
Efficient Dependence Analysis for Java Arrays

Vivek Sarkar and Stephen Fink

IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA

Abstract. This paper studies dependence analysis for Java arrays, em-
phasizing efficient solutions that avoid a large compile-time overhead.
We present a new approach for dependence analysis based on sparse
congruence partitioning representations in SSA form. Since arrays in Java
are dynamically allocated, our approach takes pointer-induced aliasing
of array objects into account in conjunction with analysis of index val-
ues. We present experimental results to evaluate the effectiveness of our
approach, and outline directions for further improvements.

1 Introduction

Parallelizing and optimizing compilers perform array dependence analysis to
aid parallelizing transformations and enhance back-end optimizations. The core
problem addressed by dependence analysis ask whether and under what con-
ditions two array references may interfere. The bulk of past work on array
dependence analysis has focused on imperative programming languages such
as Fortran and C, and has resulted in a wide range of data dependence tests
based on symbolic analysis of index values (e.g., see [14,2,8,10,9,11,3]). Java,
with dynamically allocated arrays, also requires pointer-induced alias analysis
(e.g., see [5,13,12]) of array objects as part of array dependence analysis.

We examine an approach to dependence analysis for Java arrays, based on
sparse congruence partitioning in SSA form and accounting for pointer-induced
aliasing of array objects. The main features of our approach are:

1. Congruence Partitioning [1] based on SSA form provides an efficient approx-
imate analysis of when two index values are “definitely same” (DS).

2. A new Uniformly-Generated Partitioning provides provides an efficient ap-
proximate analysis of when two index values are “uniformly generated” [7]
i.e., when the two index values differ by a compile-time constant.

3. The Inequality Graph representation from [3] provides an efficient approxi-
mate analysis of when two index values are related by a < or > inequality.

These representations all rely on an extended SSA form. Since the compiler
uses only efficient sparse dataflow techniques, these techniques are ameneble
for runtime or dynamic (JIT) compilation. Experimental results show that con-
gruence partitioning techniques catch a substantial number of cases, but also
indicate significant opportunities for improvement with better algorithms and
inter-procedural analysis.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 273–277, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



274 Vivek Sarkar and Stephen Fink

2 Background

The dependence analysis approach presented in this paper builds on the SSA
congruence partitioning algorithm introduced in [1], and the Inequality Graph
from [3].

We first partition SSA reference variables into equivalence classes. The result
is represented as ref∼=, where ref∼=(a) is the equivalence class for variable a.
Given two SSA variables containing object references, a and b, if ref∼=(a) =
ref∼=(b) then the (unique) definitions of a and b are guaranteed to be “definitely
same” i.e., ref∼=.DS(a, b) = true.

Further, as described in [6], if ref∼=(a) �= ref∼=(b), and both a and b belong
to equivalence classes that included the result of a new operation, then a and b
are guaranteed to be “definitely different” i.e., ref∼=.DD(a, b) = true. This also
holds if a’s equivalence class includes the result of a new operation, and b’s
equivalence class includes a parameter.

The Inequality Graph (IG) representation is used to provide an efficient
approximate solution to the problem of determining when two index values are
related by a < or > inequality. As described in [3], a demand-driven traversal of
the inequality graph can establish that two index values belong to an inequality
relation. We omit further details due to space constraints; see [3] for more details.

3 Uniformly-Generated Partitioning of Integer Variables

Past work has shown that the most common case in data dependence analysis
compares index expressions that differ by a compile-time constant [8,10]. Such
index expressions are said to be “uniformly-generated” [7]. In this section, we
describe the uniformly-generated partitioning representation, which is as an ex-
tension to congruence partitioning and applies to all integer-like variables.

The partitioning is represented by three structures – index∼=, index offset,
and index rep, where index∼=(a) is the “uniformly-generated” equivalence class
for variable a. Given two SSA variables, a and b, if index∼=(a) = index∼=(b) then
the (unique) definitions of a and b are guaranteed to compute values that differ
by a compile-time constant. The values of a and b are related by the identity,
a = b+ index offset(a)− index offset(b), where index offset(a) contains
a constant offset that relates the value of a to the value of a hypothetical repre-
sentative variable, index rep(a) for the equivalence class containing variable a
by the identity, a = index rep(a) + index offset(a).

If index∼=(a) = index∼=(b) and index offset(a) = index offset(b), then
the definitions of a and b are guaranteed to be “definitely same”, indicated by
index∼=.DS(a, b) = true. If index∼=(a) = index∼=(b) and index offset(a) �=
index offset(b), then the definitions of a and b are guaranteed to be “definitely
different i.e., index∼=.DD(a, b) = true.

The three structures are initialized as follows. First, congruence partitioning
is performed on integer variables, and index∼= is initialized to the resulting
partition. A representative variable is arbitrarily selected from each equivalence



Efficient Dependence Analysis for Java Arrays 275

class in the partitioning. For each integer variable, a, index offset(a) is set
= 0, and index rep(a) is set to the representative variable for a’s equivalence
class.

Next, we merge congruence classes as follows. For each instruction of the
form, a := b + constant, the equivalence classes containing a and b are merged.
ref∼= is updated to reflect the result of the merge. index rep(a), the represen-
tative variable for a’s class is arbitrarily chosen as the representative variable for
the merged class. Further, the offset values for b and all variables that were in the
same class as b are updated such that index offset(b) := index offset(a) −
constant.

4 Algorithm

This section lays out the entire approach for intraprocedural dependence anal-
ysis considered in this paper. First we construct the sparse data structures as
described; namely, SSA form, the congruence partitioning, and the uniformly-
generating congruence partitions, and the inequality graph.

Next, we query these data structures to compare. a pair of one-dimensional
array accesses, a[i] and b[j], in the extended SSA form. We perform the following
steps in an attempt to determine whether these array accesses are “definitely-
different” or “definiately-same”. If none of the previous steps has a a conclusive
answer, Step 6 returns unknown as a conservative default solution.

1. Type propagation and disambiguation
if a and b cannot have overlapping types then return definitely-different;

2. Definitely-different test for object references using ref∼=
if ref∼=.DD(a, b) = true then return definitely-different;

3. Definitely-different test for index values using index∼=
if index∼=.DD(a, b) = true then return definitely-different;

4. Definitely-same test using ref∼= and index∼=
if ref∼=.DS(a, b) = true and index∼=.DS(a, b) = true then
return definitely-same;

5. Traversals of the Inequality Graph, IG
Traverse IG starting at i and attempt to prove i < j or j > i.

6. Otherwise
return unknown;

5 Experimental Results

We present results using the implementation of extended SSA form in the
Jalapeño dynamic optimizing compiler [4,6]. We performed the dependence
analysis test for each pair of distinct array references in each innermost loop
of each method executed.

Table 1 presents “static” counts of array reference pairs examined. The
aload and astore columns represent the total number of aload and astore
instructions encountered in innermost loops. The # pairs column contains the
number of pairs of distinct aload/astore instructions found in innermost loops.
The remaining columns break down the number of pairs into six categories:



276 Vivek Sarkar and Stephen Fink

Table 1. Summary of dependence test results on pairs of array references in
innermost loops. The table reports on the 7 SPECjvm98 codes, and on two
parallel computational fluid dynamics codes described in [?]

Benchmark aload astore # pairs type.DD ref.DD index.DD graph.DD DS unresolved
compress 20 15 13 0 0 0 0 1 (7.7%) 12 (92.3%)
jess 255 42 793 335 (42%) 0 3 (0.4%) 1 (0.1%) 32 (4.0%) 422 (53%)
db 44 13 37 0 0 0 0 7 (19%) 30 (81%)
javac 192 71 181 30 (17%) 1 (1.2%) 12 (6.6%) 0 22 (12%) 116 (64%)
mpegaudio 172 43 658 295 (45%) 0 103 (16%) 2 (0.3%) 26 (4.0%) 232 (35%)
mtrt 78 13 134 28 (21%) 3 (2.2%) 5 (3.7%) 0 6 (4.5%) 92 (69%)
jack 60 11 60 0 0 0 0 2 (3.3%) 58 (97%)
laura 122 54 343 127 (37%) 22 (6.4%) 105 (31%) 0 6 (1.7%) 83 (24%)
2dtag 24 22 247 123 (50%) 0 11 (4.5%) 0 4 (1.6%) 109 (44%)
section2 123 53 403 79 0 92 0 45 187

type.DD The number of pairs which type propagation determines to be definitely-
different (Step 1).

ref.DD The number of pairs which simple alias analysis determines to be definitely-
different (Step 2).

index.DD The number of pairs which uniformly-generated congruence partitions de-
termine to be definitely-different (Step 3).

graph.DD The number of pairs which the inequality graph traversal determines to
be definitely-different (Step 5).

DS The number of pairs which congruence partitioning determines both the index and
array reference to be definitely-same (Step 4).

unknown All remaining pairs (Step 6).

The results show that Java’s strong type system helps disambiguate many
array references. The two variants of congruence partitioning are the next most
effective. The simple alias analysis and inequality graph traversals are mostly
ineffective. The totality of techniques appears to be most effective on the two
numerical CFD codes (laura and 2dtag). The number of unresolved pairs ranges
from 24% to 97%. However, as some pairs are neither DD nor DS, even exact
analysis would have non-zero unresolved pairs. A limit on analysis precision
remains open for future work.

These results suggest that there may be room for increased precision with
more powerful techniques. It is not surprising that intra-procedural alias anal-
ysis provided little help for DD. We experimented with assuming that distinct
parameters are not aliased, which determined 3 additional pairs to be DD. We
are also investigating more powerful variants of the inequality graph and other
sparse demand-driven dataflow techniques.

6 Conclusions and Future Work

This paper presented a new approach for dependence analysis based on sparse
congruence partitioning representations built on SSA form. Our experimental
results demonstrate some effectiveness for dependence tests on array references
based on standard and uniformly generated congruence partitioning. However,
there may be significant opportunities for improvement with interprocedural
analysis and/or improved dataflow propagation of inequalities.



Efficient Dependence Analysis for Java Arrays 277

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In ACM, editor, POPL ’88. Proceedings of the conference on Principles
of programming languages, January 13–15, 1988, San Diego, CA, pages 1–11, New
York, NY, USA, 1988. ACM Press. 273, 274

2. U. Banerjee. Loop transformations for restructuring compilers: the foundations.
Kluwer Academic Publishers, Boston, MA, 1993. 273

3. R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on
Demand. In SIGPLAN 2000 Conference on Programming Language Design and
Implementation, June 2000. 273, 274

4. M. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. Serrano,
V. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Dynamic Optimizing
Compiler for Java. In ACM Java Grande Conference, June 1999. 275

5. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In SIGPLAN ’94 Conference on
Programming Language Design and Implementation, pages 242–256, June 1994.
SIGPLAN Notices, 29(6). 273

6. S. Fink, K. Knobe, and V. Sarkar. Unified analysis of array and object references
in strongly typed languages. In Seventh International Static Analysis Symposium
(2000), June 2000. 274, 275

7. K. Gallivan, W. Jalby, and D. Gannon. On the Problem of Optimizing
Data Transfers for Complex Memory Systems. Proceedings of the ACM 1988
International Conference on Supercomputing, pages 238–253, July 1988. 273,
274

8. G. Goff, K. Kennedy, and C.-W. Tseng. Practical dependence testing. In SIGPLAN
’91 Conference on Programming Language Design and Implementation, pages 15–
29, 1991. SIGPLAN Notices, 266. 273, 274

9. M. R. Haghighat and C. D. P. Hronopoulos. Symbolic analysis for parallelizing
compilers. ACM Transactions on Programming Languages and Systems, 18(4):477–
518, July 1996. 273

10. D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data dependence
analysis. In SIGPLAN ’91 Conference on Programming Language Design and
Implementation, pages 1–14, 1991. SIGPLAN Notices, 266. 273, 274

11. W. Pugh and D. Wonnacott. Eliminating false data dependences using the omega
test. Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language
Design and Implementation, San Francisco, California, pages 140–151, June 1992.
273

12. B. Steensgaard. Points-to analysis in almost linear time. In 23rd Annual ACM
SIGACT-SIGPLAN Symposium on the Principles of Programming Languages,
pages 32–41, Jan. 1996. 273

13. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In SIGPLAN ’95 Conference on Programming Language Design and
Implementation, pages 1–12, June 1995. SIGPLAN Notices, 30(6). 273

14. M. J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London
and The MIT Press, Cambridge, Massachusetts, 1989. In the series, Research
Monographs in Parallel and Distributed Computing. 273


	Efficient Dependence Analysis for Java Arrays
	Introduction
	Background
	Uniformly-Generated Partitioning of Integer Variables
	Algorithm
	Experimental Results
	Conclusions and Future Work


