Branch Prediction Using Profile Data*

Alex Ramirez, Josep L. Larriba-Pey, and Mateo Valero

Universitat Politecnica de Catalunya
Jordi Girona 1-3, D6, 08034 Barcelona, Spain

{aramirez,larri,mateo}@ac.upc.es

Abstract. Branch prediction accuracy is a very important factor for
superscalar processor performance. It is the ability to predict the out-
come of a branch which allows the processor to effectively use a large
instruction window, and extract a larger amount of ILP.

The first approach to branch prediction were static predictors, which
always predicted the same direction for a given branch. The use of profile
data and compiler transformations proved very effective at improving the
accuracy of these predictors.

In this paper we propose a novel dynamic predictor organization which
makes extensive use of profile data. The main advantage of our proposed
predictor (the agbias predictor) is that it does not depend heavily on the
quality of the profile data to provide high prediction accuracy.

Our results show that our agbias predictor reduces the branch mispre-
diction rate by 14% on a 16KB predictor over the next best compiler-
enhanced predictor.

1 Introduction

Branch prediction was first approached using static schemes, which always pre-
dict the same direction for a branch, like predicting that all branches would be
taken, or that only backwards branches would be taken [23]. Semi-static branch
predictors use profile feedback information and encode the most likely branch
direction in the instruction opcode, obtaining much higher accuracy than the
simple static predictors [9]. Profile data was also used to align branches in the
code so that they follow a given static prediction heuristic [3]. Finally, the more
accurate dynamic branch predictors, which store the past branch behavior in
dynamic information tables, and lookup this data to predict the future branch
direction [12,16,18,23,24,25].

We believe this paper contributes in proposing a dynamic prediction scheme
which makes extensive use of profile data to provide higher prediction accuracy,
even with lower quality or inexact profile data.

The proposed agbias predictor is largely based on the static-dynamic predic-
tor combination proposed in [20], and divides branches among four sub-streams:
first, among easy and hard to predict branches; second, among mostly taken

* This work was supported by the Ministry of Education and Science of Spain under
contract TIC-0511/98, by CEPBA, and an Intel fellowship.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 386-394, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Branch Prediction Using Profile Data 387

and not taken branches. This division obtains a significant interference reduc-
tion, and allows a separate resource allocation, as not all sub-streams have the
same needs.

Our results show that the agbias predictor outperforms all other examined
predictors (including their compiler enhanced version), reducing branch mispre-
diction rate by 14% on a 16KB predictor.

1.1 Simulation Setup

All the results in the paper were obtained using a simulator derived from the
SimpleScalar 3.0 tool set [2]. We run most of the SPECint95 benchmarks (except
go, compress, and perl) plus the PostgreSQL 6.3 database system running a
subset of the TPC-D queries. All programs were compiled statically and with
-O4 optimization level using Compaq’s C compiler.

The training and simulation inputs were different to simulate the effect of
inaccurate profile data on the prediction accuracy. All simulations were run to
completion. All figures in the paper present the arithmetic average of all executed
benchmarks, where all codes have the same weight.

We have compared our agbias predictor with the compiler-enhanced versions
of most modern de-aliased predictors: a gshare predictor using an optimized
code layout [22], agbias using a profiled bias bit [24], bimode using a profiled
selector [12,10], gskew [16], and a static-dynamic hybrid using profile data [20].

All predictors simulated use global branch history. The BHR length deter-
mines the PHT size: for N bits of history, 2V PHT entries are allocated. We
have used a 4096-entry/4-way set associative BTB to store the bias bit in the
agree predictor simulations.

1.2 Paper Structure

The rest of this paper is structured as follows: In Section 2 we present previous
related work, and discuss its relevance to this paper. In Section 3 we propose
our predictor organization, the agbias predictor, and analyze the reasons why it
proves more accurate than others, showing that prediction table interference is
not the only relevant factor. Finally, in Section 4 we present our conclusions for
this work.

2 Related Work

We can classify related work into four groups: basic branch predictors, de-aliased
predictors, and compiler support for branch prediction.

Basic branch prediction schemes can be broadly classified into three groups:
static, semi-static and dynamic branch predictors.

Static predictors always predict the same outcome for a given branch, and
can be based on very simple heuristics, which do not require encoded information
for the processor [23]. They can also be based on compiler analysis and more

388 Alex Ramirez et al.

complex heuristics [I] which are mainly used by the compiler itself to align
branches following a more simple heuristic [3,8]. The compiler can also increase
static prediction accuracy by using code transformations, usually implying code
replication [11,17,21,26].

Semi-static predictors are based on the observation that branches tend to
behave in the same way across different executions of the same code, and use
profile information obtained at run-time [4,9,15]. These predictors predict that
a branch will always follow its most usual direction as observed in the profile
data. Thanks to the use of profile information from an adequate training input
they achieve higher accuracy than simple static predictors based exclusively on
static analysis and heuristics. But the wrong inputs used to obtain the profile
data can lead to decreased accuracy of the predictor.

Dynamic branch predictors store information about the recent behavior of
branches in a given execution of the program, and are predicted to behave in the
same way as they usually did in the same past situation. These predictors differ
mainly in the way they store the past behavior of the branch and the situation in
which it executed, be it relative to the recent outcomes of other branches (global
branch history, path correlation) or the past outcomes of the same branch (self
history) [14,18,23,25].

All dynamic branch prediction schemes use finite tables to store the past
behavior of branches. When two different branches store their information in
the same table entry, aliasing happens. Recent dynamic prediction schemes try
to organize their tables in a clever way to reduce destructive aliasing [7,12,16,24].
We refer to these predictors as de-aliased schemes.

There have been also some dynamic branch prediction studies which have
involved the compiler in the prediction scheme, using profile information to re-
place some predictor components [10,13,20], or to provide some information that
is better obtained statically [24,19].

An alternative way of reducing prediction table interference is to reduce
the number of branches stored in these tables, filtering out the strongly biased
branches, which would then be predicted with a single bit stored in a separate
table [5,7,19] or statically using profile information [6,13,20]. We show that these
schemes heavily depend on the accuracy of the profile data, and present an
alternative organization which solves this problem, proving equally accurate with
both self-train and cross-train tests.

In [20] the relevance of the static predictors is increased, as they are used to
predict a large fraction of branches, removing them from the dynamic prediction
tables, thus reducing interference, and increasing accuracy. But most of the re-
sults shown correspond to the self-trained case, where the profile data is totally
accurate.

3 The Agbias Predictor

Based on the ideas exposed thus far, we propose another combination of static
and dynamic branch predictors which we call agbias. The agbias prediction

Branch Prediction Using Profile Data 389

scheme is shown in Figure 1. Largely based on the prediction scheme proposed
in [20], it is composed of two dynamic direction predictors, which use some
de-aliasing mechanism (we have chosen the agree mechanism in this paper),
and a static meta-predictor which divides branches between the strongly biased
sub-stream (the easy branches), and the not so biased sub-stream (the hard
branches). The easy branches are those which have the same outcome 95% of
the times, that is, they almost never change direction. Both dynamic compo-
nents share the BHR, which is only updated for the branches belonging to the
hard sub-stream.

Update only sq}_ected predictor

v i Shared (filtered) history

Gshare Gshare
+ +
agree agree

| Strongly |
3 biased |
I selector |

+
profiled
bias

+
profiled
bias

Selection

Fig. 1. The agbias predictor scheme

This way, we are dividing branches into four categories: first, using the pro-
filed bias (strongly biased/easy or not strongly biased/hard branches); second,
using their most likely outcome (taken or not taken). The first division is used
to distribute branches in two separate dynamic predictors, which allows an in-
dependent resource allocation for the easy and hard sub-streams. The second di-
vision is used to minimize negative interference in the prediction tables of both
dynamic components, using a de-aliased scheme (we have chosen the agree[p]
scheme, hence the name agbias). The classification of branches among strongly
biased and non-strongly biased using profile data [6] or dynamic tables [5,7,19]
has been explored before, but none considered a separate dynamic component
for the strongly biased stream.

The static-dynamic combination used in [20] does not allocate any dynamic
resources to the easy sub-stream, relying entirely on the accuracy of the profile
data. Our scheme avoids this too strong dependency by using a small dynamic
predictor instead. Even if the profile wrongly classifies a branch as belonging to
the easy sub-stream, the dynamic component will be more accurate than a pure
semi-static predictor. In this paper we have used a 512 byte agree predictor with
compiler enhancements. The agbias predictor used in this paper requires two
bits encoded in the instruction: a branch bias bit, and a branch direction bit.

Figure 2 shows the prediction accuracy of the aghias predictor compared to
other compiler-enhanced predictors. When not specified, results correspond to
the cross-trained test.

390 Alex Ramirez et al.

96

95

P ---- combined agree[p]+profile (self-training)
_— —e— agbias

& —— agree[p] (profiled direction bit)

- 7 ~——+— bimode[p] (profiled direction selector)

Prediction accuracy (%)

04 -] e —#— gskew
P — -A— gshare (optimized code layout)

. —— combined agree[p]+profile (cross-training)

T T T T T
512 1024 2048 4096 8192 16384
Predictor size (Bytes)

Fig. 2. Prediction accuracy of the agbias predictor compared to other compiler-
enhanced predictors

Our results show that the agbias predictor is more accurate than the other
predictors examined for all predictor sizes, reaching 96.8% average accuracy for
the studied benchmarks, improving on the 96.3% obtained with the compiler-
enhanced agree and bimode predictors.

The only comparable predictor is the static-dynamic combination when run-
ning the self-trained test, because it obtains the same prediction accuracy but
does not require any hardware resources for the easy sub-stream prediction.
However, note that the accuracy of that static-dynamic combination drops to
the level of a gshare predictor with the cross-trained test.

The advantage of the agbias predictor is that it obtains the same perfor-
mance in the self and cross-trained tests, being less dependent on the profile
data accuracy.

3.1 BHR Filtering

Clearly, one major advantage of the agbias predictor is that the hard sub-stream
predictor has much less interference than other predictors, because it only has
to worry about 30% of all branches.

But there is a second difference between the agbias predictor and the other
de-aliased schemes: updating the BHR only for branches in the hard sub-stream.
This selective BHR update achieves an important result: it is increasing the
amount of useful history information kept in the BHR.

The outcome of the easy branches does not provide the predictor with any
extra information, because we already know the outcome of the branch. The
outcome of the next branches does not depend on it, because it never changes.
Not shifting these outcomes into the BHR prevents other -variable- bits from
leaving the BHR. This increases the usefulness of the information stored in the
first level table, making it easier for the predictor to guess the correct branch
outcome.

Branch Prediction Using Profile Data 391

97 4

—_
¥ 96
<
>
=
&
=1
=
<
<
]
g
2
] _- —e— unbounded (filtered BHR)
& _ & —=e— unbounded
-7 —+— agbias

94 e —— agree[p] (profiled direction bit)

- — -A— - gshare (optimized code layout)

T T T 1
11 12 13 14 15 16

History length (bits)

Fig. 3. Effect of BHR filtering on prediction accuracy

Figure 3 shows the prediction accuracy of the agree[p] and the agbias predic-
tors compared to an unbounded predictor using the same history length, and an
unbounded predictor with a filtered BHR. The agree and agbias predictors use
the history length to determine the PHT size (a 14-bit agree predictor has 24
PHT entries, requiring 4KB of storage, the same 14-bit agbias requires 512 ex-
tra bytes for the easy sub-stream component). An unbounded predictor has a
separate PHT entry for each branch and each possible BHR value, so it is free
of interference.

The unbounded predictor increases performance from 96.3% to 96.7% as
history length increases, showing that a longer history register represents an
advantage to this predictor. The agree and agbias predictors experience larger
improvements with increasing history lengths because a longer history also im-
plies a larger PHT, and less interference.

The most remarkable result is that the agbias predictor obtains equivalent
performance to an unbounded predictor for 15 bits of history (96.6%), and it
actually obtains higher accuracy with 16 bits (96.8% vs 96.7%). But the compar-
ison is not fair, because the agbias predictor also benefits from the BHR filtering:
over 70% of all branches do not update the BHR, causing the history length of
the agbias predictor to behave like it were 70% larger.

As expected, the unbounded predictor also benefits from a filtered history
length, increasing accuracy of a 16-bit history predictor from 96.7% to 97.14%,
the same performance as a non-filtered predictor of 22 history bits (not shown).
This shows that PHT interference is not the only relevant factor to two-level
prediction accuracy: the amount of useful information stored in the Level 1
tables is also important.

We have shown how the agbias obtains higher accuracy than any other exam-
ined predictor (including their compiler enhanced versions): first, it obtains an
important interference reduction in the PHT; second, it increases the usefulness
of the BHR information, increasing the potential performance of its two-level
adaptive predictor components.

392 Alex Ramirez et al.

4 Conclusions

In this paper we have shown how we can increase branch prediction accuracy
by combining software and hardware techniques, providing yet another example
of how the combination of software and hardware techniques can lead to higher
performance at a lower implementation cost.

Based on previously proposed predictors and taking full advantage of the
compiler, we have presented the agbias branch prediction scheme, a static-
dynamic hybrid predictor based on the division of the branch stream in four
sub streams. A first division among strongly biased (easy branches) and not
strongly biased branches (hard branches), and a second division among mostly
taken and not taken branches.

The agbias predictor uses the agree predictions scheme to separate the taken
and the not taken sub-streams, and uses two separate dynamic components to
separate the easy and the hard sub-streams. Branches are classified using profile
information, encoding the class in the instruction opcode.

We outperform all other examined branch prediction schemes for all predictor
sizes, obtaining a 96.8% prediction accuracy with a 16KB predictor versus the
96.3% obtained with a compiler enhanced version of agree or bimode, reducing
misprediction rate by 14%.

References

1. Thomas Ball and James R. Larus. Branch prediction for free. Proc. ACM SIG-
PLAN Conf. on Programming Language Design and Implementation, pages 300—
313, June 1993. 388

2. D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: the
simplescalar tool set. Technical Report TR-1308, University of Winsconsin, July
1996. 387

3. Brad Calder and Dirk Grunwald. Reducing branch costs via branch alignment.
Proceedings of the 6th Intl. Conference on Architectural Support for Programming
Languages and Operating Systems, pages 242-251, October 1994. 386, 388

4. Brad Calder, Dirk Grunwald, and Donald Lindsay. Corpus-based static branch
prediction. Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 79-92, 1995. 388

5. Po-Yung Chang, Marius Evers, and Yale N. Patt. Improving branch prediction
accuracy by reducing pattern history table interference. Proceedings of the Intl.
Conference on Parallel Architectures and Compilation Techniques, October 1996.
388, 389

6. Po-Yung Chang, Eric Hao, Tse-Yu Yeh, and Yale N. Patt. Branch classification:
a new mechanism for improving branch predictor performance. Proceedings of the
27th Annual ACM/IEEE Intl. Symposium on Microarchitecture, pages 22-31, 1994.
388, 389

7. A. N. Eden and Trevor N. Mudge. The yags branch prediction scheme. Proceed-
ings of the Intl. Conference on Parallel Architectures and Compilation Techniques,
pages 69-77, 1998. 388, 389

8. Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEE Transactions on Computers, 30(7):478-490, July 1981. 388

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Branch Prediction Using Profile Data 393

Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch
directions from previous runs of a program. Proceedings of the 5th Intl. Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pages 85-95, 1992. 386, 388

Dirk Grunwald, Donald Lindsay, and Benjamin Zorn. Static methods in hybrid
branch prediction. Proceedings of the Intl. Conference on Parallel Architectures
and Compilation Techniques, pages 222-229, 1998. 387, 388

Andreas Krall. Improving semi-static branch prediction by code replication. Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation,
pages 97-106, 1994. 388

Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N. Mudge. The bi-mode branch
predictor. Proceedings of the 30th Annual ACM/IEEE Intl. Symposium on Mi-
croarchitecture, pages 4-13, December 1997. 386, 387, 388

Dondald Lindsay. Static methods in branch prediction. Ph.D. thesis, Department
of Computer Science, University of Colorado, 1998. 388

Scott McFarling. Combining branch predictors. Technical Report TN-36, Compaq
Western Research Lab., June 1993. 388

Scott McFarling and John Hennessy. Reducing the cost of branches. Proceedings of
the 13th Annual Intl. Symposium on Computer Architecture, pages 396-403, 1986.
388

Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading conflict and capacity
aliasing in conditional branch predictors. Proceedings of the 24th Annual Intl.
Symposium on Computer Architecture, pages 292—-303, 1997. 386, 387, 388

Frank Mueller and David A. Whalley. Avoiding conditional branches by code
replication. Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 56—66, 1995. 388

Ravi Nair. Dynamic path-based branch correlation. Proceedings of the 28th Annual
ACM/IEEE Intl. Symposium on Microarchitecture, pages 15-23, November 1995.
386, 388

Sanjay Jeram Patel, Marius Evers, and Yale N. Patt. Improving trace cache effec-
tiveness with branch promotion and trace packing. Proceedings of the 25th Annual
Intl. Symposium on Computer Architecture, pages 262—271, June 1998. 388, 389
Harish Patil and Joel Emer. Combining static and dynamic branch prediction
to reduce destructive aliasing. Proceedings of the 6th Intl. Conference on High
Performance Computer Architecture, pages 251-262, January 2000. 386, 387, 388,
389

Jason R. C. Patterson. Accurate static branch prediction by value range propaga-
tion. Proc. ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation, pages 67-78, 1995. 388

Alex Ramirez, Josep L. Larriba-Pey, and Mateo Valero. The effect of code re-
ordering on branch prediction. Proceedings of the Intl. Conference on Parallel
Architectures and Compilation Techniques, pages 189198, October 2000. 387
James E. Smith. A study of branch prediction strategies. Proceedings of the 8th
Annual Intl. Symposium on Computer Architecture, pages 135—148, 1981. 386,
387, 388

FEric Sprangle, Robert S. Chappell, Mitch Alsup, and Yale N. Patt. The agree
predictor: A mechanism for reducing negative branch history interference. Pro-
ceedings of the 24th Annual Intl. Symposium on Computer Architecture, pages
284-291, 1997. 386, 387, 388

394

25.

26.

Alex Ramirez et al.

T. Y. Yeh and Y. N. Patt. Two-level adaptive branch prediction. Proceedings of
the 24th Annual ACM/IEEE Intl. Symposium on Microarchitecture, pages 51-61,
1991. 386, 388

Cliff Young and Michael D.Smith. Improving the accuracy of static branch predic-
tion using branch correlation. Proceedings of the 6th Intl. Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 232241,
October 1994. 388

	Branch Prediction Using Profile Data
	Introduction
	Simulation Setup
	Paper Structure

	Related Work
	The Agbias Predictor
	BHR Filtering

	Conclusions

