
R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 360-370, 2001.
 Springer-Verlag Berlin Heidelberg 2001

Scanning Biosequence Databases
on a Hybrid Parallel Architecture

Bertil Schmidt 1, Heiko Schröder 1 and Manfred Schimmler 2

1 School of Computer Engineering, Nanyang Technological University,
Singapore 639798

{asbschmidt,asheiko}@ntu.edu.sg
2 Institut für Datenverarbeitungsanlagen, TU Braunschweig,
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany

masch@ida.ing.tu-bs.de

Abstract. Molecular biologists frequently scan sequence databases to
detect functional similarities between proteins. Even though efficient
dynamic programming algorithms exist for the problem, the required
scanning time is still very high, and because of the exponential database
growth finding fast solutions is of highest importance to research in this
area. In this paper we present a new approach to high performance
database scanning on a hybrid parallel architecture to gain
supercomputer power at low cost. The architecture is built around a PC-
cluster linked by a high-speed network and massively parallel processor
boards connected to each node. We present the design of a parallel
sequence comparison algorithm in order to derive an efficient mapping
onto this architecture. This results in a database scanning
implementation with significant runtime savings.

1 Introduction

Scanning protein sequence databases is a common and often repeated task in
molecular biology. The need for speeding up this treatment comes from the
exponential growth of the biosequence banks: every year their size scaled by a factor
1.5 to 2. The scan operation consists in finding similarities between a particular query
sequence and all the sequences of a bank. This operation allows biologists to point
out sequences sharing common subsequences. From a biological point of view, it
leads to identify similar functionality.

Comparison algorithms whose complexities are quadratic with respect to the
length of the sequences detect similarities between the query sequence and a subject
sequence. One frequently used approach to speed up this time consuming operation is
to introduce heuristics in the search algorithms [1]. The main drawback of this
solution is that the more time efficient the heuristics, the worse is the quality of the
results [11].

Another approach to get high quality results in a short time is to use parallel
processing. There are two basic methods of mapping the scanning of protein sequence

Scanning Biosequence Databases on a Hybrid Parallel Architecture 361

databases to a parallel processor: one is based on the systolisation of the sequence
comparison algorithm, the other is based on the distribution of the computation of
pairwise comparisons. Systolic arrays have been proven as a good candidate structure
for the first approach [4,12], while supercomputers and networks of workstations are
suitable architectures for the second [9]. This paper presents a new approach to high
performance sequence database scanning that combines both strategies on a new
hybrid parallel architecture, in order to achieve even higher speed.

Hybrid computing is the combination of the SIMD and MIMD paradigm within a
parallel architecture, i.e. within the processors of a computer cluster (MIMD)
massively parallel processor boards (SIMD) are installed in order to accelerate
compute intensive regular tasks. The driving force and motivation behind hybrid
computing is the price/performance ratio. Using PC-cluster as in the Beowulf
approach is currently the most efficient way to gain supercomputer power. Installing
in addition massively parallel processor cards within each PC can further improve the
cost/performance ratio significantly. We designed a parallel sequence comparison
algorithm in order to fit the characteristics of the hybrid architecture for a protein
sequence database scanning application. Its implementation is described on our
hybrid system consisting of Systola 1024 cards within the 16 PCs of a PC-cluster
connected via a Myrinet switch.

This paper is organised as follows. In Section 2, we introduce the basic sequence
comparison algorithm for database scanning and highlight previous work in parallel
sequence comparison. Section 3 provides a description of our hybrid architecture.
The new parallel algorithm and its mapping onto the hybrid architecture are explained
in Section 4. The performance is evaluated and compared to previous
implementations in Section 5. Section 6 concludes the paper with an outlook to
further research topics.

2 Parallel Sequence Comparison

Surprising relationships have been discovered between protein sequences that have
little overall similarity but in which similar subsequences can be found. In that sense,
the identification of similar subsequences is probably the most useful and practical
method for comparing two sequences. The Smith-Waterman (SW) algorithm [17]
finds the most similar subsequences of two sequences (the local alignment) by
dynamic programming.

The algorithm compares two sequences by computing a distance that represents the
minimal cost of transforming one segment into another. Two elementary operations
are used: substitution and insertion/deletion (also called a gap operation). Through
series of such elementary operations, any segments can be transformed into any other
segment. The smallest number of operations required to change one segment into
another can be taken into as the measure of the distance between the segments.

Consider two strings S1 and S2 of length l1 and l2. To identify common
subsequences, the SW algorithm computes the similarity H(i,j) of two sequences

362 Bertil Schmidt et al.

ending at position i and j of the two sequences S1 and S2. The computation of H(i,j)
is given by the following recurrences:

H(i,j) = max{0, E(i,j), F(i,j), H(i−1,j−1)+Sbt(S1i,S2j)}, 1≤i≤l1, 1≤j≤l2
E(i,j) = max{H(i,j−1)−α, E(i,j−1)−β}, 0≤i≤l1, 1≤j≤l2
F(i,j) = max{H(i−1,j)−α, E(i−1,j)−β}, 1≤i≤l1, 1≤j≤l2

where Sbt is a character substitution cost table. Initialisation of these values are given
by H(i,0)=E(i,0)=H(0,j)=F(0,j)=0 for 0≤i≤l1, 0≤j≤l2. Multiple gap costs are taken
into account as follows: α is the cost of the first gap; β is the cost of the following
gaps. Each position of the matrix H is a similarity value. The two segments of S1 and
S2 producing this value can be determined by a backtracking procedure. Fig. 1
illustrates an example

∅ A T C T C G T A T G A T G
∅ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 2 1 0 0 2 1 0 2
T 0 0 2 1 2 1 1 4 3 2 1 1 3 2
C 0 0 1 4 3 4 3 3 3 2 1 0 2 2
T 0 0 2 3 6 5 4 5 4 5 4 3 2 1
A 0 2 2 2 5 5 4 4 7 6 5 6 5 4
T 0 1 4 3 4 4 4 6 5 9 8 7 8 7
C 0 0 3 6 5 6 5 5 5 8 8 7 7 7
A 0 2 2 5 5 5 5 4 7 7 7 10 9 8
C 0 1 1 4 4 7 6 5 6 6 6 9 9 8

Fig. 1: Example of the SW algorithm to compute the local alignment between two DNA
sequences ATCTCGTATGATG and GTCTATCAC. The matrix H(i,j) is shown for the
computation with gap costs α=1 and β=1, and a substitution cost of +2 if the characters are
identical and −1 otherwise. From the highest score (+10 in the example), a traceback procedure
delivers the corresponding alignment (shaded cells), the two subsequences TCGTATGA and
TCTATCA

The dynamic programming calculation can be efficiently mapped to a linear array
of processing elements. A common mapping is to assign one processing element (PE)
to each character of the query string, and then to shift a subject sequence systolically
through the linear chain of PEs (see Fig. 2). If l1 is the length of the first sequence
and l2 is the length of the second, the comparison is performed in l1+l2−1 steps on l1
PEs, instead of l1×l2 steps required on a sequential processor. In each step the
computation for each dynamic programming cell along a single diagonal in Fig. 1 is
performed in parallel.

A C G T

� G T G A C

subject sequence query sequence

Fig. 2: Sequence comparison on a linear processor array: the query sequence is loaded into the
processor array (one character per PE) and a subject sequence flows from left to right through
the array. During each step, one elementary matrix computation is performed in each PE

A number of parallel architectures have been developed for sequence analysis. In
addition to architectures specifically designed for sequence analysis, existing
programmable sequential and parallel architectures have been used for solving
sequence problems.

Scanning Biosequence Databases on a Hybrid Parallel Architecture 363

Special-purpose systolic arrays can provide the fastest means of running a
particular algorithm with very high PE density. However, they are limited to one
single algorithm, and thus cannot supply the flexibility necessary to run a variety of
algorithms required analyzing DNA, RNA, and proteins. P-NAC was the first such
machine and computed edit distance over a four-character alphabet [10]. More recent
examples, better tuned to the needs of computational biology, include BioScan and
SAMBA [4,12].

Reconfigurable systems are based on programmable logic such as field-
programmable gate arrays (FPGAs), e.g. Splash-2, Biocellerator [5,6], or custom-
designed arrays, e.g. MGAP [2]. They are generally slower and have far lower PE
densities than special-purpose architectures. They are flexible, but the configuration
must be changed for each algorithm, which is generally more complicated than
writing new code for a programmable architecture.

Our approach is based on instruction systolic arrays (ISAs). ISAs combine the
speed and simplicity of systolic arrays with flexible programmability [7], i.e. they
achieve a high performance cost ratio and can at the same time be used for a wide
range of applications, e.g. scientific computing, image processing, multimedia video
compression, computer tomography, volume visualisation and cryptography [13-16].
The Kestrel design presented in [3] is close to our approach since it is also a
programmable fine-grained parallel architecture. Unfortunately, its topology is
purely a linear array. This has limited so far its widespread usage to biosequence
searches and a computational chemistry application.

3 The Hybrid Architecture

We have built a hybrid MIMD-SIMD architecture from general available components
(see Fig. 3). The MIMD part of the system is a cluster of 16 PCs (PentiumII, 450
MHz) running Linux. The machines are connected via a Gigabit-per-second LAN
(using Myrinet M2F-PCI32 as network interface cards and Myrinet M2L-SW16 as a
switch). For application development we use the MPI library MPICH v. 1.1.2.

For the SIMD part we plugged a Systola 1024 PCI board [8] into each PC. Systola
1024 contains an ISA of size 32×32. The ISA [7] is a mesh-connected processor grid,
where the processors are controlled by three streams of control information:
instructions, row selectors, and column selectors (see Figure 4). The instructions are
input in the upper left corner of the processor array, and from there they move step by
step in horizontal and vertical direction through the array. The selectors also move
systolically through the array: the row selectors horizontally from left to right,
column selectors vertically from top to bottom. Selectors mask the execution of the
instructions within the processors, i.e. an instruction is executed if and only if both
selector bits, currently in that processor, are equal to one. Otherwise, a no-operation is
executed.

Every processor has read and write access to its own memory (32 registers).
Besides that, it has a designated communication register (C-register) that can also be
read by the four neighbour processors. Within each clock phase reading access is

364 Bertil Schmidt et al.

always performed before writing access. Thus, two adjacent processors can exchange
data within a single clock cycle in which both processors overwrite the contents of
their own C-register with the contents of the C-register of its neighbour. This
convention avoids read/write conflicts and also creates the possibility to broadcast
information across a whole processor row or column with one single instruction. This
property can be exploited for an efficient calculation of row broadcasts and row
ringshifts, which are the key-operations in the algorithm in Section 4.

ConrollerConroller

PCI bus

northern board RAMnorthern board RAM

w
es

te
rn

 b
oa

rd
 R

A
M

w
es

te
rn

 b
oa

rd
 R

A
M

ISA

western
IP

northern IP

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

High speed Myrinet switchHigh speed Myrinet switch

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola
1024

Systola Systola 1024 board architecture1024 board architecture

Fig. 3: Architecture of our hybrid system: A cluster of 16 PCs with 16 Systola 1024 PCI
boards (left). The data paths in Systola 1024 are depicted on the right

+
−

×

1

instructions

row
selectors

column
selectors0

1
1
1
1

1
1
1

1
1
1

101
111

111
110

Fig. 4: Control flow in an ISA

For the fast data exchange with the ISA there are rows of intelligent memory units
at the northern and western borders of the array called interface processors (IPs).
Each IP is connected to its adjacent array processor for data transfer in each direction.
The IPs have access to an on-board memory, those at the northern interface chips
with the northern board RAM, and those of the western chips with the western board
RAM. The northern and the western board RAM can communicate bidirectionally
with the PC memory over the PCI bus.

At a clock frequency of f = 50 MHz and using a word format of m=16 bits each
(bitserial) processor can execute f/m = 50/16⋅106 = 3.125⋅106 word operations per
second. Thus, one board with its 1024 processors performs up to 3.2 GIPS. This adds
up to a theoretical peak performance of 51.2 GIPS for 16 boards inside the cluster.

Scanning Biosequence Databases on a Hybrid Parallel Architecture 365

4 Mapping of Sequence Comparison to the Hybrid Architecture

The mapping of the database scanning application on our hybrid computer consists of
two forms of parallelism: a fine-grained parallelelisation on Systola 1024 and a
coarse-grained on the PC-cluster. While the Systola implementation parallelises the
cell computation in the SW algorithm, the cluster implementation splits the database
into pieces and distributes them among the PCs using a suitable load balancing
strategy. We will now describe both parts in more detail.

Systolic parallelisation of the SW algorithm on a linear array is well-known. In
order to extend this algorithm to a mesh-architecture, we take advantage of ISAs
capabilities to perform row broadcast and row ringshift efficiently. Since the length of
the sequences may vary (several thousands in some cases, however commonly the
length is only in hundreds), the computation must also be partitioned on the N×N
ISA. For sake of clarity we firstly assume the processor array size N2 to be equal to
the query sequence length M, i.e. M=N2.

 bK-1�. b2 b1 b0 aN-1 a1 a0

a2N-1 aN+1 aN

aM-1 aM-N+1 aM-N

western IPs
N × N ISA

(0,0) (0,N−1)

(N−1,N−1)(N−1,0)

Fig. 5: Data flow for aligning two sequences A and B on an M=N×N ISA: A is loaded into the
ISA one character per PE and B is completely shifted through the array in M+K−1 steps. Each
character b

j
 is input from the lower western IP and results are written into the upper western IP

Fig. 5 shows the data flow in the ISA for aligning the sequences A = a0a1…aM-1 and
B = b0b1…bK-1, where A is the query sequence and B is a subject sequence of the
database. As a preprocessing step, symbol ai, i = 0,…,M−1, is loaded into PE (m,n)
with m = N−i div N−1 and n = N–i mod N−1 and B is loaded into the lower western
IP. After that the row of the substitution table corresponding to the respective
character is loaded into each PE as well as the constants α and β. B is then completely
shifted through the array in M+K−1 steps as displayed in Fig. 5.

In iteration step k, 1 ≤ k ≤ M+K−1, the values H(i,j), E(i,j), and F(i,j) for all i, j
with 1 ≤ i ≤ M, 1 ≤ j ≤ K and k=i+j−1 are computed in parallel in the PEs (m,n) with
m = N−i div N−1 and n = N–i mod N−1. For this calculation PE (m,n) receives the
values H(i−1,j), F(i−1,j), and bj from its eastern neighbour (m,n+1) if n < N−1, or
from PE (m+1,0) if n = N−1 and m < N−1, while the values H(i−1,j−1), H(i,j−1),
E(i,j−1), ai, α, β, and Sbt(ai,bj) are stored locally. The lower right PE (N−1,N−1)
receives bj in steps j with 0 ≤ j ≤ K−1 from the lower western IP and zeros otherwise.

These routing operations can be accomplished in constant time on the ISA. Thus, it
takes M+K−1 steps to compute the alignment cost of the two sequences with the SW

366 Bertil Schmidt et al.

algorithm. However, notice that after the last character of B enters the array, the first
character of a new subject sequence can be input for the next iteration step. Thus, all
subject sequences of the database can be pipelined with only one step delay between
two different sequences. Assuming k sequences of length K and K=O(M), we
compute K sequence alignments in time O(K⋅M) using O(M) processors. As the best
sequential algorithm takes O(K⋅M2) steps, our parallel implementation achieves
maximal efficiency.

Because of the very limited memory of each PE, only the highest score of matrix H
is computed on Systola 1024 for each pairwise comparison. Ranking the compared
sequences and reconstructing the alignments are carried out by the front end PC.
Because this last operation is only performed for very few subject sequences, its
computation time is negligible. In our ISA algorithm the maximum computation of
the matrix H can be easily incorporated with only a constant time penalty: After each
iteration step all PEs compute a new value max by taking the maximum of the newly
computed H-value and the old value of max from its neighbouring PE. After the last
character of a subject sequence has been processed in PE (0,0), the maximum of
matrix H is stored in PE (0,0), which is written into the adjacent western IP.

So far we have assumed a processor array equal in size of the query sequence
length (M=N2). In practice, this rarely happens. Assuming a query sequence length of
M = k⋅N with k a multiple of N or N a multiple of k, the algorithm is modified as
follows:

1. k ≤≤≤≤ N: In this case we can just replicate the algorithm for a k×N ISA on an
N×N ISA, i.e. each k×N subarray computes the alignment of the same query sequence
with different subject sequences.

2. k > N: A possible solution is to assign k/N characters of the sequences to
each PE instead of one. However, in this case the memory size has to be sufficient to
store k/N rows of the substitution table (20 values per row, since there are 20 different
amino acids), i.e. on Systola 1024 it is only possible to assign maximally two
characters per PE. Thus, for k/N > 2 it is required to split the sequence comparison
into k/(2N) passes: The first 2N2 characters of the query sequence are loaded into the
ISA. The entire database then crosses the array; the H-value and F-value computed in
PE (0,0) in each iteration step are output. In the next pass the following 2N2

characters of the query sequence are loaded. The data stored previously is loaded
together with the corresponding subject sequences and sent again into the ISA. The
process is iterated until the end of the query sequence is reached. Note that, no
additional instructions are necessary for the I/O of the intermediate results with the
processor array, because it is integrated in the dataflow (see Fig. 5).

For distributing of the computation among the PCs we have chosen a static split
load balancing strategy: A similar sized subset of the database is assigned to each PC
in a preprocessing step. The subsets remain stationary regardless of the query
sequence. Thus, the distribution has only to be performed once for each database and
does not influence the overall computing time. The input query sequence is broadcast
to each PC and multiple independent subset scans are performed on each Systola
1024 board. Finally, the highest scores are accumulated in one PC. This strategy
provides the best performance for our homogenous architecture, where each

Scanning Biosequence Databases on a Hybrid Parallel Architecture 367

processing unit has the same processing power. However, a dynamic split load
balancing strategy as used in [9] is more suitable for heterogeneous environments.

5 Performance Evaluation

A performance measure commonly used in computational biology is millions of
dynamic cell updates per second (MCUPS). A CUPS represents the time for a
complete computation of one entry of the matrix H, including all comparisons,
additions and maxima computations. To measure the MCUPS performance on
Systola 1024, we have given the instruction count to update two H-cells per PE in
Table 1.

Table 1: Instruction count to update two H-cells in one PE of Systola 1024 with the
corresponding operations

Operation in each PE per iteration step Instruction Count
Get H(i−1,j), F(i−1,j), b

j
, max

i-1from neighbour 20
Compute t = max{0, H(i−1,j−1) + Sbt(a

i
,b

j
)} 20

Compute F(i,j) = max{H(i−1,j)−α, F(i−1,j)−β} 8
Compute E(i,j) = max{H(i,j−1)−α, E(i,j−1)−β} 8

Compute H(i,j) = max{t, F(i,j), E(i,j)} 8
Compute max

i
 = max{H(i,j), max

i-1} 4

Sum 68

Because new H-values are computed for two characters within 68 instruction in
each PE, the whole 32×32 processor array can perform 2048 cell updates in the same
time. This leads to a performance of (2048/68) × f CUPS = (2048/68) × (50/16) × 106

CUPS = 94 MCUPS. Because MCUPS does not consider data transfer time and query
length, it is often a weak measure that does not reflect the behaviour of the complete
system. Therefore, we will use execution times of database scans for different query
lengths in our evaluation.

The involved data transfer in each iteration step is: input of a new character bj into
the lower western IP of each k×N subarray for query lengths ≤ 2048 (case 1. in
Section 4) and input of a new bj and a previously computed cell of H and F and
output of an H-cell and F-cell from the upper western IP for query lengths > 2048
(case 2. in Section 4). Thus, the data transfer time is totally dominated by above
computing time of 68 instructions per iteration step.

Table 2: Scan times (in seconds) of TrEMBL 14 for various length of the query sequence on
Systola 1024, a PC cluster with 16 Systola 1024, and a Pentium III 600. The speed up
compared to the Pentium III is also reported

Query sequence length 256 512 1024 2048 4096

Systola 1024 (speed up) 294 (5) 577 (6) 1137 (6) 2241 (6) 4611 (6)

Cluster of Systolas (speed up) 20 (81) 38 (86) 73 (91) 142 (94) 290 (92)

368 Bertil Schmidt et al.

Pentium III 600 MHz 1615 3286 6611 13343 26690

Table 2 reports times for scanning the TrEMBL protein databank (release 14,
which contains 351’834 sequences and 100’069’442 amino acids) for query
sequences of various lengths with the SW algorithm. The first two rows of the table
give the execution times for Systola 1024 and the cluster with 16 boards compared to
a sequential C-program on a Pentium III 600. As the times show, the parallel
implementations scale almost linearly with the sequence length. Because of the used
static split strategy the cluster times scale also almost linearly with the number of
PCs. A single Systola 1024 board is 5-6 times faster than a Pentium III 600. However,
a board redesign based on technology used for processors such as the Pentium III
(Systola has been built in 1994 [8]) would make this factor significantly higher.

Fig. 6 shows time measurements of sequence comparison with the SW algorithms
on different parallel machines. The data for the other machines is taken from [3].
Systola 1024 is around two times faster than the much larger 1K-PE MasPar and the
cluster of 16 Systolas is around two times faster than a 16K-PE MasPar. The 1-board
Kestrel is 4-5 times faster than a Systola board. Kestrel’s design [3] is also a
programmable fine-grained parallel architecture implemented as a PC add-on board.
It reaches the higher performance, because it has been built with 0.5-µm CMOS
technology, in comparison to 1.0-µm for Systola 1024. Extrapolating to this
technology both approaches should perform equally. However, the difference
between both architectures is that Kestrel is purely a linear array, while Systola is a
mesh. This makes the Systola 1024 a more flexible design, suitable for a wider range
of applications, see e.g. [13-16].

6 Conclusions and Future Work

In this paper we have demonstrated that hybrid computing is very suitable for
scanning biosequence databases. By combining the fine-grained ISA parallelism with
a coarse-grained distribution within a PC-cluster, our hybrid architecture achieves
supercomputer performance at low cost. We have presented the design of an ISA
algorithm that leads to a high-speed implementation on Systola 1024 exploiting the
fine-grained parallelism.

The exponentially growth of genomic databases demands even more powerful
parallel solutions in the future. Because comparison and alignment algorithms that are
favoured by biologists are not fixed, programmable parallel solutions are required to
speed up these tasks. As an alternative to special-purpose systems, hard-to-program
reconfigurable systems, and expensive supercomputers, we advocate the use of
specialised yet programmable hardware whose development is tuned to system speed.

Our future work in hybrid computing will include identifying more applications
that profit from this type of processing power, like scientific computing and
multimedia video processing. The results of this study will influence our design
decision to build a next-generation Systola board consisting of one large 128×128
ISA or of a cluster of 16 32×32 ISAs.

Scanning Biosequence Databases on a Hybrid Parallel Architecture 369

1

10

100

1000

1K-PE
MasPar

Systola
1024

Kestrel 16K-PE
MasPar

Systola
Cluster

Se
co

nd
s 512

1024
2048

Fig. 6: Time comparison for a 10Mbase search with the SW algorithm on different parallel
machines for different query lengths. The values for 1K-PE MasPar, Kestrel, and 16K-PE
MasPar are taken from [3], while the values for Systola are based on the TrEMBL 14 scanning
times (see Table 2) divided by a normalisation factor of 10

References

1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J.: Basic local
alignment search tool, J. Mol. Biol., 215 (1990) 403-410.

2. Borah, M., Bajwa, R. S., Hannenhalli, S., Irwin, M. J.: A SIMD solution to the
sequence comparison problem on the MGAP, in Proc. ASAP’94, IEEE CS
(1994) 144-160.

3. Dahle, D., et al..: The UCSC Kestrel general purpose parallel processor, Proc.
Int. Conf. Parallel and Distributed Processing Techniques and Applications,
(1999) 1243-1249.

4. Guerdoux-Jamet, P., Lavenier, D.: SAMBA: hardware accelerator for biological
sequence comparison, CABIOS 12 (6) (1997) 609-615.

5. Hoang, D. T.: Searching genetic databases on Splash 2, in Proc. IEEE Workshop
on FPGAs for Custom Computing Machines, IEEE CS, (1993) 185-191.

6. Hughey, R.: Parallel Hardware for Sequence Comparison and Alignment,
CABIOS 12 (6) (1996) 473-479.

7. Lang, H.-W.: The Instruction Systolic Array, a parallel architecture for VLSI,
Integration, the VLSI Journal 4 (1986) 65-74.

8. Lang, H.-W., Maaß, R., Schimmler, M.: The Instruction Systolic Array -
Implementation of a Low-Cost Parallel Architecture as Add-On Board for
Personal Computers, Proc. HPCN’94, LNCS 797, Springer (1994) 487-488.

9. Lavenier, D., Pacherie, J.-L.: Parallel Processing for Scanning Genomic Data-
Bases, Proc. PARCO’97, Elseiver (1998) 81-88.

10. Lopresti, D. P.: P-NAC: A systolic array for comparing nucleic acid sequences,
Computer 20 (7) (1987) 98-99.

11. Pearson, W. R.: Comparison of methods for searching protein sequence
databases, Protein Science 4 (6) (1995) 1145-1160.

370 Bertil Schmidt et al.

12. Singh, R. K. et al.: BIOSCAN: a network sharable computational resource for
searching biosequence databases, CABIOS, 12 (3) (1996) 191-196.

13. Schimmler, M., Lang, H.-W.: The Instruction Systolic Array in Image Processing
Applications, Proc. Europto 96, SPIE 2784 (1996) 136-144.

14. Schmidt, B., Schimmler, M.: A Parallel Accelerator Architecture for Multimedia
Video Compression, Proc. EuroPar’99, LNCS 1685, Springer (1999) 950-959.

15. Schmidt, B., Schimmler, M., Schröder, H.: Long Operand Arithmetic on
Instruction Systolic Computer Architectures and Its Application to RSA
cryptography, Proc. Euro-Par’98, LNCS 1470, Springer (1998) 916-922.

16. Schmidt, B.: Design of a Parallel Accelerator for Volume Rendering. In Proc.
Euro-Par’2000, LNCS 1900, Springer (2000) 1095-1104.

17. Smith, T. F., Waterman, M.S.: Identification of common molecular
subsequences, J. Mol. Biol. 147 (1981) 195-197.

	Introduction
	Parallel Sequence Comparison
	The Hybrid Architecture
	Mapping of Sequence Comparison to the Hybrid Architecture
	Performance Evaluation
	Conclusions and Future Work
	References

