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Abstract. In this paper we present a concurrency control algorithm and
recovery protocol for distributed databases that produces a schedule that
is equivalent to that of a temporally ordered serial schedule. The
algorithm is intended to be somewhat practical from the standpoints of
both burden on the application developer and realism of the network
environment.  Accordingly, it allows transactions to be received out of
order within a window of tolerance.  Moreover, it doesn’t require
declaration of readsets, and writesets are declared simply at the table
level and without predicates. This paper discusses the algorithm,
present its analytical studies, and report on the simulation experiments
we carried out to evaluate the performance of ours scheme. Our results
clearly indicate that with predeclared tables, performance is greatly
improved as compared with that from the conservative MVTO
algorithm.

1 Introduction

There appears to be a gap in previous database transaction concurrency control
studies on practical concurrency control methods that preserve temporal dependencies
only in the presence of data dependence. To fill this gap, concurrency control methods
are needed that efficiently produce chronologically ordered execution schedules for
data-dependent transactions (for the sake of preserving temporal dependencies) while
simultaneously taking advantage of potential performance gains by supporting out-of-
order (i.e., concurrent) execution of data-independent transactions. This paper
addresses the above-mentioned gap in light of these assumptions. We present  a
transaction concurrency control algorithm that is designed to execute transactions in a
high-performance manner while producing conflict-serializable schedules that
preserve temporal dependencies that coexist with data dependencies. The algorithm is
intended to be (a) useful in real-world on-line transaction processing (OLTP)
applications that are conforming to the above assumptions, (b) practical for the
application developer, and (c) applicable to both distributed and centralized databases.

The remainder of this paper is organized as follows.  In section 2, we describe the
DDBS model we used as a basis for this paper.  In section 3, we present our algorithm
followed by its analytical performance in Section 4. In section 5, we present the
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simulation set of experiments we carried out to evaluate the performance of our
scheme. Finally, in Section 6 we conclude this paper.

2 DDBS Model

We view a database as a persistent store for a collection of named data items
partitioned into disjoint sets that we refer to as tables.  (Note: although the term
‘table’ implies the relational data model, the algorithm doesn’t appear to be restricted
to this application.)  A distributed database system (DDBS) is viewed as a collection
of logically interrelated databases distributed among a group of computer nodes that
are interconnected via an assumed reliable network.  In our view of the DDBS, we
consider each data item to be tied to a particular database; that is, the DDBS is
restricted to the non-replicated case. In our DDBS model, a single Transaction
Manager (TM) manages each transaction in a dedicated/centralized fashion, and
multiple TMs operate independently of each other.  The TM executes each logical
database operation in client/server style by dispatching the corresponding message to
the target database within DDBS. A concurrency control algorithm governs the
various synchronization mechanisms employed by the DDBS to control the execution
order of database operations.  This execution order is called a schedule, and it is, in
general, correct if it is equivalent to any other schedule in which the transactions are
executed serially (i.e., the schedule is serializable). The design requirements discussed
earlier directly influenced key characteristics of our algorithm and its corresponding
DDBMS model. The requirement of immediate execution of write operations
requires, in turn, support for multiple versions of each data item. Reducing semantic
incorrectness associated with the return of an incorrect data item version suggests a
non-aggressive, if not conservative, synchronization technique. The requirement for
an execution schedule that is equivalent to a timestamp-ordered serial schedule
necessitates the use of timestamp ordering. Finally, the requirement for improved
concurrency combined with a non-aggressive synchronization technique requires
predeclaration of the data items to be accessed. Combining this with the requirement
for ease of use for the application developer requires that predeclaration be done at
other than the data-item level.

3 Proposed Concurrency Algorithm

The correctness constraint for all schedules produced by our concurrency control
algorithm is that they are conflict serializable and computationally equivalent to a
temporally ordered serial schedule for the same set of transactions. It has been shown
that the problem of concurrency control based on conflict serializability is
decomposable into sub-problems of synchronizing operations involved in the two
types of conflict, read-write and write-write [1,5,6]. These two sub-problems can be
solved independently as long as their solutions are combined in a manner that yields
an overall transaction ordering. Decomposing the overall problem into write-write and
read-write synchronization subproblems also simplifies the presentation of our
algorithm.

In accordance with the design constraints, write operations are executed
immediately upon receipt by a local database. This requires support for coexisting
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versions of each data item; that is, a multiversion DDBS. With a multiversion
database write-write synchronization is trivial: each version of a data item is uniquely
identified with the globally unique timestamp of its creating transaction. This
uniqueness effectively eliminates conflict between any two writes targeting the same
data item, thereby making the order of their execution inconsequential.

Read-write synchronization, on the other hand, is somewhat more complicated in
our scheme. Five rules of operation establish a framework within which read
operations are synchronized with writes. In describing these rules, let W-ts(xk)
represent the creation timestamp of version k of data item x, and ts(Ti) represent the
timestamp of transaction i. The rules are as follows:

Write rule: upon receipt of writei(x,y) from Ti, create a new data-item version xk with
value y and timestamp W-ts(xk) set to ts(Ti).

Read rule: upon receipt of readi(x) from Ti, return the value of data-item version xj

such that W-ts(xj) is the largest timestamp such that W-ts(xj) < ts(Ti).
The Read rule, when combined with the design constraint of reducing semantic

incorrectness associated with the return of a temporally incorrect value for the
targeted data item, suggests that each database delays its response to a read request
until the correct version is both available and committed. This gives rise to the
following delay rule.

Delay rule: A readi(x) from Ti will not be processed while either (a) an older,
uncommitted transaction has declared for update the table containing x, or (b) the
creating transaction for the accessed data item version (per the Read rule) is still
uncommitted.

The Delay rule ensures that each database will respond to a read request with the
correct and committed data item version as long as the begin message from the
version’s creating transaction is received at the database prior to its receipt of the
read. However, it is possible for the writer’s begin message to be delayed by the
network to the extent that it is received at the database after the read. Then, depending
on the commit state of the reader, one of the following two mutually-exclusive rules is
appropriate:

Abort rule: A transaction Tt will be aborted if it reads a data item version that is
older than a version (of the same data item) created subsequently by a straggling
transaction Tt-c, where ts(Tt-c) < ts(Tt). In other words, if a database responds to some
readt(x) with a data item version with W-ts(x) < ts(Tt-c), and then a writet-c(x) is
subsequently received at the database, then transaction Tt will be aborted so that it will
repeated and returned the correct data-item version.

Reorder rule:  The timestamp ts(Tt) of transaction Tt will be reset if it declares for
update any table that has been read by a younger committed transaction Tt+d. The new
timestamp will be set to a value such that the transaction Tt’ is made to be younger
than any committed reader on any of its declared tables.

The Abort and Reorder rules provide the basis for read-write synchronization
when the begin of a writing transaction is late in reaching one of the participating
local databases. The Abort rule is similar to that found in other approaches, with the
exception that aborted transactions maintain the timestamp with which they started.
The Abort rule is applicable in cases where a begin is late, but no reader has yet
committed having accessed a table included in the begin’s table list declaration. The
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corrective action in such cases is to abort and restart the reader when a straggling
writer creates a data item version with a timestamp that is on the interval of the
timestamps of the reader and the erroneously returned version (of the same data item).
The Reorder rule, however, is unique to our concurrency scheme.

Table 1: Summary of 2-TM Concurency system parameters

Transaction generation rate, λ At sites i and j, modeled as independent
Poisson processes.

Transaction processing time, S PDF for time between TM’s sending of
begin/read and write/commit messages.

Inter-transactional table-level conflict, 
k
jiφ Fraction of writes from site j having table-

level  conflict at site k with reads from site i.

Inter-transactional data-item-level conflict, 
k
jiγ Fraction of writes from site j having data-

item-level conflict at site k with reads from
site i.

Transmission delays, t and t’ PDF for delays, including pipelining delays.

Whenever a transaction’s begin message arrives at a local database at which some
younger reader has already committed, there is a chance that allowing the transaction
to proceed will lead to a non-serializable schedule. This chance exists only when a
younger reader has read from one of the tables included in the table list of the
delinquent begin. It actually occurs whenever there is data-item-level conflict between
the committed reader and some write to be issued by the transaction associated with
the delinquent begin.

Unfortunately, it appears that true data-item-level conflict with committed readers
cannot be verified without employing costly read-tracking mechanisms at the data-
item level. Consequently, a pessimistic approach is taken, and any table-level conflict
between a committed reader and delinquent older writer is handled as a data-item-
level conflict.

In the presence of younger committed readers with table-level conflict, the Reorder
rule is applied to a delinquent begin in order to reposition its associated transaction in
the temporal order to the earliest point at which the transaction can be safely executed
in a serializable fashion at all participating local databases. In summary, each local
database hosting a table with a younger committed reader replies to the begin message
with a safe timestamp, the associated Transaction Manager adopts the maximum of all
such replies, and then communicates the new temporal position to the
application/entity initiating the transaction for a go/no-go decision.

In Boukerche et. al. [2], we present the high-level pseudo code listings which
illustrate how the Transaction Manager and Database components operate in order to
provide concurrency control according to the stated rules.

4 Analytical Performance of Our Concurrency Scheme

Our analysis focuses on the probabilities and delays attributed to transaction conflict.
The most general case of conflict occurs when transactions issue both read and write
operations to each local database, so this case is chosen for all transactions.  A context
is established by making the following assumptions. First, transactions are generated
at different TM sites of the DDBS as independent Poisson processes. Second, local
processing delays are negligible in comparison to communication delays. Third,
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transaction generations and communications delays are independent. Finally, in
accordance with prior assumption, all clocks within the system are synchronized.

Transj initiated at j
begin & read msgs

sent
write & commit

msgs sent

Sj

 ai  ti  ti’

Transi initiated at i
readi sent

readi rec’d at
site k

beginj & readj
rec’d at k

write & commit
msgs sent

 tj’ tj

write & commit
msgs rec’d at k

write & commit
msgs rec’d at k

Si

Figure a: Transaction event timeline

The transaction model is modified slightly. Transactions are restricted to be 2-step.
In addition, for the purpose of the analysis, the transaction model is such that all begin
and/or read messages are simultaneously dispatched at the exact moment the
transaction is started. Similarly, after a period of time for transaction processing, all
write and commit messages are simultaneously dispatched. Finally, a single-phase
commit protocol is used. For more details and a complete proof correctness of this
scheme, the authors may wish to consult [2].

(i) Conflict Model for a 2-TM MVTC System: Consider two sites hosting
TMs, i and j. Suppose that these two sites generate transactions as independent
Poisson processes with rates λi and λj, respectively. Also suppose that a third site, k,
exists which hosts a database which will be accessed via a pipelined network by
transactions at i and j.

Suppose that transaction Tj is initiated at time ts(Tj) at site j. Further, suppose that
this transaction will attempt to write some xn in table X at site k. At the instant the
transaction initiates, beginj(X) and readj(xn) are simultaneously sent to site k in order
to register Tj as a writer on table X and to start its read. The propagation delay for this
message is represented by tj. Assume that Tj performs local processing that will be
concluded with simultaneous transmission of both writej(xn) and commitj messages to
site k. The processing time is represented with Sj  (See Figure above)

Similarly, suppose that a transaction at site i, Ti, is initiated at time ts(Tj) + ai,
which is later than ts(Tj). This transaction will attempt to read some xm in table X at
site k, and at the time of initiation a readi(xm) is simultaneously sent site k. The
transaction’s processing time is represented with Si.
(ii)  Analysis of the 2-TM MVTC System: We now derive the probabilities and
expected times associated with the different ways these two transactions can interact.

We use k
jiφ  and k

jiγ  to represent the fraction of writes from all transactions

originating at site j that will conflict at the table level and data-item level,
respectively, at site k with reads from transactions originating at site i.

Lemma 1: The probability that readi is blocked at site k for an older transaction Tj is
given by
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( )'k k
ij ji j i i j j i iBR P t a t S t a tφ= < + ∧ + > +

Lemma 2: The probability that commiti is blocked at site k for older transaction Tj is
given by

( )'k k
ij ji i i j i i iBC P a t t a S tφ= + < < + + .

Lemma 3: The probability that beginj is rejected at site k for younger committed
transaction Ti is given by

( )'k k
ji ji j i i iRB P t a S tφ= > + + .

We now derive expressions that approximate the performance measures in a 2-TM
MVTC system.

Theorem 1: Given exponential approximations for ti, tj, and Sj with respective means
of 1/µi, 1/µj, and 1/sj, the probability that readi is blocked at site k for an older
transaction Tj is approximated by

( )
( ) ( )( )( )

i j i i i jk k
ij ji

i j i j i j i j

BR
s s

µ µ λ λ µ µ
φ

λ µ λ µ µ µ
+ +

=
+ + + +

Theorem 2: Given exponential approximations for ti, tj, and Sj with respective means
of 1/µi, 1/µj, and 1/sj, the expected time that readi is delayed by a block at site k for an
older transaction Tj is approximated by

( ) ( )
( ) ( )

1 1i i jk
ji

j ji i j j i i j

E dr
s s s

λ µ µ
µλ µ µ µ λ

+
= +

+ + + +

Theorem 3: Given exponential approximations for ti, tj, and Si with respective means
of 1/µi, 1/µj, and 1/si, the probability that commiti is blocked at site k for an older
transaction Tj is approximated by

( )
( )( ) ( )2

i i j i i jk k
ij ji

i j i j i j

s
BC

s

λ µ µ µ µ
φ

λ µ µ µ µ

+ +
=

+ + +

Corollary 1: Given exponential approximations for ti, tj, and Si, with respective
means of 1/µi, 1/µj, and 1/si, the probability that transaction Ti is restarted because of
a missed writej at site k is approximated by

( )
( ) ( ) ( )2

i i j i i jk k k
ij ji ji

i j i j i j

s
RT

s

λ µ µ µ µ
γ φ

λ µ µ µ µ

+ +
=

+ + +

Theorem 4: Given exponential approximations for ti, tj, Si, and Sj with respective
means of 1/µi, 1/µj, 1/si, and 1/sj, the expected time that commiti is delayed by a block
at site k for an older transaction Tj is approximated by
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Theorem 5: Given exponential approximations for ti, tj, and Si, with respective means
of 1/µi, 1/µj, and 1/si, the probability that beginj is rejected at site k because of a
younger committed transaction Tj is approximated by
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5 Simulation Experiments

In order to acquire performance measures, a functional model of a DDBS with our
algorithm was implemented in Java.  This model includes stand-alone TM and DB
components that communicate via Java RMI.  To support post-execution analyses,
time-stamped operations were recorded within each DB component.  Each DB was
configured identically with 20 tables of 25 data items (“columns”), for a per-DB total
of 500 data items. The experiments were performed on a cluster of Intel Pentium III
(350 MHz) PCs running Microsoft Windows NT Workstation 4.0 with Service Pack
5, interconnected with a non-dedicated 10 Mbs LAN, and using the JavaSoft Java™ 2
Runtime Environment, Standard Edition, v 1.2.2_006. Three types of experiments are
presented below.  These experiments provide insight on the performance of the
algorithm when transaction density is high.  (At each TM, no delay was induced
between the completion of a transaction and the start of the next.)  They follow from
those in [1,4].
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In our first experiment we vary the size of read-only transactions in a mix of small
update transactions. The goal of this experiment is to investigate the performance of
read-only and update transactions when inter-transaction conflict is almost
exclusively between the two types of transactions (i.e., minimal conflict between any
two update transactions.)  The size of the Consequently, the size of the update
transactions was limited to 2 randomly chosen data items. However, unlike the update
transactions, each read-only transaction accessed a set of adjacent data items, thereby
focusing access to fewer tables.The ratio of update to read-only transactions was fixed
at 4 to 1.  This was accomplished by restricting each TM to one of the two types of
transactions, and allowing each to execute as many transactions as possible within a
run.  Finally, in each run, 10 TMs executed simultaneously against a single database.
Experiment runs were executed with mean sizes of 5, 10, 25, 50, and 100 data items
for the read-only transactions.  Figs 1-4 show the performance of the read-only and
update transactions as measured in turnaround time (i.e., response time) and
throughput. The measured values are plotted against the size of the read-only
transactions in each run, with “PT” indicating the results with Predeclared Tables, and
“ConsMVTO” indicating the performance of the conservative MVTO algorithm.
With respect to read-only transactions, the results are expected. For update
transactions, the curves for our algorithm, PT, for both throughput and turn-around
time would likely be flatter with a more powerful host for the database. The algorithm
was designed to eliminate delays on write operations, so the decreased performance
with larger read-only transaction sizes appears to result from processor contention at
the database host.  With the exception of the turnaround time for very large readsets,
each of the graphs shows improved performance with the predeclared tables.

In our second set of experiments, we vary the mix of read-only and update
transactions to investigate the performance of the two types of transactions.  Targeted
data items for these types of transactions were selected in the same manner as that in
the first experiment.  Transaction size for the updates was also the same, and the mean
size for the read-only transactions was fixed at 50.  Again, 10 TMs were  executed
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simultaneously, with each dedicated to one of the two transaction types. Experiment
runs were executed with [0,..,10] of the 10 TMs dedicated to update transactions.
Figs 5-8 show the performance of the read-only and update transactions, respectively,
as measured in turnaround time and throughput.  These metrics are plotted against the
fraction of update transactions in each run. In this scenario, the performance of both
types of transactions is greatly improved with the predeclared tables.

6 Conclusion

We have described an efficient algorithm for controlling transaction concurrency in a
distributed database system that is suitable for environments free of long-lived update
transactions. We have presented an analytical study of our scheme as well as a set of
simulation experiments to evaluate the performance of our scheme. When compared
with the conservative MVTO scheme, the results obtained show a significant
improvement, which is a result of our improved concurrency gained by eliminating
needless blocks. Our plan for future work is to further investigate the experimental
performance of our concurrency scheme.  An optimistic version of this algorithm will
also be studied [2,3].  It is also aimed at preserving temporal order, but relaxes the
constraint on temporal semantic correctness.  The relaxation introduces rollback as
the recovery mechanism for transactions that have been returned a temporally
incorrect data-item value.
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