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Abstract. Performance analysis and tuning of parallel/distributed
applications are very difficult tasks for non-expert programmers. It is
necessary to provide tools that automatically carry out these tasks.
Many applications have a different behavior according to the input data
set or even change their behavior dynamically during the execution.
Therefore, it is necessary that the performance tuning can be done on
the fly by modifying the application according to the particular
conditions of the execution. A dynamic automatic performance tuning
environment supported by dynamic instrumentation techniques is
presented. The environment is completed by a pattern based application
design tool that allows the user to concentrate on the design phase and
facilitates on the fly overcoming of performance bottlenecks.

1 Introduction

Parallel and distributed processing are very promising approaches due to the high
computation power offered to the users. However, designing and developing
parallel/distributed applications are quite hard tasks because of the lack of tools that
facilitate several aspects of parallel/distributed processing.

The programmer must take into account the low level implementation details of the
parallel programming model being used. This fact implies that the programmer must
be very careful to avoid dangerous situations such as deadlocks. When the first
version of the application is completed, the programmer must consider the correct
functioning of the application. It implies to go through a functional debugging phase
to fix all bugs and ensure that the program provides the right functionality. The
mentioned phases are also present in classical sequential programming, but the
complexity of these tasks is significantly higher on parallel/distributed systems.

Once the program works correctly, the programmer must analyze the application
performance. The decision of developing a parallel application is related to the
performance requirements, and therefore the programmer must be aware of obtaining
a satisfactory performance. This new task is not common in sequential programming
because in most cases sequential programmers rely on compiler optimizations.
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This performance analysis is a hard task that requires using some performance
analysis tools. The classical way to carry out performance analysis is to run the
application using some monitoring tool that creates a trace file. This trace file
includes all the events recorded during the execution of the application. The task of
the programmer is to analyze these events looking for performance bottlenecks found
during the execution in order to determine their causes and modify the program to
improve the performance. There are several visualization tools that try to help the user
by providing a set of different views of the program execution [1, 2]. The user can
analyze the views searching for performance bottlenecks and this is much easier to do
than reading plain trace files. The use of such visualization tools allows the user to
detect the main performance bottlenecks quite easily, but the most difficult task is to
relate the performance bottleneck to its causes. Therefore, these tools do not provide
direct information that can guide the programmer in the performance improvement
phase. Tuning a parallel/distributed application is a difficult task that requires great
experience and deep knowledge about the program and the system itself.

There are some tools that go a step ahead providing not only visualization
facilities, but offering some hints that try to guide the user in the decision that must be
taken to improve the performance [3, 4]. The main feature of these tools is that they
provide some automatic techniques that analyze the trace file and provide some hints
to the non-expert user in the performance tuning phase.

However, the use of trace files and the fact that the analysis is done in a post-
mortem phase imply some constraints in the applicability of the methodology:

1. The trace files can be really big. The execution of a real application that takes
some hours usually creates enormous files that are difficult to manage and to
analyze in order to find the performance bottlenecks.

2. The use of a single trace file to tune the application is not completely
significant, specially when the application behavior depends on the input data
set. In this case, the modifications done to overcome some bottleneck present
in one run may be inadequate for the next run of the application. This could be
solved by selecting a representative set of runs, but the provided suggestions
would not be specific for a particular run.

3. Certain applications can change their behavior during their execution. In this
case, the modification suggested by the post-mortem analysis cannot cover the
dynamic behavior of the application.

In these conditions, the post-mortem methodology is not the best approach since
the modifications that could be carried out from the suggestions provided by the
performance analysis tool do not cover all the possible behaviors of the application.
Therefore, the only feasible solution to provide real performance tuning facilities is to
carry out the performance tuning on the fly.

Dynamic performance tuning is an important facility to be incorporated in a
parallel/distributed programming environment. This approach is presented in
section 2, showing the design of a dynamic performance tuning environment.
Section 3 introduces a pattern based application design environment, that facilitates
the program tuning on the fly. Section 4 shows an example of how an application is
designed and tuned using our dynamic performance tuning environment. Finally,
section 5 presents some conclusions of this work.
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2 Dynamic Performance Tuning Environment

The main goal of our dynamic performance tuning environment is to improve
performance by modifying the program during its execution without recompiling and
rerunning it. This goal requires several steps: monitoring of the application, analyzing
the performance behavior and modifying the running program to obtain better
performance.

2.1 Dynamic Performance Tuning of Parallel/Distributed Applications

Since parallel applications consists of several intercommunicating processes executed
on different machines, it is not enough to improve task performance separately
without considering the global application view. To improve the performance of the
entire application, we need to access global information about all associated tasks on
all machines. The parallel application processes are executed physically on distinct
machines and our performance tuning system must be able to control all of them. To
achieve this goal, we need to distribute the modules of our dynamic tuning tool to
machines where application processes are running. So, our dynamic performance
tuning environment consists of several tools (see figure 1):

1. The monitoring tool (monitor) inserts the instrumentation in all the processes
and collects the events produced during the execution of the application.
However, our approach to dynamic analysis requires the global ordering of the
events and thus we have to gather all events at a central location.

2. The analysis tool (analyzer) receives all the events generated in different
processors during the execution, detects the performance bottlenecks,
determines the causes and decides which modification should be done on the
application program. The analysis may be time-consuming, and can
significantly increase the application time execution if both — the analysis and
the application - are running on the same machine. In order to reduce
intrusion, the analysis should be executed on a dedicated and distinct machine.
Obviously, during the analysis, monitor modules are collecting and providing
new data to the analyzer. In some cases, the analyzer may need more
information about program execution to determine the causes of a particular
problem. Therefore, it can request the monitor to change the instrumentation
dynamically. Consequently, the monifor must be able to modify program
instrumentation — i.e., add more or remove redundant instrumentation —
depending on its necessity to detect performance problems.

3. The automatic tuning tool (funer) inserts modifications into the running
application processes. When a problem has been detected and the solution has
been given, funer must apply modifications dynamically to the appropriate
process or processes.

Using this dynamic methodology when a bottleneck is detected, the appropriate
modifications are inserted into the address-space image of the running program.
These changes will be invoked the next time the application reaches that point. The
methodology can only be applied to problems that appear several times during the
execution of the application. This fact could seem to be a constraint. However, it must
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be pointed out that the main performance problems of parallel/distributed application
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Fig. 1. Dynamic performance tuning

This dynamic tuning approach is a real challenge that requires the use of some
dynamic instrumentation technique that allows the inclusion of some new code in a
running program without recompiling or even rerunning it.

2.2 Dynamic Instrumentation

The Paradyn group developed a special API called Dynlnst API [5] that supports
dynamic instrumentation.

Dynlnst is an API for runtime code patching. It provides a C++ class library for
machine independent program instrumentation during application execution. DynInst
API allows the users to attach to an already running process or start a new process,
create a new piece of code and finally insert created code into the running process.
The next time the instrumented program executes the block of code that has been
modified, the new code is executed. Moreover, the program being modified is able to
continue its execution and does not need to be re-compiled, re-linked, or restarted.
Dynlnst manipulates the address-space image of the running program and thus this
library needs access only to a running program, not to its source code.

The Dynlnst API is based on the following abstractions:

e point — a location in a program where new code can be inserted, i.e. function
entry, function exit

e snippet — a representation of a piece of executable code to be inserted into a
program at a point; a snippet must be build as an AST (Abstract Syntax Tree).

Taking into account the possibilities offered by the Dynlnst library, it is possible to
insert code in the running application for two main objectives:

e Insert code for monitoring purposes to collect information about the behavior
of the application.

e Insert code for performance tuning. The main goal of the dynamic tuning is to
improve the performance on the fly. Therefore, it is necessary to insert new
code in the application.
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Thus, the monitor and the tuner have been designed using the DynInst API.

2.3 Pattern Based Application Design for Performance Tuning

Dynamic performance tuning of parallel applications is a task that must be carried out
during the application execution and therefore, there are some points to be considered:

1. It is necessary to introduce the smallest possible intrusion. Besides the
classical monitoring intrusion in dynamic performance tuning there is some
extra intrusion due to the monitors’ communication, the performance analysis
and the program modification.

2. The analysis must be quite simple because the decisions must be taken in a
short time to be effective in the execution of the program.

3. The modifications must not involve a high degree of complexity, because it is
not realistic to assume that any modification can be done on the fly.

For all these reasons, the analysis and modifications cannot be very complex.
However, if the programmer can use any structure, the generated bottlenecks can be
extremely complicated and the analysis and the modifications are extremely difficult.

A good compromise between performance improvement and application
development is to offer the programmer a pattern based application design and
development environment. Using this environment the dynamic performance tuning
tool is simplified, because the set of performance bottlenecks to be analyzed and
tuned are only those related to the programming patterns offered to the user.

On the other hand, this approach also facilitates application design and
development. The user is constrained to use a set of programming patterns, but using
them he/she skips the details related to the low level parallel programming. Moreover,
the dynamic performance tuning environment (including the application design tool
and the dynamic performance tuning tool) allows the programmer to concentrate on
the application design and not to worry about the program performance.

3 Application Design Tool

It is well known that designing, developing and tuning parallel/distributed
applications is a hard task. There is a lack of useful environments that facilitates these
tasks. Our “pattern based” application design tool is useful to achieve two main goals:

e On the one hand, it facilitates modification of the application on the fly to
improve the performance. The defined patterns are well-known structures that
may present certain well-known performance bottlenecks. Therefore, the points
that must be monitored to detect the possible bottlenecks as well as the actions
that must be carried out to break them are well defined. Actually, each abstract
pattern is characterized by a set of parameters that determines the dynamic
behavior of the pattern. Thus, changes in the application behavior, to improve
performance, could be carried out by modifying the values of these parameters.

e On the other hand, it simplifies the application design to the programmer offering
a set of well-known useful programming structures. When one of the abstract
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patterns has been selected by the programmer, the low-level details related to
process communication are automatically created in such a way that the
programmer must only fill in some methods corresponding to the particular
details of the application being developed. This approach has been proposed
many times in the literature as in [6, 7]. The main drawback of this approach is
the lost of efficiency when compared with expert programming using low level
primitives. However, our approach includes hidden performance improvement.
Using our environment the programmer does not have to care about performance
issues since the application will be tuned on the fly.

We have adopted a general methodology to characterize patterns. This

methodology allows using a unified approach to the definition, analysis and
implementation of each pattern, but also defines a way to include new patterns in the
future. The methodology includes:

e General description of the pattern.
Define the elements to specify the user application in terms of the selected
pattern (interface). It includes initialization and ending, functional description,
and communication management.

e Characterize the associated pattern bottlenecks.

e Determine the magnitudes that have to be calculated to detect these bottlenecks:
which must be monitored.

e Determine the parameters that could be changed to overcome these bottlenecks
and the actions that could be taken on them.

Using this application design tool the programmer is constrained to choose and

combine the defined patterns. To ensure that the design tool is really useful it is
necessary to include the most used programming patterns. Therefore, it is necessary to
define a limited set of patterns that can be easily analyzed and tuned on the fly, but
that also offer the possibility to design a wide range of parallel/distributed
applications. The patterns included so far are the following ones:

Master/Worker: Description: this pattern contains a master process that
generates requests to other processes called workers, these requests are
represented by data units called tasks. These workers make some computation on
these tasks and then send the results back to the master. Inferface: how master
generates tasks (Task Generation), the actual computation that each worker must
do (Task Processing) and the processing that the master must do on the received
results (Results Processing). Bottlenecks: execution time differences among
workers, too few workers, or too many workers. Detection magnitudes:
communications time, workers computation time. Adjustable parameters: task
distribution, and number of workers.

Pipeline: Description: this pattern represents those algorithms that can be
divided in an ordered chain of processes, where the output of a process is
forwarded to the input of the next process in the chain. Interface: work that must
be carried out at each stage of the pipe, input and the output data and connection
among stages. Bottlenecks: significant executions time differences among stages,
bad communication/computation ratio. Detection magnitudes: computing time
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and data load of each stage, stage waiting time. Adjustable parameters: number
of consecutive stages per node, number of instances of a stage.

e SPMD (Single Program Multiple Data): Description: represents those
algorithms where the same processing is applied on different data portions.
Interface: specify the task that must be carried out for all the processes, the
interconnection pattern (all-to-all, 2D mesh, 3Dcube, and so on) and the data that
must be sent/received for each process. Bottlenecks: load imbalance, execution
time differences among processes. Detection magnitudes: computing time and
data load of each process, waiting time for other processes. Adjustable
parameters: number of inter-communicating processes per node, number of
processes, and, in some cases, data distribution.

e Divide and Conquer: Description: each node receives some data and decides to
process it or to create some new processes with the same code and distribute the
received data among them. The results generated at each level are gathered to the
upper level. There each process receives partial results, makes some computation
on them and passes the result to the upper level. Interface: processing of each
node, the amount of data to be distributed and the initial configuration of nodes.
Bottlenecks: important differences among branch completion time due to branch
depth or process execution time. Detection magnitudes: completion time of each
branch, computation time of each process, branch depth. Adjustable parameters:
number of branches generated in each division, data distribution among branches,
and branch depth.

Object oriented programming techniques are the natural way for implementing
patterns, not only due to its power to encapsulate behavior, but also to offer a well
defined interface to the user. For these reasons, we have designed a class hierarchy,
which encapsulates the pattern behavior, and also a class to encapsulate the
communication library. We use C++ language to implement our environment and we
support PVM-based applications.

In next section we show our dynamic performance tuning environment, presenting
the main aspects related to design, implementation, monitoring, performance analysis
and tuning of a real application based on the Master/Worker pattern.

4 Case Study: Forest Fire Propagation

The forest fire propagation application [8] is an implementation of the “fireline
propagation” simulation based on the Andre-Viegas model [9]. The model describes
the fireline as a set of sections that can be desegregated to calculate the individual
progress of each section for a time step. When the progress of all the sections have
been calculated, it is necessary to aggregate the new positions to rebuild the fireline.
The general algorithm of this application using the master/worker paradigm is:

Master:
1. Get the initial fireline
2. Generate a partition of the fireline and distribute it to the workers.
3. Wait for the workers answer.
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4. If the simulation time has been finished then terminate
else Compose the new fire line, adding points if needed and go to step 2.

Worker:

1. Get the fireline section sent by the master

2. Calculate the local propagation of each point in the section (to calculate the

new position of a point the model needs to know its left and right neighbours).

3. Return the new section to the master.

Next we present the specification of the associated pattern, and then we describe

the on the fly performance analysis and the results of the dynamic performance tuning
of the application.

4.1 Pattern Specification

Once a pattern has been chosen for the application, the user must implement the
interface elements of the pattern and define the data structures for tasks and results.
Specification of the master-worker pattern associated with this application includes:

For the master.

Initialization: Load initial data (initial fireline).

Task Generation: Convert fireline into a set of tasks (groups of three contiguous
points).
Send tasks.

Results Processing: Get results.
Merge results to calculate the new fireline (adding new points
if needed).
If the simulation is completed indicate this fact.

Terminate: Show or save the final results (final fireline)

For the worker.
Task Processing: For each received task do
e (Calculate new position for the central point (using the
simulation model and information about neighbors)
e  Generate result - the new point position
Data structures definition:
e Task structure: given that the simulation model is applied on groups of three
contiguous points, a task must include three points.
e Result structure: for each group of three contiguous points the new position of
the central point is calculated, then a result consists of a single point.

4.2 Monitoring and Performance Analysis

Once the application has been designed it is necessary to analyze the performance on
the fly. The monitor inserts instrumentation to measure the time taken by each worker
and the communication delays among the master and the workers (detection
magnitudes). The instrumentation is inserted in those code segments where master
sends and receives data, it is just after Task Generation and before Results Processing.
In the worker, instrumentation is inserted before and after Task Processing.

In this application all the workers spend approximately the same amount of time
(the application is executed on a homogeneous system). Therefore, in the first steps of
the propagation simulation, the adequate number of workers is calculated according to
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the performance parameters of the pattern. However, when the fire propagates, new
sections must be interpolated to accomplish the continuity constraint required by the
propagation model. This means that as the fireline grows, each worker receives more
data to proceed. After a certain number of iterations, the analyzer detects that the
master is mostly waiting for results from the workers (too few workers bottleneck),
because they must calculate a bigger amount of tasks increasing its computation time
(workers computation time magnitude). When the analyzer detects this fact, it
calculates the ideal number of workers for the new situation. In the case when this
number is bigger from the current one, the analyzer decides to spawn a new worker
(or several) (increasing workers number parameter).

4.3 Dynamic Performance Tuning

The tuner receives the decision from the analyzer to improve the performance of the
application by spawning a new worker (or several) in a new machine. The funer
modifies the adjustable parameter “number of workers” of the master to let it know
that there is a new worker (or several) and in the beginning of the next iteration the
data must be distributed among all the workers, the old ones and the new ones. Using
the dynamic performance tuning environment, the number of workers grows
according to the requirements of the application.

In Table 1 the obtained results on an example fireline that starts with 50 points and
reaches 850 points after 200 iterations are presented. For this example, the starting
number of workers is 5 and it increases till 20. The table summarises the evolution of
the number of workers and the execution times (in ms) for this particular example. In
this table Iter. is the iteration step in the forest fire simulation, No. points is the
number of points in the fire line for that particular iteration, No. workers is the
number of workers required by the performance model. 7, , 7,, and 7, are the
execution times for that particular iteration when executed with 5, 20 or ideal number
of workers (determined by the analyzer), and T, ., T,, and T, , are the total
execution times when executed with 5, 20 or dynamic number of workers (ideal
number for each iteration).

Table 1. Evolution of the number of workers and the execution times for forest fire example

Iter. | No. No.
points | workers

i min i max i ideal tmin t max tideal

1 50 5 11660 | 22902 | 11660 11660 22902 11660
50 250 11 34300 | 30512 | 26635 1171960 | 1362057 | 1017880
100 450 15 56940 | 38122 | 36880 3464260 | 3081712 | 2621468
200 850 20| 102220 | 53342 | 53342 ] 11444860 | 7662522 | 7171129

It can be observed that the dynamic creation of new workers provides the best
execution time. It must be considered that, with dynamic tuning, resources are
supplied only when needed. Using the right number of workers at each stage is even
better than spawning the maximum number from the beginning. In the initial
iterations a low number of workers provide better results than a bigger number
because of the computation/communication relationship (compare T;’s for a low
number of iterations). In the last iterations a higher number of workers provides better
results. The overall execution times show that the dynamic creation of workers
provides the shorter execution time.
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5 Conclusions

A new approach to parallel/distributed performance analysis and tuning has been
presented. The developed environment includes a pattern based application design
tool and a dynamic performance tuning tool. The sets of patterns included in the
pattern based application design tool have been selected to cover a wide range of
applications. They offer a well defined behavior and the bottlenecks that can occur are
also very well determined. In this sense the analysis of the application and the
performance tuning on the fly can be carried out successfully. Using this environment
the programmer can design its application in a quite simple way, and then he/she does
not need to worry about any performance analysis or tuning, because the dynamic
performance tuning takes care of these tasks automatically. The methodology has
been tested on a real application and the preliminary results are very successful.
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