
Memory Bandwidth:

The True Bottleneck of SIMD Multimedia
Performance on a Superscalar Processor

Julien Sebot and Nathalie Drach-Temam

LRI - Université Paris Sud - France

Abstract. This paper presents the performance of DSP, image and 3D
applications on recent general-purpose microprocessors using streaming
SIMD ISA extensions (integer and floating point). The 9 benchmarks
benchmark we use for this evaluation have been optimized for DLP and
caches use with SIMD extensions and data prefetch. The result of these
cumulated optimizations is a speedup that ranges from 1.9 to 7.1.
All the benchmarks were originaly computation bound and 7 becomes
memory bandwidth bound with the addition of SIMD and data prefetch.
Quadrupling the memory bandwidth has no effect on original kernels but
improves the performance of SIMD kernels by 15-55%.

1 Introduction

The SIMD (Single Instruction Multiple Data) extensions to general purpose
microprocessor instruction sets have been introduced in 1995 to enhance the
performance of multimedia and DSP applications. The goal for these exten-
sions to general purpose microprocessors instruction sets is to accelerate DSP
and multimedia application at a small cost. Traditionally in these processors,
better ILP exploitation goes through increasing dispatch logic (reorder buffer
size, reservation station size) and the number of functional units available. With
SIMD instruction sets only the number of functional units is increased (the width
of a functional unit). With constantly increasing available transistors in micro-
processors there was room for the additional functional units needed by SIMD
instruction sets. With SIMD extensions it’s up to the programmer or the com-
piler to extract the ILP that is traditionally extracted by the out of order core
of the microprocessor. Multimedia and DSP applications generally work on data
vectors, so SIMD programmation is well adapted to these classes of applications.

At the beginning, these extensions were able to process 64 bit integer vec-
tors: Sun with VIS in 1995, HP with MAX in 1995, MIPS with MDMX, Intel
with MMX in 1997. The introduction of SIMD extensions able to process single
precision floating-point vectors is more recent: AMD with 3DNow! [2] and Intel
with SSE in 1998. The multimedia applications use more and more floating-
point computations. Currently the main target for these FP SIMD extensions is
3D polygonal rendering that is extensively used in CAD applications and games.
The need for single precision floating-point computing power is very important in

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 439–447, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

440 Julien Sebot and Nathalie Drach-Temam

this class of applications. In 1999 Motorola introduced AltiVec, which is the first
SIMD instruction set that can handle both integer and floating-point vectors.
Recently, Intel introduced SSE2 with Pentium 4, SSE2 enables double precision
floating-point SIMD computation.

In this paper we study the performance of both integer and floating-point
applications through DSP, image and 3D kernels on a general purpose micro-
processor with SIMD extensions. DSP, image and 3D are the three main classes
of multimedia applications and multimedia is the main workload on home com-
puters. We show that SIMD optimizations and data prefetching raise the per-
formance by 1.9 to 7.1 and that memory bandwidth becomes the bottleneck.

2 Related Work and Motivation

This section discusses related work in SIMD instruction sets evaluation.
In [7], Ranganathan and Al. study the performance of several integer image

processing kernel including microbenchmarks, jpeg and mpeg compression. They
show improvements from 1.1x to 4.2x with VIS, and that data prefetching is very
efficient on media kernels. In [1] Bhagarva and Al. show improvements from
1.0x to 6.1x on DSP kernels and jpeg, but don’t evaluate the impact of memory
hierarchy on the final performance. Yang and Al. study in [3] the impact of paired
SIMD floating-point instructions and 4-way SIMD floating-point instructions on
3D geometry transformations. Their study is limited to the impact on ILP and
does not look at the memory hierarchy problems. In [6] Nguyen and Al. study
the ILP of a small number of micro kernels with AltiVec and show improvements
without memory hierarchy between 1.6x and 11.66x.

We have shown preliminary results in [4] about AltiVec performance on
floating-point multimedia kernels. In this paper we show the performance im-
provement of 9 Integer and Floating-Point micro kernels using AltiVec. We focus
on the impact of memory hierarchy (latency and bandwidth) on the performance
of multimedia kernels using a SIMD instruction set. We show that with AltiVec
streaming prefetch enabled, the kernel performance becomes bounded by the
memory bandwidth.

3 Methodology

AltiVec is a Single Instruction Multiple Data (SIMD) machine comprised of
32 × 128 − bit “vector” registers, 2 fully pipelined processing units (a vector
permute and an ALU) and 170 new instructions. These instructions comprise
vector multiply accumulation, all kinds of permutations between two vectors,
float to int conversions, pixel packing, logical operations, comparisons, selections
and extensions from a scalar to a vector.

AltiVec vector registers can hold either 16 8-bit integers, 8 16-bit integers, 4
32-bit integers than 4 IEEE-754 single precision floats. AltiVec provides stream-
ing prefetch instructions. The programmer can use these instructions to specify
the amount of data to be prefetched into the first level cache, with an optional

Memory Bandwidth 441

stride. The Motorola PowerPC 7400 is the first microprocessor to implement
AltiVec instruction set. There is more informations about the PowerPC 7400
in [5].

We have used Apple MrC compiler through a Metrowerks Codewarrior pro 4
plug-in. MrC allows easy Altivec programming through some extensions which
enable the use of Altivec functions in a C program. The C programming model
for Altivec used in MrC is designed to look like function calls, but each of this
function call represents and generates one Altivec instruction. Variables are de-
fined using C types that match Altivec data types and variables declared using
these types are all 16-byte aligned.

We have evaluated the performance of our multimedia kernel by execution on
a real PowerPCG4. We have used trace driven simulation to estimate the impact
of memory bandwidth impact on these kernel’s performance. We couldn’t modify
the memory bandwidth of our PowerPC G4 (by changing the bus/processor
ratio and the memory latency) so we used Motorola G4 simulator v1.1.2 and
pitsTT6 v1.4 execution trace generator. PitsTT6 works as a shared library. A
call to startTrace() launch the trace generation during the execution and a call
to stopTrace() stops it. It generates a TT6 execution trace which we used as
input for the G4 simulator.

4 SIMD Optimizations for DSP Image and 3D Kernels

We have used 9 micro-kernels taken from multimedia and DSP applications.
There are 4 single precision floating-point kernels and 5 integer kernels. SOAD:
Sum Of Absolute Difference kernel is found in several reference video coder
implementations such as MPEG2. It is one of the most computationally intensive
aspects of video encoding. RGB2YCbCr converts from Gamma Corrected RGB
to the YCbCr Color Space. It is used in video compression algorithms. iDCT:
The Inverse Discrete Cosine Transform is used in MPEG2 decompression. The
Image filters corresponds to gamma correction filters on static images. The sparse
one works only on one component of the image. FIR and IIR filtering are two
of the fundamental operations in digital signal processing. DAXPY is used in
number of numerical algorithms, it is the heart of matrix-matrix products. The
Max micro-kernel is used to find the maximum floating-point element of a vector
and the elements corresponding index. It is a very important step in the Viterbi
algorithm (speech recognition). The 3D kernel performs the essential steps of
the geometry part of the 3D polygonal graphic pipeline. 3D polygonal rendering
is used by most of the CAO/CAD applications, virtual reality and many games.

AltiVec provides SIMD instructions able to work on 4 to 16 element wide
vectors depending on the data types. The programmer can permute each byte
element of a vector as he wants. A simple way to characterize the “theoritical”
speedup of a SIMD program is to use as speedup the vector width in number of
elements. It also gives a good idea of the potential instruction count reduction
factor. The speedups won’t be so high for the following reasons:

442 Julien Sebot and Nathalie Drach-Temam

– data need often to be reorganized to be processed efficiently with the SIMD
instructions available. This overhead limits the speedup of all the programs
that need data reorganization.

– The ILP that can be extracted from each algorithm is variable and often the
theoretical speedup isn’t reachable because of the instructions dependency
graph that limits the ILP.

SIMD ISA provide generally specialized instructions that accelerate much
the processing of most DSP and multimedia algorithms. These instructions, if
they are only present in the SIMD extensions can raise the speedup of the SIMD
version of the programs over the theoretical speedup. These specialized instruc-
tions are:
- meta-instructions: these instructions perform multiple operations at a time, the
multiply accumulation is the most known example. The instruction that com-
putes 1√

x
is only found in the SIMD ISA and is used in vector normalization in

the 3D geometry pipeline.
- “vector if” without branch: by using masking and selecting instructions the
programmer can perform conditional tests on individual vector elements with-
out any branch instruction.
- Type conversion, vector packing and unpacking. SIMD instruction sets pro-
vide float to int and int to float conversions and packing, unpacking instructions
with saturated and unsaturated arithmetics. Saturated arithmetics and type
conversions are generally high cost operations and are much used in multimedia
algorithms that work on floats or 32-bit integers and that need the results to be
converted into 8-bit integers to be displayed at screen.

The SIMD instruction sets use large register files with currently four times
more space than conventional register files (same amount of registers, 4 times
wider). This additional register space can be used in algorithms by maximizing
the amount of data stored in registers and then exploit temporal locality at the
register level. That reduces the first level cache overall number of miss and may
raise significantly the performance of some algorithms.

Table 1. Datasets for the 9 benchmarks, number of elements per AltiVec
vector (width) and instruction count reduction (ICR: executed instructions
PPC/ AltiVec). Performance of the PPC and prefetch, AltiVec, AltiVec and
prefetch versions relative to PPC version and prefetch impact on AltiVec ver-
sion (PF=prefetch, AV=AltiVec

Benchmark Dataset Size Description Width ICR PPC AV AV+pf (pf impact)
SOAD 1 MB 1 MPEG2 frame 16 16.3 1.05 2.71 3.44 (1.27)
RGB2YCbCr 9 MB 1 TVHD frame 16 9.8 1.00 4.34 5.95 (1.37)
IDCT 8 MB 8 MPEG2 frame 8 9.4 1.01 5.31 7.12 (1.34)
Img sparse 9 MB 1 TVHD frame 16 5.1 1.17 1.22 1.98 (1.62)
Img dense 9 MB 1 TVHD frame 16 18.4 1.01 2.18 3.63 (1.66)
FIR 10 MB 2400000 elts 4 3.5 1.00 3.02 3.20 (1.06)
DAXPY 8 MB 2000000 elts 4 4.0 1.90 1.12 1.93 (1.72)
Max 16 MB 4000000 elts 4 3.6 1.10 1.63 5.93 (3.65)
3D 10 MB 512000 vertices 4 4.3 1.07 2.18 2.98 (1.37)

Memory Bandwidth 443

5 Performance Evaluation

We have measured the execution time of the 9 micro-benchmarks on a Power-
Mac G4 450 with 1MByte of L2 cache. We have run each benchmark in its C
version and AltiVec version with prefetch on and off. All the results are given
as speedups against the C version without prefetch. We have used the datasets
presented in Table 1. For all the benchmarks, the L1 misses are only cold misses
because multimedia applications exploit mainly spatial locality via data streams.
The speedups range from 1.8 to 4.9 for single precision floating-point kernels and
from 1.9 to 7.1 for integer ones. The results are shown in table 1. Generally we
have measured a speedup lower than the theoretical one. It is between 2.75
and 3.5 for floating point applications. FIR has the biggest instruction count
reduction because there is no need for data reorganization because of the intra-
iteration parallelization. Its speedup does not reach the theoretical one because
the loop cannot be unrolled so the AltiVec functional units stay unoccupied most
of the time. The 3D kernel that uses inter-iteration parallelization needs data
reorganizations, that is an overhead in instruction count. The dependency graph
between instructions is the same in AltiVec than in C (omitting the Permuta-
tions for reorganization) so the speedup is essentially limited by the overhead
of the reorganization. AltiVec provides an independent permutation unit so a
part of the reorganizations can be done in parallel with the computations. Max
and DAXPY are more memory intensive than computation, so the speedup is
limited by the memory hierarchy performance (cf. next section). For the integer
benchmarks, IDCT is very computational and well parallelizable without any
overhead, the number of executed instructions is reduced by a 9.4 factor (shown
in table 1) and the speedup is 7.1. The sparse filter isn’t much efficient because
it performs many computations for nothing, just because the data structure is
sparse. The AltiVec instruction count is near the one for the dense filter, ver-
sus a 4 times reduction for the PPC version. The two last benchmarks have an
instruction reduction count of about 16. The 3D kernel uses some AltiVec spe-
cialized instructions as 1√

x
in the normals transformation process. The clipping

step uses intensively masking and selection instructions to perform “vector if”.
The phong lighting step uses vector packing, float to int conversions and satu-
rated arithmetics. The part of the phong algorithm that uses these instructions
has a speedup of 14, and the phong lighting step has a global speedup of 7.4.
The functions we have implemented in our 3D kernels represent 85% of the time
of the geometry transformations into the Mesa 3D graphic Library. The inte-
gration of our AltiVec functions into Mesa should give over a 100% increase in
performance.

6 Latency Problems: Streaming Prefetch Impact

Our benchmarks are multimedia applications that have streaming data acess.
We use blocked algorithm to avoid cache misses other than cold ones. In all
our algorithms we have measured the impact of AltiVec streaming prefetch. We

444 Julien Sebot and Nathalie Drach-Temam

have chosen to launch streaming prefetch each 32Bytes of data. The impact on
performance of enabling prefetch is shown in Figure ??. The impact of prefetch
is much more important for AltiVec programs than PPC one but DAXPY.

DAXPY is memory bandwidth limited in both AltiVec and PPC version, and
this limit is reached when activating prefetch (the performance are the same for
PPC with prefetch than AltiVec with prefetch) so this explains why the speedup
due to prefetch is lower for AltiVec version (the version without prefetch is faster
in AltiVec).

Max in its PPC version is limited by the branch mispredictions that reduce
the average number of instruction fetched each cycle. We see that the impact
of prefetch is not very high because memory latency impact is much lower than
branch mispredictions impact. Max has no mispredicted branches in its AltiVec
version so the fetch does not limit the performance. The limiting factor becomes
the memory latency. This explains the great impact of prefetch in the AltiVec
version of this Kernel.

There are some kernels on which the activation of the streaming prefetch
has a negative impact on the performance. The activation of prefetch generates
a heavy load on the Load/store unit and on SOAD and the dense image filter
(PPC) it has a negative impact on performance. On the other side, FIR performs
many computations per data and it is not much dependent of the memory latency
and the impact of prefetch on performance remains low for both versions.

For the PPC version the impact is greater in the sparse version of the image
filter than for the dense version. In the dense version the first level cache hit
rate is very high without prefetch (1 miss / 32 load), for the sparse version it is
only 1/8 so the prefetch increases relatively more the L1 hit rate for the sparse
filter. For the AltiVec version the acceleration due to prefetch are very similar
because the data are accessed by 128 bit vectors even if they will not be processed
(sparse filter). There are a little more computation in the sparse version (masking
and selecting the element to be processed) so the impact of prefetch is reduced
compared to the dense filter (memory access are less important).

For the rest of the kernels the impact of streaming prefetch for PPC versions
is under 10% and between 27% and 66% for AltiVec ones. This is a great im-
provement in performance for AltiVec programs at a low programmer’s effort
cost.

7 Memory Bandwidth the Bottleneck of AltiVec
Performance

We have seen that streaming prefetch has a great impact on AltiVec programs
performance. AltiVec programs are much more sensible to memory latency
than the PPC ones, but what impact has memory bandwidth? With streaming
prefetch enabled is it the main factor limiting the performance of the AltiVec
programs. We couldn’t change the available memory bandwidth on our G4 plat-
form, so we used Motorola G4 simulator with the same kernels to evaluate the

Memory Bandwidth 445

impact of memory bandwidth on our micro-kernels. We have used pitsTT6 ex-
ecution trace as input to the simulator. We have simulated the various memory
bandwidth by changing the processor/memory ratio and the SDRAM timings
because there was no other ways of modifying the relative memory bandwidth
available. We have simulated a halved, doubled and quadrupled memory band-
width. We have simulated a perfect memory hierarchy too (all data in L1 cache)
to get a upper bound of the performance and see how far of this bound we stay.

All the results are in Figure 1. By looking to the speedup due to perfect mem-
ory hierarchy we can know if the kernel is memory bound or computation bound.
SOAD, RGB2YCbCr and 3D are memory bound in their AltiVec version and
DAXPY and Max both in PPC and AltiVec version. On most of the benchmark

With Prefetch, impact of the memory Bandwidth

0

0,5

1

1,5

2

2,5

3

3,5

4

SO
AD

RG
B2
YC
bC
R

ID
CT

Im
ag
e
sp
ar
se

Im
ag
e

FI
R

DA
XP
Y

M
ax

3D
 B
loc
ke

BW /2 AV
BW *1 AV
BW *2 AV
BW *4 AV
L1PERFECT AV
BW /2 C
BW *1 C
BW *2 C
BW *4 C
L1 PERFECT C

Fig. 1. Impact of the memory bandwidth for the 9 kernels, streaming prefetch
on(BW=Memory Bandwidth, AV=AltiVec, L1PERFECT=All data preloaded
in first level data cache)

memory bandwidth increase has much more impact on AltiVec performance
than PPC. It is not a surprising result because the time spent in computations
relatively to the memory accesses in AltiVec programs is much lower than in
PPC due to SIMD processing. DAXPY and 3D kernel are sensible to memory
bandwidth increase in both C and AltiVec version, but the impact is greater for
AltiVec versions. SOAD, RGB2YCbCr, Image filters and Max are sensible to
memory bandwidth increase only in their AltiVec versions when prefetch is acti-
vated. The two remaining programs IDCT and FIR are essentially computation
bound, the impact of memory bandwidth is still greater in AltiVec than in PPC
but it is quite negligeable.

The increase of main memory bandwidth has more impact when prefetch is
activated for both C and AltiVec versions. When prefetch is used, memory access

446 Julien Sebot and Nathalie Drach-Temam

are more regular and optimized, the computations are accelerated because of the
memory latency reduction, so the need for high bandwidth is more important.

With a quadrupled bandwidth the half of the programs have perfor-
mance comparable to the performance with perfect memory hierarchy. SOAD,
RGB2YCbCr, DAXPY, Max, 3D kernel have more requirements than a quadru-
pled memory bandwidth.

That shows that the main factor limiting the performance of multimedia,
DSP and 3D applications with AltiVec is the main memory bus bandwidth.
Currently the PowerPC G4 is limited by its 100MHz 64bit with SDRAM main
memory bus on the studied applications. The only tested applications that have
really no need for an increased memory bandwidth are applications that are only
computation bound. The G4 bus is well designed for most of our applications
when we don’t use AltiVec but does not meet the requirements for the AltiVec
versions. The memory technology that offer a doubled memory bandwidth are
currently available with DDRSDRAM and RAMBUS. By using such memory
technology some application performance would increase of up to 40% if the
latency stays the same as the SDRAM (it is the case for DDRSDRAM).

8 Conclusion

We have optimized 9 multimedia application kernels for AltiVec SIMD instruc-
tion set and streaming prefetch. The improvement over original applications
range from 1.9 to 7.1 with prefetch enabled on a PPC G4 450. The main factor
limiting the performance of the SIMD media kernels is the memory hierarchy.
Most applications are computation bound in their original version and become
memory bound in their SIMD version. With AltiVec streaming prefetch enabled,
the impact of memory latency is reduced and the main limiting factor for SIMD
kernels becomes the memory bandwidth. We have shown that the memory band-
width curently available on PowerPC G4 is sufficient for original kernels, but is
the main bottleneck for 7 of our kernels. We show that a quadrupled memory
bandwidth that can be achieved with current memory technology like DDRS-
DRAM or DRDRAM improves the performance of our kernels up to 55%.

References

1. R. Bhargava, L. John, B. Evans, and R. Radhakrishnan. Evaluating mmx technology
using dsp and multimedia applications. In Micro 31, 1998. 440

2. Brian Case. 3dnow boosts non-intel 3d performance. Microprocessor Report,
12(7):18–21, juin 1998. 439

3. Barton Sano Chia-Lin Yang and Alvin R. Lebeck. Exploiting instruction level
parallelism in geometry processing for three dimmensional graphics applications. In
Micro 31, November 1998. 440

4. Jean-Luc Bechennec Julien Sebot and Nathalie Drach-Temam. A performance
evaluation of multimedia kernels using altivec streaming simd extensions. Third
Workshop on Computer Architecture Evaluation Using Commercial Workloads
(CAECW00) at HPCA-6, january 2000. 440

Memory Bandwidth 447

5. Motorola. Mpc7400 risc microprocessor hardware sepcification. Technical report,
Motorola, sept 1999. 441

6. H. Nguyen and L. K. John. Exploting simd parallelism in dsp and multimedia
algorithm using altivec technology. In ICS99, 1999. 440

7. P. Ranganathan, S. Adve, and N. Jouppi. Performance of image processing with
general purpose microprocessors and media isa extensions. In ISCA 26, may 1999.
440

	Memory Bandwidth: The True Bottleneck of SIMD Multimedia Performance on a Superscalar Processor
	Introduction
	Related Work and Motivation
	Methodology
	SIMD Optimizations for DSP Image and 3D Kernels
	Performance Evaluation
	Latency Problems: Streaming Prefetch Impact
	Memory Bandwidth the Bottleneck of AltiVec Performance
	Conclusion

