Data-Parallel Compiler Support
for Multipartitioning*

Daniel Chavarria-Miranda, John Mellor-Crummey, and Trushar Sarang

Dept. of Computer Science MS132, Rice University
Houston, TX 77005
{danich, johnmc}@cs.rice.edu

Abstract. Multipartitioning is a skewed-cyclic block distribution that
yields better parallel efficiency and scalability for line-sweep computa-
tions than traditional block partitionings. This paper describes exten-
sions to the Rice dHPF compiler for High Performance Fortran that
enable it to support multipartitioned data distributions and optimiza-
tions that enable dHPF to generate efficient multipartitioned code. We
describe experiments applying these techniques to parallelize serial ver-
sions of the NAS SP and BT application benchmarks and show that
the performance of the code generated by dHPF is approaching that of
hand-coded parallelizations based on multipartitioning.

1 Introduction

High Performance Fortran (HPF) and OpenMP provide a narrow set of choices
for data and computation partitioning. While their standard partitionings can
yield good performance for loosely synchronous computations, they are problem-
atic for more tightly-coupled computations such as line sweeps. Line sweep com-
putations are the basis for Alternating Direction Implicit (ADI) integration—a
widely-used numerical technique for solving partial differential equations such
as the Navier-Stokes equation [5,10], as well as a variety of other computational
methods [10]. Recurrences along each dimension of the data domain make this
class of computations difficult to parallelize effectively.

To support effective parallelization of line-sweep computations, a sophisti-
cated strategy for partitioning data and computation known as multipartition-
ing was developed [5,10]. Multipartitioning distributes arrays of two or more

* This work has been supported in part by NASA Grant NAG 2-1181, DARPA agree-
ment number F30602-96-1-0159, and the Los Alamos National Laboratory Computer
Science Institute (LACSI) through LANL contract number 03891-99-23, as part of
the prime contract (W-7405-ENG-36) between the Department of Energy and the
Regents of the University of California. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the official policies or
endorsements, either expressed or implied of sponsoring agencies.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 241-253, 2001.
© Springer-Verlag Berlin Heidelberg 2001

242 Daniel Chavarria-Miranda et al.

<lo|luw| s
©
b

wlw|=|c

S IF S IR =N

IS R N Y

1
2
11 15| 3
0

Fig. 1. 3D Multipartitioning on 16 processors

dimensions among a set of processors so that for computations performing a line
sweep along any one of the array’s data dimensions, (1) all processors are active
in each step of the computation, (2) load-balance is nearly perfect, and (3) only
a modest amount of coarse-grain communication is needed. These properties
are achieved by carefully assigning each processor a balanced number of tiles
between each pair of adjacent hyperplanes that are defined by the cuts along
any partitioned data dimension. Figure 1 shows a 3D multipartitioning for 16
processors; the number in each tile indicates the processor that owns the block.
For 3D problems, “diagonal” multi-partitionings [10] can be applied when /p is
integral, where p is the number of processors. This strategy involves partitioning
the data domain into p% tiles. Each processor handles |/p tiles arranged along
diagonals through the data domain. Recently, we developed an algorithm for ap-
plying multipartitionings efficiently on an arbitrary number of processors, which
significantly broadens their applicability [7].

A study by van der Wijngaart [11] of implementation strategies for hand-
coding parallelizations of Alternating Direction Implicit Integration (ADI) found
that 3D multipartitioning was superior to both static block partitionings with
wavefront parallelism, and dynamic block partitionings in which each phase of
computation is perfectly parallel but data is transposed between phases.

Our earlier research on data-parallel compilation technology to support effec-
tive, semi-automatic compiler-based parallelizations of ADI line-sweep computa-
tions focused on exploiting wavefront parallelism with static block partitionings
by using a coarse-grain pipelining strategy [1]. Although the performance we
achieved with this approach was superior to that achieved for a version of the
codes using dynamic block partitionings compiled with the Portland Group’s
pghpf compiler [4], both of the compiler-based parallelization strategies fell sig-
nificantly short of the performance achieved by hand-coded parallelizations of
the applications based on multipartitioning [1].

To closer approach the performance of hand-coded line-sweep computations
with compiler-based parallelizations, we have been developing data-parallel com-
piler support for multipartitioning. A previous paper [6] describes basic compiler
and runtime techniques necessary to support multipartitioned data distributions
and a prototype implementation in the Rice dHPF compiler. Measurement of

Data-Parallel Compiler Support for Multipartitioning 243

code generated with this early prototype identified several opportunities for im-
proving performance. This paper describes the design and implementation of
key techniques that address problems identified by reducing communication fre-
quency, reducing message volume, and simplifying generated code.

Section 2 briefly introduces the Rice dHPF compiler and sketches its im-
plementation of multipartitioning. Section 3 describes new optimizations that
address performance issues with multipartitioning. Section 4 describes general
optimizations that were crucial to generating efficient code for the complex it-
eration spaces that arose with multipartitioned code. Section 5 compares the
performance of our compiler-based multipartitionings of the NAS SP and BT
application benchmarks [3] (two codes that use ADI integration to solve the
Navier-Stokes equation in three dimensions) and with the performance of hand-
coded multipartitionings. Section 6 presents our conclusions.

2 The dHPF Compiler

The dHPF compiler [1,2] translates HPF programs into single-program-multiple-
data node programs in Fortran 77 that use MPI message-passing primitives for
communication. dHPF is based on an abstract equational framework that ex-
presses data parallel program analyses and optimizations in terms of operations
on sets of integer tuples. These tuples represent data elements, processors and
iterations [2]. The Omega Library [9,3] serves as the implementation technology
for the framework. Our equational framework has enabled us to implement sim-
ple, concise, and general formulations of analyses and optimizations. Because
of the generality of these formulations, it has been possible to implement a
comprehensive collection of advanced optimizations to support semi-automatic
parallelization of scientific programs that are broadly applicable.

To support multipartitioned arrays, we extended dHPF to treat each data
tile for a multipartitioned array as a block in a block partitioned array that is
assigned to its own virtual processor and augmented code generation to map an
appropriate collection of virtual processors to each physical processor [6]. Each
data tile is extended using shadow regions to hold non-local data received from
adjacent tiles. On each processor, all local tiles for a multipartitioned array are
dynamically allocated as contiguous data. Storage is indexed in column-major
order, where the leftmost dimensions are the original array dimensions and a
new rightmost dimension corresponds to the tile index. All communication and
computation for a tile is defined in terms of the data mapped to that tile.

Code generation for multipartitioned loop nests is a two step process. First
we generate code for executing a loop nest for a single tile. Then, we wrap this
code in a loop that iterates over all the tiles assigned to a physical processor.
Communication generation for tiles is handles similarly. Communication pinned
inside a computational loop by data dependences is handled for a tile as if
its virtual processor is a physical processor. Communication operations that
are vectorized outside of all computational loops over data dimensions are each
enclosed in their own tile enumeration loop.

244 Daniel Chavarria-Miranda et al.
3 Multipartitioning Optimizations

From a processor’s perspective, a multipartitioned computation is organized as
computation on each of a series of tiles. To avoid unnecessary serialization be-
tween physical processors, each processor’s tile computations must be scheduled
in the proper order. To achieve good scalability, communication between proces-
sors must be as infrequent as possible. We describe optimizations that address
these two issues for compiler-generated multipartitioned computations.

Tile Scheduling & Tile Loop Placement. A loop nest operating on multi-
partitioned data involves having each processor perform the portion of the loop’s
computation associated with each of its tiles. When communication is required
to satisfy loop-carried data dependences between tiles, the tile enumeration or-
der must be chosen carefully to avoid unnecessary serialization. This problem
is unique to multipartitioning. Because of the way tiles are assigned to proces-
sors in multipartitioned distributions, choosing to iterate through a processor’s
tiles along any one multipartitioned data dimension determines the processor’s
iteration order along other multipartitioned dimensions as well. (This can be ap-
preciated by considering a directional sweep over any processor’s tiles in Fig. 1.)

If there are no loop-carried, processor-crossing true dependences that require
communication, then any tile enumeration order is equally good. Otherwise, the
data dimension along which the communication is flowing is selected as the tile
dimension driving the enumeration order, and the tile iteration direction is se-
lected to flow in the same direction as the communication. With dHPF’s general
computation partitioning model, we can always choose computation partition-
ings for statements in a loop nest so that all communication caused by loop-
carried dependences in one data dimension flows in the same direction.

As long as processor-crossing dependences flow along only one dimension of
multipartitioned array, any tile enumeration order that does not sweep in the
opposite direction of the communication will be correct. However, full paral-
lelism will be realized for a loop nest only if the tile dimension is the same as the
dimension along which communication occurs, and the tile enumeration order is
the same as the direction of the communication. If a multipartitioned computa-
tion involves communication along more than one dimension, the computation
will be partially serialized regardless of tile enumeration order.

Communication Placement. In a loop nest, a processor-crossing true data
dependence on a reference can be preserved by placing communication at the
proper loop level. Loop-carried dependences can be preserved by placing com-
munication within the loop carrying the dependence. Loop-independent depen-
dences can be preserved by placing it within the loop that is the least common
ancestor of the dependence source and sink.

Loop nests iterating over the data dimensions of a multipartitioned array
possess the unique property that if there is only communication along a single
direction of a single data dimension, it can be hoisted out of all enclosing loops
over data dimensions without reducing parallelism. dHPF exploits this property

Data-Parallel Compiler Support for Multipartitioning 245

to vectorize communication for processor crossing true dependences (both loop-
carried and loop-independent) out of multipartitioned loops. This optimization
enables loops to iterate over multipartitioned data in stride-1 order, regardless
of where processor-crossing dependences exist. Without this optimization, com-
munication would be pinned at some level in the loop nest, resulting in more
messages of smaller size, which is more costly.

Communication placement in dHPF occurs in two steps. First, the compiler
computes an initial placement in which data dependences are used to determine
for each reference the loop level at which communication might be needed. This
placement is safe for any data layout and any possible computation partitioning
for each of the program’s statements. Second, we apply a placement refinement
algorithm that uses information about the data layout and computation parti-
tionings selected to attempt to improve the initial placement. Placement refine-
ment can hoist communication out of a loop, if it flows along the tile iteration
dimension and direction and all statements in the loop nest are multipartitioned.

Aggregating Communication Across Tiles. A key property of multiparti-
tionings is that a single physical processor owns all of the tiles that are neighbors
of a particular processor’s tiles along any given direction. For example, in Fig. 1
the right neighbor (if any) of each of processor 1’s tiles along the y dimension
belongs to processor 5. Thus, if a processor’s tiles need to shift data to neigh-
bors along a particular dimension, the processor needs to send values to only one
other processor. For communication that has been vectorized completely out of
loops over multipartitioned data dimensions, this property must be exploited to
achieve scalable performance. Otherwise, in a 3D multipartitioning, a vectorized
communication would require a processor to send ,/p messages—one per tile.

To avoid this scaling problem, when the dHPF compiler generates code for
each fully vectorized communication event, it sends data from all tiles of an array
on the owning processor in a single message to the corresponding recipient. This
optimization is a major factor in reducing communication frequency, although
it doesn’t reduce its volume.

4 General Optimizations

Our quest to achieve hand-coded performance with multipartitioned code gen-
erated by dHPF led us to devise several new types of optimizations that are
universally applicable. Most of these optimizations are refinements of dHPF’s
analysis and code generation strategies for constructing and manipulating sets
of integer tuples using the Omega Library [3]. The set-based optimizations we
describe here improve the ability of dHPF to analyze and optimize set represen-
tations that arise with complex programs.

Formulating Compact Sets. The Omega Library has enabled us to develop
very general formulations of sophisticated optimizations in the dHPF compiler.
However, sophisticated optimizations such as partially replicating computation

246 Daniel Chavarria-Miranda et al.

to reduce communication can give rise to unnecessarily complex sets. Complex
sets can cause Omega Library set manipulation operations to exhaust resources
or generate inefficient code. Analysis of sets that arose during compilation showed
that disjunctions of sets in which some tuple dimensions were drawn from a range
of adjacent constants were not being collapsed together. We discovered that sets
with compact ranges of constant terms could be collapsed by recomputing a
set S as ConvexHull(S) — (ConvexHull(S) — S). This process forces the set
to be recomputed as a difference from a single conjunct, which has the effect
of reducing the set to its most compact form. This optimization enabled us to
partially-replicate computation for some unrolled code and save a factor of 5 in
communication volume as described in the experiments.

Communication Factoring. As a consequence of partially-replicated com-
putation partitionings, a single reference can cause communication in multiple
directions. With multipartitioned or block distributions, partial replication of
computation around block boundaries will cause right-hand-side array references
to require communication in both directions along each partitioned array dimen-
sion. While the integer tuple representation of communication sets used in dHPF
can represent nearest-neighbor communication to each of a block’s neighbors, the
code generated for such communication is inefficient because for each neighbor, it
must check which face of the non-convex communication set is needed. By factor-
ing the communication event into simpler communication events—in this case, a
separate one for each data dimension and each communication direction—the re-
sulting communication is more efficient and the generated code is much shorter.
After factoring the communication, each communication typically is represented
by a simple convex set.

Communication Set Construction. The form of set representations based on
the Omega Library is largely determined by how the sets are constructed. Care-
fully constructing sets yields equivalent but simpler forms, speeds up analysis
and code generation, and produces cleaner and simpler output. To simplify the
representation of communication sets, we group data references contributing to
a communication set into equivalence classes. Equivalence classes are formed by
inspecting the value number of each subscript expression in the communication-
causing dimension and grouping conformant references together. References with
different value numbers in partitioned dimensions should be grouped into dif-
ferent equivalence classes. Each equivalence class has a simple convex represen-
tation. The final communication set is constructed by unioning together sets
constructed for each equivalence class.

Communication Coalescing. Communication is initially scheduled indepen-
dently for each data reference. Then, multi-directional communication for any
single reference (caused by partially-replicated computation partitionings) is fac-
tored into separate operations. At this point, there may exist many communica-
tion events that send and receive overlapping sets of data. To avoid redundant
communication, we merge conformant communication events moving overlapping

Data-Parallel Compiler Support for Multipartitioning 247

sets of data. Since communication events draw their representation from data
references and computation partitionings, comformance between two communi-
cation events is not easily determined. For example, the data reference a(i, j, k)
with a computation partitioning of ON_HOME a(i+1,j,k) causes communication
for the last row of data in each tile. The data reference a(i-1,j,k) with a
partitioning of ON_HOME a(i, j,k) requires exactly the same data to be com-
municated. To detect such redundancy, we convert them into a normal form by
removing offsets in ON_HOME references and adjusting data references accordingly.

General Communication Aggregation. Rather than sending separate mes-
sages for each distributed array to be communicated, we extended the dHPF
compiler to combine messages at the same point in the code that are addressed
to the same recipient from a particular sender into a single message. Two sin-
gle logical shift communication events for different distributed arrays may be
safely aggregated if both arrays are mapped to the same HPF template, and
communication flows in one direction along the same dimension of the template.

Code Generation. Generating SPMD code templates (that contain appropri-
ately bounds-reduced loops and conditionals which partition the computation
among the available processors) for vectors of disjunctive iteration spaces is a
complex problem we encounter when generating code for iteration spaces that
have been partially-replicated along data partitioning boundaries.

While Omega contains a sophisticated procedure for generating code tem-
plates for complex iteration spaces [9], we found that applying Omega’s code
generation algorithm to vectors of disjunctive iteration spaces often produced
inefficient code templates in which a set of guards terms is repeatedly tested and
placeholders for code fragments may repeat many times. In the dHPF compiler,
we take several steps to generate high-quality code for such complex iteration
spaces. First, we exploit context information present at the enclosing scope to
avoid testing conditions already known to be true. Second, when generating code
for a vector of iteration sets, we avoid repeatedly testing the same conditions
by (a) projecting out satisfiability constraints that are common to all of the it-
eration sets and test them only once, and (b) refining Omega’s code generation
algorithm for vectors of iteration spaces to merge adjacent statements subject to
the same guards. Third, to avoid unnecessarily complex guards and code replica-
tion, we merge together adjacent instances of the same statement and simplify
guards from disjoint disjunctive form to simple disjunctions. Finally, to avoid
enforcing the same constraints twice, we project away satisfiability constraints
from guards around a loop nest that are enforced by the loop bounds.

Generating Optimizable Code. The dHPF compiler translates an HPF pro-
gram into SPMD Fortran 77 code with MPI communication. The generated code
will run fast only if the target system’s Fortran compiler can generate good ma-
chine code for it. Our experimentation with multipartitioned code generated by
dHPF has been performed on an SGI Origin 2000 with MIPS R10000 processors
using SGI's MIPSpro Fortran compiler. Achieving good cache utilization on this

248 Daniel Chavarria-Miranda et al.

architecture is essential for good performance. The two key issues that had to be
addressed were avoiding conflict misses, and exploiting software prefetching. We
avoid conflict misses that arise with dynamically-allocated tiles in multiparti-
tioned arrays by padding each tile dimension to an odd length. Since we depend
on the target system’s Fortran compiler to insert software prefetches to hide the
latency of memory accesses, the multipartitioned Fortran code that dHPF gen-
erates must be readily analyzable. We had to adjust our generated code so the
backend compiler did not erroneously infer aliasing between separate arrays, and
we had to avoid product terms in subscripts (including those that might arise
by forward substitution). One significant change this required was using Cray
pointer notation for accessing multi-dimensional dynamically-allocated arrays
rather than using linearized subscripts.

5 Experimental Results

We applied the dHPF compiler to generate optimized multipartitioned paral-
lelizations of serial versions (NPB2.3-serial release) of the NAS BT and SP ap-
plication benchmark codes [3] developed by NASA Ames. BT and SP solve
systems of equations resulting from an approximately factored implicit finite-
difference discretization of three-dimensional Navier-Stokes equations. While BT
solves block-tridiagonal systems of 5x5 blocks, SP solves scalar penta-diagonal
systems. Both codes are iterative computations. In each time step, the codes
calculate boundary conditions and then compute the right hand sides of the
equations. Next, they solve banded systems in computationally-intensive bi-
directional sweeps along each of the 3 spatial dimensions. Finally, they update
flow variables. Parallel versions of these computations require communication to
compute the right hand sides and during the forward and backward line sweeps.

We lightly modified the serial versions of SP and BT for use with dHPF.
We added HPF data distribution directives, HPF INDEPENDENT and NEW
directives (for array privatization), and a few one trip loops (around a series
of loops to facilitate fusing communication). Multipartitioning is specified using
a new MULTTI distribution keyword for template dimensions. Our experiments
were performed on an SGI Origin 2000 node of ASCI Nirvana (128 250MHz
R10000, 32KB (I)/32KB (D) L1, 4MB L2 (unified)).

51 NAS BT

Effectively parallelizing the NPB2.3-serial version of BT with dHPF required
a broad spectrum of analysis and code generation techniques. Multipartitioning
and new optimizations in dHPF greatly improved both the performance and scal-
ability of the generated code compared to our earlier parallelizations [1] based
on block partitionings. Both the sequential and parallel performance of dHPF’s
compiler-multipartitioned code is much closer to the hand-coded version. Fig-
ure 2 shows a 16-processor parallel execution trace for one steady-state iteration

Data-Parallel Compiler Support for Multipartitioning 249

Fig. 2. dHPF-generated NAS BT using 3D multipartitioning

[# CPUs[[hand-coded|dHPF[% diff.]

[# CPUs[[hand-coded[dHPF[% diff]

1 0.98| 0.92| 5.85
1 1.06| 1.09| -2.64

4 3.37| 2.91| 13.48
4 3.28 3.34| -1.77

9 4.91] 5.63|-14.70
9 7.73] 7.26] 6.14

16 12.30| 12.83] -4.34
16 14.21] 13.49| 5.10

25 19.09] 19.91] -4.30
25 21.08| 20.66| 1.98

36 30.95| 28.80| 6.93
36 29.78| 28.77| 3.40

49 52.82| 37.04| 29.88
49 39.73| 33.73| 15.10
o R13 5115 628 64 66.04| 47.03| 28.78

81 82.28] 53.57| 34.89

Class A: 64 x 64 x 64 Class B: 102 x 102 x 102

Fig. 3. Comparison of hand-coded and dHPF speedups for NAS BT

of our compiler-generated multipartitioned code for the class A (64%) problem
size. This parallelization is quite similar to the hand-coded multipartitioning.

Using non-owner computes computation partitionings to partially replicate
computation along multipartitioned tile boundaries led to dramatic reductions
of communication volume. In BT’s compute_rhs subroutine, partially replicating
the computation of the privatizable temporary arrays rho_q, gs, us, vs, ws, and
square along the boundaries of a multipartitioned tile avoided communication
of these six variables. No additional communication was needed to partially-
replicate this computation because the boundary planes of the multipartitioned
u array needed by the replicated computation were already being communicated.
This optimization cut the communication volume of compute_rhs by nearly half.
In BT’s lhsx, 1hsy, and lhsz subroutines, partially replicating computation
along the partitioning boundaries of two arrays, fjac and njac, whose global
dimensions are (5,5,IMAX,JMAX,KMAX), saved a factor of five in communica-
tion. Rather than communicating planes of computed values for these arrays
across partitions in the i, j, and k dimensions, we communicated sections of
rhs (5,IMAX, JMAX,KMAX), which is a factor of five smaller.

Figure 3 compares speedups of NASA Ames’ hand-coded parallelization us-
ing multipartitioning with those of our dHPF-generated code. All speedups are

250 Daniel Chavarria-Miranda et al.

relative to the performance of the original sequential code. The columns la-
beled “% diff” show the differences between the speedup of the dHPF-generated
code and the speedup of the hand-coded version, relative to the speedup of
the hand-coded version. The good parallel performance and scalability of the
compiler-generated code comes from applying multipartitioning in conjunction
with partially-replicated computation to reduce communication, aggressive com-
munication placement, and aggregating communication across both tiles and dif-
ferent arrays. A measure of the effectiveness of these communication optimiza-
tions is that for a 16-processor class A execution, dHPF had only 1.5% higher
communication volume, and 20% higher message frequency than the hand-coded
implementation.

While the performance of dHPF-generated code closely tracks that of the
hand-coded version for the 64% problem size, for the 1023 size the parallel effi-
ciency of dHPF’s generated code begins to lag at 49 processors. As the number of
processors increases, the surface-to-volume ratio of multipartitioned tiles grows
proportional to /p and dHPF’s packing and unpacking of data in array overlap
regions causes an increase in secondary data cache misses. This degrades the
performance of communication-sensitive line sweeps the most. The hand-coded
implementation uses data in communication buffers without unpacking.

5.2 NAS SP

Effectively parallelizing SP also required a broad spectrum of optimizations as
with BT. Despite the fact that the dynamic communication patterns of dHPF’s
multipartitioned parallelization resemble those of the hand-coded paralleliza-
tion, there is still a performance gap between the two implementations. Figure 4
compares speedups of NASA Ames’ hand-coded parallelization using multiparti-
tioning with those of our dHPF-generated code. All speedups are relative to the
performance of the sequential code for the respective NPB2.3-serial distribution.
Most of the difference comes from extra communication volume present in the
compiler-generated code for SP’s 1hs<xyz> routines.

Currently, the dHPF compiler uses a procedure-local communication place-
ment analysis. This approach schedules communication in each procedure even
though the values might already be available locally. Interprocedural communica-
tion analysis and placement analysis would be needed to eliminate this additional
communication. We measured a significant increase in secondary cache misses in
the sweep routines caused by how dHPF manages communication buffers and un-
packs non-local data into overlap regions. For z_solve, the overhead was 100%.
This cost could be reduced by accessing remote data directly from the packed
buffers, but would prove challenging to implement due to the non-contiguous
nature of the data.

For SP, non-local values gathered by the compute_rhs routine cover the non-
local values needed by the lhsx, lhsy and lhsz routines. In a 16-processor
execution for a class A problem size, this unnecessary communication in 1hsx,
lhsy and lhsz causes the communication volume of our dHPF-generated code

Data-Parallel Compiler Support for Multipartitioning 251

[# CPUs|[hand-coded[dHPF[% diff] [# CPUs|[hand-coded| dHPF[% diff |

1 0.80| 0.78| 2.67
1 1.01} 0.96f 5.50

4 2.86| 2.52| 12.13
4 4.21| 3.29| 21.83

9 7.74| 6.17| 20.26
9 11.60| 7.75] 33.24

16 13.01} 11.36| 12.63
16 16.21] 14.43| 10.98

25 22.15| 17.77| 19.75
25 21.00| 22.68| -7.98

36 36.52| 25.72| 29.57
36 30.69| 28.44| 7.31

49 51.78] 33.22| 35.85
49 42.43| 30.89| 27.19
o 6757 35150 32.42 64 58.35| 41.52| 28.84

81 74.95| 45.52| 39.26

Class A: 64 > 64 x 64 Class B: 102 x 102 x 102

Fig. 4. Comparison of hand-coded and dHPF speedups for NAS SP

to be 14.5% higher than for the hand-coded parallelization. Although the addi-
tional volume is modest, since this extra communication is forward and back-
ward along each of the spatial dimensions, the communication frequency of the
dHPF-generated code to be 74% higher than the hand-coded parallelization.

Like with BT, partially-replicating computation at the boundaries of mul-
tipartitioned tiles offered significant benefits for SP. In SP’s lhsx, lhsy, and
lhsz routines, replicating computation of boundary values of cv, a partitioned
1-dimensional vector aligned with a multipartitioned template, eliminated the
need to communicate these boundary values at loop depth two between their
definition and use. Although partially replicating computation of cv required
communicating two additional planes of the three-dimensional multipartitioned
array us in each of these routines, this communication was fully vectorizable,
whereas the communication of cv we avoided was not. In SP’s x_solve, y_solve,
and z_solve routines, dHPF’s ability to vectorize loop-carried communication
out of the entire loop nest over a multipartitioned tile was the key to achieving
one message per tile.

6 Conclusions

Van der Wijngaart showed that multipartitioning yields superior parallel per-
formance for tightly-coupled line sweep computations than other partitioning
choices [11]. In the dHPF compiler, we successfully implemented support for
multipartitioning. We were able to apply aggressive optimizations in dHPF in
the complicated circumstances arising in multipartitioned code principally be-
cause our compiler optimizations are formulated in a very general way—as ma-
nipulation of sets of integer tuples [2]. Only the combination of multipartitioning
and aggressive optimizations enabled us to approach hand-coded performance
on the NAS SP and BT benchmarks. Achieving high performance with compiler-
generated parallelizations requires paying attention to all the details. Multipar-
titioning by itself leads to balanced computation, but matching the hand-coded

252 Daniel Chavarria-Miranda et al.

communication frequency and volume, and also the scalar performance is neces-
sary to achieve competitive performance.

Remaining differences in performance between the dHPF-generated code and
the hand-coded parallelizations result from three factors. First, dHPF-generated
code incurs higher data-movement overheads in its communication support code
than the hand-coded implementations, which carefully reuse buffers and use com-
municated data directly out of buffers rather than unpacking. Second, dHPF-
generated code contains extra communication that comes from a lack of inter-
procedural analysis and placement. Third, the hand-coded implementation hides
communication latency by scheduling local computation while data is in flight.
Since in the serial version of the code analyzed by dHPF, the overlapped local
computation is in another routine, achieving this optimization would require
more global analysis and transformation.

Our experiments with two line-sweep codes show that our compiler technol-
ogy is able to simultaneously optimize all aspects of program performance. We
have demonstrated that it is possible to use data-parallel compiler technology
to effectively parallelize tightly-coupled line-sweep applications and yield perfor-
mance that is approaching that of sophisticated hand-coded parallel versions.

Acknowledgments

We thank Vikram Adve for his involvement in the early design and implemen-
tation discussions of this work.

References

1. V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High Performance Fortran Com-
pilation Techniques for Parallelizing Scientific Codes. In Proceedings of SC98: High
Performance Computing and Networking, Orlando, FL, Nov 1998. 242, 243, 248

2. V. Adve and J. Mellor-Crummey. Using Integer Sets for Data-Parallel Program
Analysis and Optimization. In Proceedings of the SIGPLAN ’98 Conference on
Programming Language Design and Implementation, Montreal, Canada, June 1998.
243, 251

3. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center, Dec. 1995. 243, 248

4. 7. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. Compiling High
Performance Fortran. In Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages 704-709, San Francisco, CA, Feb. 1995.
242

5. J. Bruno and P. Cappello. Implementing the beam and warming method on the
hypercube. In Proceedings of 3rd Conference on Hypercube Concurrent Computers
and Applications, pages 1073-1087, Pasadena, CA, Jan. 1988. 241

6. D. Chavarria-Miranda and J. Mellor-Crummey. Towards compiler support for scal-
able parallelism. In Proceedings of the Fifth Workshop on Languages, Compilers,
and Runtime Systems for Scalable Computers, Lecture Notes in Computer Science
1915, pages 272-284, Rochester, NY, May 2000. Springer-Verlag. 242, 243

10.

11.

Data-Parallel Compiler Support for Multipartitioning 253

A. Darte, J. Mellor-Crummey, R. Fowler, and D. Chavarria-Miranda. On efficient
parallelization of line-sweep computations. In 9th Workshop on Compilers for
Parallel Computers, Edinburgh, Scotland, June 2001. 242

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The
Omega Library Interface Guide. Technical report, Dept. of Computer Science,
Univ. of Maryland, College Park, Apr. 1996. 243, 245

W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In
Frontiers ’95: The 5th Symposium on the Frontiers of Massively Parallel Compu-
tation, McLean, VA, Feb. 1995. 243, 247

N. Naik, V. Naik, and M. Nicoules. Parallelization of a class of implicit finite-
difference schemes in computational fluid dynamics. International Journal of High
Speed Computing, 5(1):1-50, 1993. 241, 242

R. F. Van der Wijngaart. Efficient implementation of a 3-dimensional ADI method
on the iPSC/860. In Proceedings of Supercomputing 1993, pages 102-111. IEEE
Computer Society Press, 1993. 242 251

	Data-Parallel Compiler Support for Multipartitioning
	Introduction
	The dHPF Compiler
	Multipartitioning Optimizations
	General Optimizations
	Experimental Results
	NAS BT
	NAS SP

	Conclusions

