block of an irreducible loop
is executed during each iteration if it dominates all sources of pseudo-backedges
within the corresponding reducible regions. This requires dominator information
of the reducible pseudo-regions to be associated with an irreducible loop.

Finding induction variables becomes more complicated due to irreducible
loops. We limit our approach by requiring that changes to induction variables are
performed in blocks which are executed on each loop iteration. This information
is already available from code motion for memory reads. In addition, one could
allow balancing modi�cations in corresponding conditional arms. These arms
range from a split at an always iterated block to a join at the next block that is
always executed during each loop iteration. We did not implement this extension.
Once induction variables are identi�ed, strength reduction and induction variable
elimination are performed as for natural loops, except that invariant operations
of register loads are moved into all preheaders of the irreducible loop.

Similar to the handling of induction variables, recurrences can be optimized
by moving the prologue into all preheaders, given that the memory access origi-
nates in a block that is executed on each loop iteration. Other optimizations also
bene�t from the additional loop information. For example, global register alloca-
tion is performed by prioritized graph coloring in VPO. The priority is based on

the loop frequency, which is readily available even for irreducible loops and their
nesting within other loops. No modi�cation was required to such optimizations.

6 Measurements

We chose VPO [3] as a platform to conduct a performance evaluation. VPO
only recognizes natural loops with a single header, just as all contemporary
optimizing compilers we know of. Irreducible regions of code remain unoptimized.
First, we added the recognition of DJ Graphs to VPO, extended code motion,
strength reduction, induction variable elimination and recurrences. Second, we
implemented optimized node splitting through Tr. The heuristic driving node
selection was to choose the header of the domain with the most instructions.
This node (and its domain) were not split while all other nodes in the loop set
were split. Third, traditional node splitting using T1/T2/T3 was integrated. The
heuristic considers for each header the number of instructions times predecessors.
The header with the smallest heuristic value is then chosen.

Test programs with irreducible loops were used to measure the e�ect of the
three di�erent approaches. Dfa simulates a deterministic �nite automata repre-
senting an irreducible loop containing two independent natural loops (see Fig.
2a in [11]). Arraymerge, extracted and translated from a Fortan application,
merges two sorted arrays. The remaining programs are common UNIX utilities.

The measurements were collected for the Sun SPARC architecture using the
environment for architectural study and experimentation (EASE) that is inte-
grated into VPO. The left part of Table 1 depicts the number of dynamically
executed instructions of a function that was originally irreducible. Changes in
percent are reported relative to not optimizing irreducible loops. The table shows
comparable reductions of 1-40% in the number of executed instructions for DJ,
T3 and /TR. The improvements for Trcan be attributes in part to VPO, which
still applies loop optimizations to reducible loops contained in the same func-
tion as irreducible ones. Other compilers may suppress optimizations resulting
in even higher gains for DJ or Tr. The quantity of improvements are subject to
the execution frequency of irreducible regions within the enclosing function. For

DJ Node Splitting DJ Node Splitting
Program Graph T3(trad.) Tr(opt.) Graph T3(trad.) Tr(opt.)

dfa -13.91% -13.85% -13.88% -4.79% +30.54% +21.56%
arraymerge -36.76% -39.70% -39.70% -0.83% +32.50% +19.17%
tail 0.00% 0.00% 0.00% +1.70% +6.60% +3.83%
unifdef1 -0.36% +9.01% +10.37% +7.14% +26.79% +28.57%
unifdef2 -4.40% -7.23% -1.10% +1.79% +21.43% +25.00%
hyphen +0.01% +0.01% +0.01% +8.93% +20.24% +20.24%
cpp +0.05% -1.61% -1.18% -0.27% +1.64% +2.33%
nro�1 -8.28% -7.19% -13.50% +0.84% +35.15% +10.46%
nro�2 -4.37% -4.42% -0.19% +0.47% +25.58% +1.86%
nro�3 0.00% +0.06% +0.13% 0.00% +16.67% +9.80%
sed -0.59% -4.02% -4.49% +2.06% -0.40% -1.27%

Dynamically Executed Instr. Static Code Size (Instr.)

Table 1. Instructions and their Changes for Irreducible Regions

example, Arraymerge contains a central loop for sorting that was irreducible.
Tail, on the other hand, contains an irreducible loop for block reads, which is
executed infrequently relative the the other instructions within the function. The
function \skipcomment" in Unifdef1 showed worse results for Tr, which is corre-
lated to fewer delay slots of branches being �lled. Similar e�ects were observed
for cases where little changes were observed.

The right part of Table 1 depicts for a function of a program containing an
irreducible loop the size of the function in number of instructions. The code size
only changes insigni�cantly for DJ-Graphs. These small changes are due to other
optimizations. The quantity of changes depends on the number of preheaders
and the compensation by other optimizations, such as peephole optimization.
For Tr, the code size changes between -1% and 28%. This change in size is
measured relative to the original function containing an irreducible loop. The
change in code size relative to the entire program was between 0.5% and 3.5%
for larger test programs and 8-17% where the irreducible loop comprised most of
the test program (Dfa, Arraymerge and Hyphen). The fact that node splitting
stops at function boundaries limits the overall increase in code size for the entire
program so that exponential growth was not encountered in the experiments and
is unlikely in general. T3 resulted in more code growth (up to 35%). T3 mostly
shows a di�ernt dynamic instruction count than Trindicating that Trreduces
the amount of code duplication while preserving the performance.

The di�erences between the two node splitting techniques are further
illustrated in Table 2 depicting the number of copied register transfer
lists (RTLs) for T3 and Tr (changes relative to T3 parenthesis). Since
both node splitting approaches are performed as one of the �rst optimiza-
tions, each RTL of the intermediate code representation resembles a very
simplistic instruction. The numbers show that the traditional method re-
sults in signi�cantly more replicated code after node splitting than the
Tr, which only requires 1-30% of copied RTLs under Tr relative to T3.

Program(Function) T3 Tr(opt.)

dfa(main) 701 204 (-70.90%)
arraymerge(MergeArrays) 306 50 (-83.66%)
tail(main) 1906 100 (-94.75%)
unifdef1(skipcomment) 218 56 (-74.31%)
unifdef2(skipquote) 191 44 (-76.96%)
hyphen(main) 914 153 (-83.26%)
cpp(cotoken) 2791 71 (-97.46%)
nro�1(text) 975 138 (-85.85%)
nro�2(getword) 787 103 (-86.91%)
nro�3(suÆx) 417 28 (-93.29%)
sed(fcomp) 4897 38 (-99.22%)

Table 2. RTLs copied during Node Splitting

T3 may yield considerably in-
ferior results that Tr for op-
timizing compilers with less
aggressive optimizations than
VPO. These �ndings indicate
that Tris superior to the tra-
ditional approach but actual
savings depend on the phase
ordering of optimizations and
the infrastructure of the opti-
mizing compiler as such.

In addition, we compared
the node splitting methods T3
and Tr with the controlled node splitting (CNS) with heuristic by Janssen and
Corporaal [7]. The CNS approach is detailed in the related work section. The
measurements indicated that CNS di�ered only insigni�cantly from our T3 ap-

proach, both in the number of executed instructions and the change in code size.
Careful analysis revealed that the heuristic used for T3 almost always picked the
same nodes for splitting as CNS. Further restrictions on node selection by CNS
only occurred in one case (nro�) but had hardly any e�ect on the results.

Finally, we also measured the instruction cache performance for a 4kB and
512B direct-mapped cache using VPO and EASE. The hit ratio did not change
signi�cantly (less than 1%) for the tested programs, regardless of the cache size.
For changing code sizes, the cache work is often a more appropriate measurement
[8], where a miss accounts for 10 cycles delay (for going to the next memory level)
and a hit for one cycle. The methods of handling irreducible loops all resulted
in reduced cache work for most cases, varying between a reduction of 6% and
28%. This reduction seems to indicate that execution in replicated regions tends
to be localized, i.e., once such a region is entered, executing progresses within
this replica rather than transferring control between di�erent replicas.

7 Related Work

Reducible
ow graphs were �rst mentioned by Allen [2]. The idea of node split-
ting stems from Cocke and Miller [4]. DJ Graphs are due to Sreedhar et. al. [11].
Havlak proposed a method for recognizing reducible and irreducible loops as
well as the nesting of either ones [5]. His algorithm used node splitting only for
headers of natural loops contained within irreducible loops as a means to have
distinct header nodes. This work did not use node splitting to make irreducible
loops reducible, whereas our work did. Furthermore, our notion of backedges
is independent of any graph traversals while Havlak's backedges for irreducible
loops depend on the order of a traversal of the control
ow. Ramalingam [10]
contributed performance improvements and a common formal framework for
three schemes for recognizing loop structures, including those by Sreedhar et al.
and Havlak. Since our study is concerned with the performance of the compiled
programs rather than the performance of the compiler, we did not implement his
improvements. However, we strengthen the results of [10] through our structural
de�nition of loops and our SED-maximal loop sets that capture the loop descrip-
tions of previous work and represent a minimal loop nesting forest. In particular,
we reduce irreducible loops into reducible ones in a bottom-up fashion (wrt. the
level in the dominator tree) by isolating (and freezing) the largest domain and
its header while splitting the remaining nodes in the loop set. Recursive splitting
ensures that di�erent loops within one irreducible region can be isolated. Hence,
we go beyond the approach by Sreedhar et al. although our algorithm uses the
same data structures. We also showed how several optimization methods for re-
ducible graphs can be transformed into methods for irreducible graphs, which,
once again, strengthens Ramalingam's results [10].

The notion of MSED-sets is introduced by Janssen and Corporaal [7], and a
node-splitting algorithm, called \Controlled Node Splitting", is presented that
tries to minimize the number of splits. However, their algorithm di�ers from our
approach in that they use the traditional approach of splitting one node while
we exclude one node from splitting and split all other nodes in the MSED-set.
They report reductions in code sizes to almost 1/10 of the original size. Our

measurements indicated that these savings were mostly due to the heuristic for
node selection. We can also show that their formulation seldom leads to savings
in practise while ours handles nested irregular regions more elegantly [12].

8 Conclusion
We derived a new approach for optimized node splitting that transforms irre-
ducible regions of control
ow into reducible ones. This method is superior to
approaches previously published since it reduces the number of replicated nodes
by comparison. We also discussed the application of DJ Graphs to recognize
the structure of irreducible loops and implemented extensions to common code
optimizations to handle these new types of loops. Measurements show improve-
ments of 1-40% in the number of executed instructions for the approaches of
handling irreducible loops. Optimized node splitting has the advantage that it
does not require changes to other code optimizations within the compiler but
may increase the code size of large programs by about 2% and the size of small
programs by about 12%. On the average, it results in less code growth than
traditional node splitting and, hence, is superior to it.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers { Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. F. Allen. Control
ow analysis. Sigplan Notices, 5(7):1{19, 1970.
3. M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In

ACM SIGPLAN Conf. on Programming Language Design and Impl., pages 329{
338, June 1988.

4. J. Cocke and J. Miller. Some analysis techniques for optimizing computer pro-
grams. In 2nd Hawaii Conference on System Sciences, pages 143{146, 1969.

5. P. Havlak. Nesting if reducible and irreducible loops. ACM Trans. Programming
Languages and Systems, 19(4):557{567, July 1997.

6. J. Hoogerbrugge and L. Augusteijn. Instruction scheduling for trimedia. Journal
of Instruction-Level Parallelsim, 1(1-2), 1999. www.jilp.org.

7. J. Janssen and H. Corporaal. Making graphs reducible with controlled node split-
ting. ACM Trans. Programming Languages and Systems, 19(6):1031{1052, Novem-
ber 1997.

8. F. Mueller and D. B. Whalley. Avoiding unconditional jumps by code replication.
In ACM SIGPLAN Conf. on Programming Language Design and Impl., pages 322{
330, June 1992.

9. F. Mueller and D. B. Whalley. Avoiding conditional branches by code replication.
In ACM SIGPLAN Conf. on Programming Language Design and Impl., pages 56{
66, June 1995.

10. G. Ramalingam. On loop, dominators, and dominance frontier. In ACM SIGPLAN
Conf. on Programming Language Design and Impl., pages 233{241, June 2000.

11. V. Sreedhar, G. Gao, and Y. Lee. Identifying loops using DJ graphs. ACM Trans.
Programming Languages and Systems, 18(6):649{658, November 1996.

12. S. Unger and F. Mueller. Handling irreducible loops: Optimized node splitting vs.
dj-graphs. TR 146, Inst. f. Informatik, Humbolt University Berlin, January 2001.
www.informatik.hu-berlin.de/~mueller.

13. Nancy J. Warter, Grant E. Haab, Krishna Subramanian, and John W. Bockhaus.
Enhanced modulo scheduling for loops with conditional branches. In 25th Annual
International Symposium on Microarchitecture (MICRO-25), pages 170{179, 1992.

