
Experiments in Parallel Clustering with

DBSCAN

Domenica Arlia and Massimo Coppola

Università degli Studi di Pisa, Dipartimento di Informatica
Corso Italia 40, 56125 Pisa, Italy

coppola@di.unipi.it

Abstract. We present a new result concerning the parallelisation of
DBSCAN, a Data Mining algorithm for density-based spatial cluster-
ing. The overall structure of DBSCAN has been mapped to a skeleton-
structured program that performs parallel exploration of each cluster.
The approach is useful to improve performance on high-dimensional data,
and is general w.r.t. the spatial index structure used. We report prelimi-
nary results of the application running on a Beowulf with good efficiency.

1 Introduction

The goal of Clustering consists in grouping data items into subsets that are
homogeneous according to a given notion of similarity. It is well known [1] that
clustering techniques are poorly scalable w.r.t. the amount of data, and to the
number of data attributes. There is still an open debate [2] about effectiveness of
distance measures for clustering data with very high dimensionality. Even if new
data structures have recently been developed (like the X-Tree or the M-Tree)
the performance of spatial index structures asymptotically degrades to that of a
linear scan for high dimensional, ill distributed data.

There are relatively few results about improving practical use of clustering
by means of parallel computation, and to the best of our knowledge, little has
been done about parallel clustering with spatial access methods. Most of the
research about spatial indexes is done in the Database community, and it has
to face different and more complex problems like concurrent updates, which are
outside the scope of our present work.

On the contrary, we will mainly address the performance of the retrieval
operation, assuming that the data are already properly stored. Our contribution
is a parallel implementation of the DBSCAN clustering algorithm [3], which is
a new achievement. We aim at lowering computation time for those cases where
density-based spatial clustering takes too long but it is still appropriate.

The main research line of our group is aimed at high-level structured lan-
guages in Parallel Programming Environments (PPE), to enhance code produc-
tivity, portability and reuse in parallel software engineering. The coordination
language of our programming environment SkIE provides a set of parallel skele-
tons which express the basic forms of parallelism and encapsulate modules of

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 326–331, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Experiments in Parallel Clustering with DBSCAN 327

sequential code. The overall software architecture and the philosophy of the
language are more extensively described in other papers, see [4]. Essentially,
parallel skeletons are higher-order functionals used to express communication
and synchronisation semantics among program modules. Sequential and parallel
semantics are thus separated by module interface definitions.

Data Mining (DM) algorithms are an interesting source of problems of dy-
namic nature involving large data structures. We started a new research, sum-
marized in [5], by looking at the interplay among the design of DM applications
and the design and implementation of a PPE.

Here we report the results achieved so far with the DBSCAN algorithm. We
started form the sequential source and turned the key functionalities into sepa-
rate sequential modules. We have devised a parallel cooperation scheme among
these modules, explained in §3. We finally mapped this high-level structure to
a composition of skeletons in the coordination language of SkIE. We propose a
refinement of the simple parallel scheme to control parallel overhead, and report
test result for the parallel application.

2 Problem Definition

DBSCAN is a density-based spatial clustering algorithm. The original paper [3]
fully explains the algorithm and its theoretical bases, which we briefly summarize
in the following. By density-based we mean that clusters are defined as connected
regions where data points are dense. If density falls below a given threshold, data
are regarded as noise. Given a set of N points in Rd, DBSCAN produces a flat
partition of the input into a number of clusters and a set of noise points. The
density threshold is specified by choosing the minimum number MinPts of points
in a sphere of radius ε. As a basic definition, a core point is a point whose ε-
neighborhood satisfies this density condition. Clusters are non-empty, maximal
sets of core points and surrounding boundary points. The high level structure
of DBSCAN is a linear search for unlabelled core points, each new core point
starting the ExpandCluster procedure (Fig. 1a). ExpandCluster is the working
core of the algorithm, and its key operation is a spatial query, the operation of
retrieving all the points belonging to a given region of the space. It can be shown
that clusters are invariant w.r.t. the order of point selection in ExpandCluster,
and that the overall complexity is O(N · r()), where r() is the complexity of the
neighborhood retrieval.

A characteristic of spatial clustering is that spatial index structures are es-
sential to enhance the locality of data accesses. The first implementation of
DBSCAN uses a R*-Tree [6] to hold the whole input set. The R*-Tree is a sec-
ondary memory tree for d-dimensional data. It can answer to spatial queries with
complexity proportional to the tree depth, O(log N) in time and I/O accesses.
With this assumption, the authors of DBSCAN report a time complexity of
O(N log N). As stated in the introduction, if the data distribution is unknown,
spatial index structures need O(N) search time for large values of N and d. This
is also true for the R*-Tree when too large or dense regions are queried.

328 Domenica Arlia and Massimo Coppola

ExpandCluster (p, Input Set, ε, MinPts,
ClusterID)

label(p, ClusterID)
put p in a seed queue
while queue is not empty

extract c from the queue
retrieve the ε-neighborhood of c
if (there are at least MinPts neighbours)

foreach neighbour n
if (n is labelled NOISE)

label n with ClusterId
if (n is unlabelled)

label n with ClusterId
put n in the queue

Master :
while (there are pending results)

get {p, s, setn} from the result queue
if (s > MinPts)

foreach point n ∈ setn

if (n is labelled NOISE)
label n with ClusterID

if (n is unlabelled)
label n with ClusterID
put n in the candidate queue

Slave :
forever

get point c from the candidate queue
setn = ε-neighborhood(c)
put {c, #setn, setn} in the result queue

Fig. 1. (a) Pseudo-code of ExpandCluster — (b) Parallel decomposition.

farm retrieve in(candidate p) out(neighb n)
Slave in(p) out(n)

end farm

pipe body in(neighb a) out(neighb b)
Master in(a) out(candidate p)
retrieve in(p) out(b)

end pipe

loop dbscan in(neighb i) out(neighb o)
feedback(i=o)

body in(i) out(o)
while test in(o) out(bool cont)

end loop

S S

M

farm

Test

pipe

loop

Fig. 2. The skeleton structure of parallel DBSCAN and its template implemen-
tation

3 The Parallel DBSCAN

We first addressed the performance of region queries. Region queries account for
more than 95% of the computation time even when the R*-Tree fits in mem-
ory and contains two-dimensional data. Here we describe a simple replication
approach, which has non obvious consequences on the behaviour of the algo-
rithm. Our current target is to trade-off computational resources to increase the
bandwidth of the slowest part of DBSCAN. We made no efforts yet in designing
parallel access to the R*-Tree. Sequential DBSCAN is general w.r.t. the data
structure, and I/O bandwidth is a more immediate limitation than data size.

By relaxing the visit order constraints, we have rewritten ExpandCluster
as the composition of two separate processes (Fig. 1b), which actually inter-
act through asynchronous, unordered channels. The parallel visit can be proven
correct w.r.t. the sequential one, and can concurrently execute the queries.

The Master module performs cluster assignment, while the Slave module an-
swers neighborhood queries using the R*-Tree. Reading spatial information is
decoupled from writing labels, and the Slave has a pure functional behaviour.
Having restructured the algorithm to a Master-Slave cooperation, we must ex-

Experiments in Parallel Clustering with DBSCAN 329

10

100

1000

6526 12512 62556 437892

C
om

pl
et

io
n

T
im

e
(s

)

Sequential
6 Slaves
8 Slaves 1

4

8

30

100

300

2000 5000 10000 20000 30000

A
vg

. p
oi

nt
s

re
tu

rn
ed

 p
er

 q
ue

ry

no filtering
p=1, filtered
p=4, filtered
p=8, filtered

Fig. 3. (a) Completion times (p = 1, 6, 8) w.r.t. data size, with ε = 30000, log/log
scale. (b) Effect of filtering on query answers, p = 1, 4, 8, for file ca and varying ε

press its structure using the skeletons of our language. There is pipeline paral-
lelism between Master and Slave, and functional independent replication can be
exploited among multiple Slaves. In SkIE, the two skeletons pipe and farm re-
spectively declare these two basic forms of parallelism. The outer loop skeleton
in Fig. 2 expresses a data-flow loop, with back flow of information (the query
answers) and a sequential module to test program termination.

Unlike the sequential DBSCAN, points already labelled are returned again
and again from the slaves. Labels are kept and checked in the Master, which can
quickly become a bottleneck, as the upper curve in Fig. 3b shows. This parallel
overhead comes from the complete separation of labelling and spatial informa-
tion. We reduce the overhead by introducing partially consistent information
in the Slaves. The Slaves maintain local information used to discard redundant
results, by a© returning the set of neighbours for core points only and b© never
sending again a previously returned point. The filtering rule a© alone has negli-
gible effect, but is needed for the correctness of rule b©. We see in Fig. 3b that
the average number of points returned per query now approaches the degree of
parallelism. This is also the upper bound, since no point is sent more than once
by the p Slaves.

The program has been tested on a Beowulf class cluster of 10 PCs, with two
samples (6K, 12K points), the full ca dataset (62K points) used in [3], and a
scaled-up version of the data comprising 437 thousand points. More details can
be found in [5]. This data size (the R*-Tree is up to 16 Mbytes) still allows in-core
computation. Nevertheless the speedup (up to 6 with 8 slaves) and efficiency are
good. From the completion times (Fig. 3a) we can see that a parallelism degree
p = 6, 8 is the most we can usefully exploit on our architecture with in-core input
datasets. We expect that the additional overhead for the out-of-core computation
of a larger input set will raise the amount of available parallel work.

330 Domenica Arlia and Massimo Coppola

4 Conclusions

The program structure we have devised has several advantages. It exploits the
modularity of the sequential application, so it helped in reengineering existing
code to parallel with minimal effort. It is easily described and implemented using
the skeleton coordination patterns. The additional code is simple and general:
both sequential DBSCAN and our parallel implementation will still produce
identical results when replacing the R*-Tree with another spatial index structure.
At present time we duplicate the spatial data structure to gain computation and
I/O bandwidth. Saving disk space will be addressed in a later stage.

We deal with the parallel overhead of the simple Master-Slave decomposition
through a distributed filtering technique. This solution has been tested for in-core
data size with high computational load, showing large saving of computation and
communication, and a consistently good speedup w.r.t. the sequential algorithm.

We still have to verify the scalability results for larger input sets, forcing the
R*-Tree to be actually stored out-of core. Secondary memory sharing by parallel
file system can reduce or avoid the amount of data replication. Comparison of the
R*-Tree with newer spatial data structures is also needed, and more complex
filtering heuristics can be devised to further reduce the parallel overhead at
higher parallelism degree, by exploiting locality and affinity scheduling among
the queries. Finally, we are studying the extension of parallel DBSCAN results to
OPTICS [7], a DBSCAN-based automatic clustering methodology which relies
on a specific visit order in the ExpandCluster procedure.

Acknowledgments

We wish to thank Dr. Jörg Sander and the authors of DBSCAN for making
available the source code.

References

1. Daniel A. Keim and Alexander Hinneburg. Clustering techniques for large data
sets–from the past to the future. In Tutorial notes for ACM SIGKDD 1999 in-
ternational conference on Knowledge discovery and data mining, pages 141–181,
1999. 326

2. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is “Nearest Neigh-
bor” Meaningful? In C. Beeri and P. Buneman, editors, Database Theory - ICDT’99
7th International Conference, volume 1540 of LNCS, pages 217–235, January 1999.
326

3. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In
Proceedings of KDD ’96, 1996. 326, 327, 329

4. B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE : A heterogeneous
environment for HPC applications. Parallel Computing, 25(13–14):1827–1852, De-
cember 1999. 327

Experiments in Parallel Clustering with DBSCAN 331

5. Massimo Coppola and Marco Vanneschi. High-Performance Data Mining with
Skeleton-based Structured Parallel Programming. Technical Report TR-06-01, Di-
partimento di Informatica, Università di Pisa, May 2001. 327, 329

6. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient
and robust access method for points and rectangles. In Proc. of the ACM SIGMOD
International Conf. on Management of Data, pages 322–331, 1990. 327

7. M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: ordering points
to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD
international conference on Management of data, pages 49–60, 1999. 330

	Experiments in Parallel Clustering with DBSCAN
	Introduction
	Problem Definition
	The Parallel DBSCAN
	Conclusions

