
Loop-Carried Code Placement

Peter Faber, Martin Griebl, and Christian Lengauer

Fakultät für Mathematik und Informatik. Universität Passau
D–94030 Passau, Germany

{faber,griebl,lengauer}@fmi.uni-passau.de

Abstract. Traditional code optimization techniques treat loops as non-
predictable structures and do not consider expressions containing array
accesses for optimization. We show that the polyhedron model can be
used to implement code placement techniques that exploit equalities of
expressions that hold between loop iterations. We also present prelimi-
nary results for a simple example.

1 Introduction

Traditional code optimization techniques treat loops as non-predictable struc-
tures. In order to exploit the equality of expressions across loop iterations in code
placement or code motion, loops may be partially unrolled [9,5]. However, a loop
may have to be unrolled infinitely often to remove all redundancies, which would
lead to data structures that are unbounded in size. The polyhedron model [3,7]
offers a way to analyze memory accesses in loops by considering symbolically ex-
pressible sets of loop iterations. These descriptions are usually restricted to affine
expressions in the index variables of surrounding loops and constants. Thus, in
general, it is only possible to analyze code fragments. The representation of loop
iterations in the polyhedron model provides a means for transformations based
on the analysis of array accesses in loop nests: Wonnacott extended constant
propagation and dead code elimination to arrays [10].

In this work, we use the polyhedron model to extend a further class of opti-
mization techniques to arrays – namely code placement optimizations. Our aim
is to improve code written by a programmer without attention to possible recom-
putations of the same value in different loop iterations. Although the method is
in principle also applicable to WHILE-loops, we only consider DO-loops here.

2 Loop-Carried Code Placement

The central question of code placement is where to put the computation of an
expression in order to ensure this computation to be performed only once and
only if needed. Relevant data flow information is gathered in most approaches
by syntactic analysis. There are also approaches for the analysis of scalars that
introduce semantic properties, such as the one employed by Steffen, Knoop and
Rüthing [5], which exploits equalities resulting from assigning terms to variables.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 230–235, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Loop-Carried Code Placement 231

We restrict ourselves to a syntactic – but loop-carried – equivalence of ex-
pressions: we use affine expressions in loop indices to infer equality. This enables
us to prove the equality of terms that are not syntactically identical, e.g., C(i,i)
and C(i,j) in Ex. 1, which represent the same value for i = j.

We minimize the amount of computations performed during the execution
of a loop nest by replacing computations of already computed values with array
lookups. As a cost model, we employ the number of function calls and arithmetic
operations executed, while we view reads and writes as zero-cost operations.

Example 1.

DO j=1,n

DO i=1,n+1

! Statement S1

! Occurrences:

! [7] [6] [1] [3] [2] [5] [4]

D(i,j) = A(i) ** B(j) + C(i,i)

! Statement S2

! Occurrences:

! [14] [13] [8] [10] [9] [12] [11]

E(i,j) = A(i) ** B(j) + C(i,j)

END DO

END DO

i

j
A(i) 1

B(j) 2

A(i)**B(j) 3

occ

Fig. 1. OIG for A(i) ** B(j)
of Ex. 1 (n = 2)

In the program text above, the term A(i)**B(j) occurs twice and represents the same
value in both locations, so it suffices to compute this term once. However, if i = j,
the complete terms on the right hand side (RHS) of the assignments are identical; in
this case, it suffices to compute the RHS once. We remove the redundant computations
that occur in the second statement (the computation of A(i)**B(j) for all i, j, and
the computation of A(i)**B(j)+C(i,j), i = j), replacing them by memory lookups.

2.1 Basic Structures

We use generalizations of the usual structures in the polyhedron model that are
described in detail, e.g., by Cohen [1] and by Lengauer [7].

A subroutine is a term combined of statements, which are terms composed
of an operator and, possibly, a list of arguments. Each term is identified with a
unique number, its occurrence. In contrast to the conventional polyhedron model,
which is based on read and write accesses, we base our method on occurrences,
enabling references to any point in the program text. In Ex. 1, the occurrences
are placed in brackets on the comment lines above the corresponding code. Note
that the order of occurrences corresponds to the order of target code a compiler
would generate. Analogously to the conventional polyhedron model, we consider
different occurrence instances. These are – in a nest of n loops – represented by a
vector α ∈ Z

n+1 with the first n components given by the index vector defining
the loop iteration and the last component given by the occurrence. The set of
occurrence instances is denoted OI. Fig. 1 shows the instances of occurrences

232 Peter Faber et al.

1–3 from Ex. 1, for n = 2. The index space spans the i×j-plane of the diagram,
while occurrences are assigned to the vertical occ-axis.

The usual dependence analysis in the polyhedron model – such as Feautrier’s
[2] – captures dependences between occurrences that represent accesses. How-
ever, in order to model execution on the level of occurrences, we have to include
dependences arising from the combination of occurrences. For flow dependences,
the application of a function or operator depends on its input arguments, and
the output arguments depend on the function application. Anti and output de-
pendences do not occur between compound occurrences. We combine all these
dependences in a relation E.

With E as edge relation, we create a graph (OI, E) that mimics the structure
of the terms of the loop body and enables us to argue about different loop
iterations. The edges in this occurrence instance graph (OIG) are the “normal”
dependences between occurrence instances: any order on OI that is compatible
with E defines a valid execution of the program.

Fig. 2 shows the part of the OIG that contains the compound occurrence in-
stances of Ex. 1. The solid arrows represent the dependences in E. The approach
taken in the polyhedron model to represent such structures that are unbounded
in size is to use set representations to combine different instances to a single set.
E.g., the Omega tool [4] provides this functionality.

2.2 Code Placement by Affine Scheduling

In order to determine whether a value is computed twice, we have to introduce
a notion of equality. Our equality relation ≡ is based on the input dependence
relation δi. We are only interested in dependences between reads that are ex-
ecuted without any conflicting write in between. Fig. 2 shows the OIG of the
compound terms of Ex. 1 with dashed arrows indicating equivalences as defined
above (the arrows indicate the ordered, non-reflexive part of ≡).

A(i)**B(j)+C(i,i) 5

:=(A(i)**B(j)+C(i,i),_) 6

A(i)**B(j)+C(i,j) 12

:=(A(i)**B(j)+C(i,j),_) 13

occ

i

j

A(i)**B(j) 10

A(i)**B(j) 3

Fig. 2. OIG for the compound
terms of Ex. 1 (n = 2)

occ

i

j

A(i)**B(j) 10

:=(A(i)**B(j)+C(i,i),_) 6

A(i)**B(j)+C(i,i) 5

A(i)**B(j) 3

A(i)**B(j)+C(i,j) 12

:=(A(i)**B(j)+C(i,j),_) 13

Fig. 3. COIG representation for the
compound terms of Ex. 1 (n = 2)

Loop-Carried Code Placement 233

The relation ≡ divides the OI into equivalence classes OI/≡. The occurrence
instances in a single equivalence class are guaranteed to represent the same value.
So, in order to compute a value only once, we have to generate a single com-
putation for each element in OI/≡. Still, these computations must be executed
in an order compatible with E. We assert this by computing a schedule for the
equivalence classes. I.e., we construct the condensation of the OIG and compute
a schedule for the vertices of this condensed occurrence instance graph (COIG).

A representation of the COIG that can be directly passed to a scheduler
can be obtained by choosing a single representative of an equivalence class –
we choose the lexicographic minimum – and adjusting dependence information
appropriately. Fig. 3 shows this representation for Ex. 1 (n = 2).

We may now compute a schedule for the vertices OI/≡ using, e.g., Feautrier’s
scheduler [3] – just as one would compute a schedule for the statement instances
in conventional loop parallelization – and obtain a transformation that is applied
to the index space of OI/≡. The resulting index space description defines a legal
execution order and places lookups as early as possible. From this description, we
can generate code using scanning techniques as the one employed by Omega [4]
or the one of Quilleré and Rajopadhye [8]; this code is then rewritten to use
newly introduced arrays for storing the value of scheduled occurrence instances.

3 Results and Final Remarks

We applied our method to Ex. 1. We transformed the loop nest according to
Feautrier’s scheduler, scanned the resulting polyhedron with the Omega code
generator, and introduced auxiliary variables. This resulted in the following code:

100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

Original

Transformed

N

T
im

e
in

 s

Fig. 4. Timings on a 1 GHz Pentium III

DO t2=1,n
DO t3=1,t2-1

TMP1(t3,t2)=A(t3)**B(t2)
END DO
TMP2(t2)=A(t2)**B(t2)+C(t2,t2)
D(t2,t2)=TMP2(t2)
E(t2,t2)=TMP2(t2)
DO t3=t2+1,n+1

TMP1(t3,t2)=A(t3)**B(t2)
END DO

END DO
DO t2=1,n

DO t3=1,t2-1
D(t3,t2)=TMP1(t3,t2)+C(t3,t3)
E(t3,t2)=TMP1(t3,t2)+C(t3,t2)

END DO
DO t3=t2+1,n+1

D(t3,t2)=TMP1(t3,t2)+C(t3,t3)
E(t3,t2)=TMP1(t3,t2)+C(t3,t2)

END DO
END DO

Fig. 4 shows the timing results on a 1 GHz Pentium III Xeon running Linux.
The times are accumulated over 500 runs of the code fragment. The transformed
code performs 12% to 37% better than the original one.

234 Peter Faber et al.

Our method is aimed at speeding up source code written by a human, where
most time is spent in the computation on array elements (in scientific codes,
these are usually expensive floating-point operations).

We are currently in the process of incorporating our method into our code
restructurer LooPo. We plan to perform more substantial performance measure-
ments when the implementation is available.

An optimization that has to be performed when applying this method to real
codes is minimizing array sizes following, e.g., Feautrier and Lefebvre [6].

We have only used syntactic equivalence, augmented by equivalence on ex-
pressions that could be identified as affine for a certain vector space. Especially
for the improvement of code written by a human, further exploitation of asso-
ciativity and commutativity is important. Also, the possible impact of different
schedulers on the transformed program remains to be investigated.

We chose computations as the cost-determining factor. A more realistic cost
model should consider different costs for memory accesses, e.g., cache vs. main
memory. This is a crucial point that remains for future work. Additionally, the
overhead introduced by the new arrays and possibly complicated index functions
still has to be reduced; ideally, the cost model should be made sensitive to
computations in index functions and the time spent in memory lookups.

Acknowledgements This work is supported by the DAAD through project
PROCOPE and by the DFG through project LooPo/HPF.

References

1. A. Cohen. Program Analysis and Transformation: From the Polytope Model to
Formal Languages. PhD thesis, PRiSM, Université de Versailles, 1999. 231

2. P. Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel
Programming, 20(1):23–53, Feb. 1991. 232

3. P. Feautrier. Some efficient solutions to the affine scheduling problem. Int. J. Par-
allel Programming, 21(5/6), 1992. Two-part paper. 230, 233

4. W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. Tech-
nical Report CS-TR-3317, Dept. of Computer Science, Univ. of Maryland, 1994.
232, 233

5. J. Knoop, O. Rüthing, and B. Steffen. Expansion-based removal of semantic partial
redundancies. In S. Jähnichen, editor, Compiler Construction, LNCS 1575, pages
91–106. Springer-Verlag, 1999. 230

6. V. Lefebvre and P. Feautrier. Automatic storage management for parallel pro-
grams. PC, 24:649–671, 1998. 234

7. C. Lengauer. Loop parallelization in the polytope model. In E. Best, editor,
CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993. 230, 231

8. F. Quilleré and S. Rajopadhye. Code generation for automatic paralelization in
the polyhedral model. Int. J. Parallel Programming, 28(5):469–498, 2000. 233

9. B. Steffen. Property-oriented expansion. In R. Cousot and D. A. Schmidt, editors,
Static Analysis, 3rd International Symposium (SAS ’96), LNCS 1145, pages 22–40.
Springer-Verlag, 1996. 230

Loop-Carried Code Placement 235

10. D. Wonnacott. Extending scalar optimizations for arrays. In M. Gupta and S. M. J.
Moreira, editors, 13th Workshop on Languages and Compilers for Parallel Com-
puting (LCPC 2000), LNCS. Springer-Verlag, 2000. To appear. 230

	Loop-Carried Code Placement
	Introduction
	Loop-Carried Code Placement
	Basic Structures
	Code Placement by Affine Scheduling

	Results and Final Remarks

