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Abstract. Efficient management of events lists is important in opti-
mizing discrete event simulation performance. This is especially true
in distributed simulation systems. The performance of simulators is di-
rectly dependent on the event list management operations such as inser-
tion, deletion, and search. Several factors such as scheduling, checkpoint-
ing, and state management influence the organization of data structures
to manage events efficiently in a distributed simulator. In this paper,
we present a new organization for input event queues, called append-
queues, for an optimistically synchronized parallel discrete-event simu-
lator. Append-queues exploits the fact that events exchanged between
the distributed simulators are generated in sequences with monotoni-
cally increasing time orders. A comparison of append-queues with an
existing multi-list organization is developed that uses both analytical
and experimental analysis to show the event management cost of dif-
ferent configurations. The comparison shows performance improvements
ranging from 3% to 47% for the applications studied.

Keywords: Pending Event Sets, Event List Management, Distributed
Simulation, Time Warp.

1 Introduction

In a discrete event simulation (DES), events are generated and exchanged by
simulation objects. Events must be processed in nondecreasing timestamp order
to preserve their causality relations [1]. In DES, the set of events that have
not yet been processed is called the pending event set [6]. In a parallel and
distributed discrete event simulation (PDES), the union of the set of already
processed events and the pending event set is called an input queue [3].

In general, distributed simulations exchange timestamped event messages
and as new messages arrive, a simulation object will merge incoming events into
its (timestamp sorted) input queue. The Time Warp mechanism [3] is the most
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widely used optimistic synchronization strategy for distributed simulation [1]. It
organizes the distributed simulation such that each simulation object maintains
a local simulation clock and processes events in its input queue without explicit
synchronization to other simulation objects. As messages arrive to a simulation
object they are inserted into the input queue. If they arrive in the simulated
past (called a straggler message), the simulation object recovers using a rollback
mechanism to restore the causality relations of the straggler event. On rollback,
a simulation object may have to retract output event messages that were prema-
turely sent when the events ahead of the straggler were processed. This occurs
by the sending of anti-messages. Thus, in a Time Warp simulation, events are
generated and communicated between simulation objects as sequences of events
separated by one or more anti-messages.

This paper presents a new organization for input queues, called append-
queues, that can be used in distributed simulators. Append-queues are de-
signed primarily for optimistically synchronized simulations, but can be used
with other distributed simulation synchronization mechanisms. The key ad-
vantage of append-queues is that they exploit the presence of the ordered se-
quences of events exchanged between the concurrently executing simulation ob-
jects. Instead of using the traditional method of merging each newly arrived
event into the input queues [1], the append-queue operation appends events
within a sequence with inter-sequence breaks triggering more complex oper-
ations. Append-queues require that the underlying communication subsystem
provide reliable FIFO message delivery. In addition to presenting a detailed dis-
cussion of append-queues, we also present analytical and empirical comparisons
between the append-queue and a multi-list technique that is used in the publi-
cally available Time Warp simulator called warped [5].

2 Pending Event Set Management

As described in the introduction, the temporal properties of events communi-
cated between distributed simulation objects can be used as the basis for opti-
mizing the organization of the pending event set. More precisely, let t(e) be the
timestamp of the event e, where a timestamp denotes the (simulation) time at
which an event is to be processed. While processing the event e, several events
might be sent to other simulation objects. Let S(e) be the set of events gener-
ated while processing the event e and let f(e) be the function that generates
the timestamp of the events in S(e). Since S(e) can have a cardinality greater
than one, f(e) is a one-to-many function. In addition, let T (S(e)) be the set of
timestamps of the events generated while processing event e. From Lamport’s
clock conditions [4], we can infer that the timestamps in the set T (S(e)) must
be greater than t(e). If f(e) is an increasing function, then the set of messages
received by a simulation object from a sending process is in increasing order of
timestamps. This property is exploited by the receiving simulation object to or-
der its input events.It can be seen that the insert operation needed to order the
incoming events from each sender object is a simple append operation (provided
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that separate receive queues are maintained for each sender). This organization
of pending events will hereafter be referred to as append-queues. Event list man-
agement is a well researched area. Many implementations and organizations of
event sets and their data structures have been proposed [7,6,8].

3 Event List Management Analysis

The analysis of the pending event set management is based on the number of
timestamp comparisons performed during insertion and scheduling of events.
Events are inserted into an input queue when they are first sent to a simulation
object. The scheduling of events is done to determine which event should be
processed next in the simulation. An event may be inserted and scheduled more
than once because of the occurrence of a rollback. An overview and analysis
of the append-queue configuration is presented in the following sections, and
followed by an overview and analysis of an existing input queue optimization,
the multi-list [5].

3.1 Append-Queue Overview

The motivation behind the append-queues is to exploit the ordering of events
already performed by the simulation objects that send messages to other simula-
tion objects. In the append-queue configuration, the receiving simulation object
maintains an individual queue for each simulation object that sends events to
it. These queues are called sender-queues. The events from a particular sender
object are appended to the sender-queue associated with its Id. The number of
sender-queues can vary during simulation and is dependent on the characteristic
of the simulation. Figure 1 provides an overview of the append-queue configura-
tion. In this figure, there are k simulation objects that contribute a sender-queue
in the simulation object, and there are a total of m simulation objects in the
simulation. Each element in a sender-queue has a sender Id, a receiver Id, a send
time, and a receive time. A list sorting the head element of each sender queue is
maintained for scheduling. The events that have been scheduled and processed
reside in a processed-queues. Any sender-queue i has events originating from sim-
ulation object i. Any event with receiver Id j will be put in processed-queue j
when it has been scheduled and processed. The insertion of a new event in the
individual sender-queue reduces to an append operation if the timestamp gener-
ating function f(e) is a strictly increasing function. If f(e) is not an increasing
function, the insertion of a new event may not always be an append operation.

The events are to be processed in a nondecreasing time-stamp order to
preserve the causality among the simulation objects in the simulation. In the
append-queue configuration, the events from the same simulation object are al-
ready ordered in nondecreasing timestamp order. However, before any processing
can be done, the ordering of the events among all the sender-queues has to per-
formed. The ordering of events from all the sender queues is performed by a
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Fig. 1. Append-Queue Configuration

schedule-list that maintains a sorted order of the head of the individual sender-
queues (see Figure 1). The schedule-list performs the function of a Lowest Time
Stamp First (LTSF) scheduler. The event with the lowest time stamp in the
schedule-list is the next event to be processed. The retrieval of the next event
to process and insertion of a new event in the schedule-list can be optimized to
logarithmic complexity using, for example, a heap or splay-tree implementation.
On processing an event, the event is removed from the sender-queue and ap-
pended to a queue called the processed-queue. The receiver Id of all events in a
processed-queue are the same, and thus the number of processed-queues is equal
to the number of simulation objects in the simulation.
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The analysis of the append-queue configuration assumes that aggressive can-
cellation [1] mechanism is used in the simulation. On receiving an anti-message
the events in the sender-queue with timestamps greater than the anti-message
are flushed from the sender-queue. However, if the positive message equivalent
of the anti-message is in the processed-queue of the simulation object, then the
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simulation object is rolled back and the positive message is canceled. In the
case of a rollback due to a straggler, the straggler message could be from a new
sender or from a simulation object that has already contributed a sender-queue.
Figure 2 shows the scenario of a rollback due to a straggler and Figure 3 shows
the contents of the queues after the rollback has been performed.

3.2 Append-Queue Cost Analysis

The cost in our analysis is measured by the number of timestamp comparisons
performed during pending event list management. Let ni be the number of events
sent from an arbitrary simulation object i to some other simulation object in
the simulation. Let m be the number of simulation objects in the simulation.
Let k be the total number of simulation objects that send messages to any of
the m simulation objects in the simulation. Since insertion of a new event into
an individual sender-queue i is an append operation, the cost of inserting ni

events is simply ni. The cost of finding the lowest time-stamped event from the
schedule list of k sender-queues is log2k. The logarithmic complexity is due to
inserting the next least time-stamped event from the currently scheduled event’s
sender-queue to the schedule-list. Therefore the cost of insertion and scheduling
due to all k sender queues is:

Cappend−queue
insert = N +N × log2 k = N × (1 + log2 k), (1)

where N =
∑k

i=1 ni is the total number of input events in the simulation.
On rollback, an event from the processed-queue is removed and added back

into the corresponding sender-queue. This rolled-back event adds further cost
during scheduling in addition to the cost involved in adding it back to the
sender-queue. Let Nr be the total number of rolledback events in the simu-
lation. Then, Nr =

∑k
i=1 nri , where nri is the number of events rolled-back into

the sender-queue i. The cost of re-inserting an event into the sender-queue i
is

∑k
i=1 nri × lsi , where lsi is the average length of the sender-queue i that is

searched in order to insert the rolled-back event. Let lsavg be the average of
all lsi . The cost of reinserting all rolled-back events is then Nr × lavg. The cost
of re-scheduling all Nr events is Nr × log2k, which yields the total cost due to
rollbacks:

Cappend−queue
resched. = Nr × lsavg +Nr × log2 k = Nr × (lsavg + log2 k). (2)

Thus, the total pending event set management cost for insertion and handling
of rolledback events is:

Cappend−queue
total = N︸︷︷︸

insertion

+N × log2 k︸ ︷︷ ︸
scheduling

+ Nr × lsavg︸ ︷︷ ︸
re−insertion

+Nr × log2 k︸ ︷︷ ︸
re−ched.

= N × (1 + log2 k) +Nr × (lsavg + log2 k). (3)
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3.3 Multi-list Overview

The publically available distributed simulation kernel called warped uses a
multi-list configuration to manage the pending event lists [5]. The multi-list
consists of individual input queues for the receiver objects called mini-lists that
are abstracted into a single list called the main-list. This method of organizing
the list of mini-lists is coined as the multi-list. Figures 4 and 5 illustrate the
multi-list configuration. In the multi-list, the individual mini-lists are ordered
on receive time of the events. In the main-list, the events are ordered on receive
time and the receiver Id. It can be seen from the multi-list organization that
every event must be inserted both in the main-list and its individual mini-list.
However, the multi-list obviates the need for complex scheduling mechanism to
determine the lowest time stamped event.
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for each Simulation Object

Simulation
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Simulation

Simulation
Object N

Object 2

Fig. 4. Overview of Current
Input Queue Configuration
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3.4 Multi-list Cost Analysis

The input queue management cost consists of the insertion cost and the rollback
cost. Let li be the average search length of mini-list i upon an insertion of an
event. The average of the search lengths in all mini-lists is then lavg =

∑m
i=1 li/m.

Let ni be the total number of events inserted in mini-list i. Thus, the total
insertion and scheduling cost for all mini-lists is:

Cmini−list
insert =

m∑
i=1

ni × lavg = lavg ×
m∑

i=1

ni = N × lavg, (4)

where ni × lavg is the average case total insertion cost of a particular mini-list.
Let Li be the average length of the main-list that is searched when inserting

an event into the main-list after inserting the event into mini-list i. The cost of
main-list insertions contributed by receiver i is ni × Li. Total insertion cost in
the main list is the sum of the insertion cost of all receiver objects and is equal to∑m

i=1 ni×Li. Let Lavg be the average length of the main-list that is searched for
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all simulation objects, i.e. Lavg =
∑m

i=1 Li/m. The expression for the main-list
insertion cost is then reduced to:

Cmain−list
insert =

m∑
i=1

ni × Lavg = Lavg ×
m∑

i=1

ni = N × Lavg. (5)

After a rollback, rolled back events must again be executed. The number
of events that are re-executed are dependent on the rollback distance and the
number of rollbacks. Therefore, rollback cost in receiver i is

∑nri

i=1 rdi = RDi ,
where nri is the number of rollbacks experienced by receiver object i and rdi

is the ith rollback distance with respect to the number of rolled-back events
experienced by the receiver object i. The total rollback cost in the simulation is
the sum of the rollback costs in all the simulation objects and is equal to:

Cmulti−list
rollback =

m∑
i=1

RDi = RD. (6)

Thus, the total input queue management cost is equal to:

Cmulti−list
total = N × lavg︸ ︷︷ ︸

mini−list insertion

+ N × Lavg︸ ︷︷ ︸
multi−list insertion

+ RD︸︷︷︸
rollback

= N × (lavg + Lavg) +RD. (7)

3.5 Comparative Review

For cost due to rollbacks, we can see that Nr and RD must be equal (see Equa-
tions 2 and 6). The ratio between rollback costs for the append-queues and the
multi-list is then

Nr × (lsavg + log2 k)
RD

=
lsavg + log2 k

1
.

The cost will thus be higher for append-queues. We can also see that the differ-
ence in cost due to insertion and scheduling will be determined by the number
of sending simulation objects versus how large lavg and Lavg will grow.

4 Empirical Studies

The warped [5] simulation kernel was used to gather statistics for the multi-
list and append-queue configurations. warped implements the multi-list and
additional coding was added to the warped system to simulate the append-
queue configuration. The results from these experiments were used to estimate
the benefits of the append-queues. Three applications namely SMMP (a queu-
ing model of a shared memory multiprocessor), RAID (simulation of a level 5
hardware RAID disk array) and PHOLD (simulation benchmark developed by
Fujimoto [2] based upon the Hold model) were used during the experimentation.
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In the applications used during experimentation, lsavg was always 1.0, except
in one PHOLD simulation where it was 1.2. Thus, the prediction that a re-
insertion of a rolled-back event into a sender-queue can be considered to be a
prepend operation was verified. In the performed simulations, k ranges between 9
and 100, and log2k consequently ranges between 2.2 and 4.6. Therefore, the cost
added by rollbacks was on the order of five times greater for the append-queue
configuration than for the multi-list configuration.

The impact k, lavg and Lavg have on the costs in Equations (3) and (7) is
visualized in Tables 6 and 7. It can be seen that the insertion and scheduling
cost N +N × log2k for the append-queue is considerably less than the insertion
and scheduling cost N × lavg + N × Lavg for the multi-list. From the table we
can see that log2k grows much slower than Lavg as k and N increase. It can
be inferred that applications of this size will generate more comparisons for the
multi-list than for the append-queues.
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As the simulation time and the number of input events (N) increase, the
difference in number of comparisons performed between the append-queue con-
figuration and the multi-list configuration increases, see Figures 8, 9 and 10.
The largest difference can be seen for PHOLD where lavg and Lavg tended to
be large. The number of comparisons performed, on an average, in the multi-list
configuration were 2.0 times that of the append-queue configuration for SMMP,
2.8 for RAID and 9.9 for PHOLD.

The quantify software from Rational Software was used to estimate how
much performance impact the append-queues would have on total simulation
time. The data from the quantify tests show that for the multi-list implemen-
tation an average of approximately 6% of the time is spent on event insertion
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for SMMP, 14% for RAID and 52% for PHOLD. Figure 11 was produced with
the data from these tests and shows the estimated and normalized performance
difference in terms of time between the append-queue configuration and the
multi-list configuration. The performance improvements were estimated to be
3%, 9% and 47% for SMMP, RAID and PHOLD respectively.

5 Conclusion

The append-queue organization for pending event sets exploits the temporal
properties of events generated by the concurrently executing simulation objects
in a distributed simulation. The cost analysis of event management of a tra-
ditional pending event set data structure and the append-queue configuration
was presented. Empirical studies show that the append-queue configuration may
result in performance improvements, between 3% and 47%, over the traditional
configuration.
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