
A Transparent Operating System Infrastructure

for Embedding Adaptability to Thread-Based
Programming Models

Ioannis E. Venetis1, Dimitrios S. Nikolopoulos1,2�, and
Theodore S. Papatheodorou1

1 High Performance Information Systems Laboratory, Department of Computer
Engineering and Informatics

University of Patras, Rion 26500, Greece
http://www.hpclab.ceid.upatras.gr

2 Computer and Systems Research Laboratory, Department of Electrical and
Computer Engineering

University of Illinois at Urbana-Champaign
1308 West Main Street, Urbana, IL, 61801

http://www.csrd.uiuc.edu

Abstract. Parallel programs executing on non-dedicated SMPs should
be adaptive, that is, they should be able to execute on a dynamically
varying environment without loss of efficiency. This paper defines a uni-
fied set of services, implemented at the operating system level, which
can be used to embed adaptability in any thread-based programming
paradigm. These services meet simultaneously three goals: they are highly
efficient; they are orthogonal and transparent to the multithreading pro-
gramming model and its API; and they are non-intrusive, that is, they
do not compromise the native operating system’s resource management
policies. The paper presents an implementation and evaluation of these
services in the Linux kernel, using two popular multithreading program-
ming systems, namely OpenMP and Cilk. Our experiments show that
using these services in a multiprogrammed SMP yields a throughput
improvement of up to 41.2%.

1 Introduction

The advent of shared-memory multiprocessors (SMPs) and the broad spectrum
of applications in which SMPs are employed have popularized thread-based par-
allel programming models. The multithreading paradigm is a convenient means
for implementing concurrent tasks that communicate through a virtually or phys-
ically shared memory address space. A multitude of multithreading interfaces
for parallel programming is in use, including standardized interfaces like POSIX
threads [4] and experimental systems that serve as the backend of specific algo-
rithmic (e.g. Cilk [2]) or compilation (e.g. Nanothreads [11]) frameworks.
� This work has been carried out while the second author was with the High Perfor-
mance Information Systems Laboratory, University of Patras, Greece.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 514–524, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Embedding Adaptability to Thread-Based Programming Models 515

The metrics used so far as evaluation criteria of multithreading systems are
primarily the overhead of thread management and the quality of the user-level
thread scheduler in terms of response time. Recently, it has been recognized that
the performance of applications and the overall throughput of the system in the
presence of multiprogramming are becoming factors of increasing importance
for the evaluation of multithreading systems. This stems from a shift from a
dedicated to a non-dedicated mode of use of modern SMPs. In a non-dedicated
mode of use, an SMP is shared among multiple programs and the workloads
submitted to it often exceed the system’s capacity, thus necessitating some form
of resource multiplexing by the operating system.
From the perspective of a multithreading system, coping with multiprogram-

ming and resource sharing requires a degree of adaptability embedded in the
system. Each multithreading program should be capable of executing efficiently
on a dynamically varying number of processors. The program should be able
to both resume preempted computation, should it lose a processor and utilize a
newly granted idle processor.
The literature provides a wealth of solutions for attacking the performance

bottlenecks that arise from the interference between multiprocessing and mul-
tiprogramming [1,3,6]. However, little effort has been spent on the transpar-
ent integration of these solutions and multithreading programming models in
a generic, model-independent manner. Existing frameworks for efficient multi-
programmed execution either pose stringent requirements on the multithreading
model, or depend on the semantics of the multithreading model.
Some representative examples depict the situation. Process control and rele-

vant frameworks [14] require that the multithreading system uses a task-queue
execution paradigm. Hood [10], an extension of Cilk that encompasses a non-
blocking user-level scheduler, works only under the assumption that the task
queues are organized as stacks with complicated semantics and that the compu-
tation is expressed in a strict fork/join style, analogous to that of divide-and-
conquer algorithms. The Nanothreads [11] architecture requires a compiler that
parallelizes programs in multiple levels of task granularity and injects code to
select the thread granularity that maximizes efficiency at runtime. It is rather
unfortunate that despite the wealth of solutions, popular thread-based program-
ming standards like POSIX threads and higher-level programming models based
on thread-based systems, such as OpenMP [9], lack the required adaptability to
ensure efficient parallel execution in the presence of multiprogramming.
This paper addresses the problem of embedding multiprogramming adapt-

ability to thread-based systems in a totally transparent manner, that is, inde-
pendently of the internals of the thread-system and without modifying its API.
The ultimate purpose of our work is to improve the scalability of any thread-
based system on a multiprogrammed SMP, regardless of the theoretical thread
model that the system implements, or its implementation idiosyncrasies.
We present the design of a kernel-level infrastructure, which provides a min-

imal set of services for multiprogramming adaptability. These services can be
used by any threads library and include a bidirectional communication channel



516 Ioannis E. Venetis et al.

between the operating system and multithreaded applications, a second-level
scheduler that controls the execution of adaptive multithreaded applications and
two mechanisms that enable applications to eliminate idling at synchronization
points. These mechanisms are built on top of existing operating system compo-
nents, however they do not alter the available resource management policies of
the operating system. Furthermore, the services do not require changes in the
source code or recompilation of multithreaded applications.
We implemented our services in the Linux kernel and modified the Linux-

Threads library [7], which is an implementation of the POSIX 1003.1c threads
standard for Linux-based systems. We used these modified versions to embed
adaptability in two multithreading programming models with radically different
characteristics, namely OpenMP and Cilk. Our results from multiprogrammed
executions of programs written with both programming models show that our
services achieve sizeable improvements in throughput (from 4.6% up to 41.2%)
compared to the throughput of the native Linux kernel.
The remaining of this paper is organized as follows: Section 2 gives a general

overview and Section 3 describes a prototype implementation of the proposed
infrastructure in the kernel of Linux. Section 4 describes the additions required
in threads libraries to use the kernel-level infrastructure and focuses on the
modifications made in the LinuxThreads library. Section 5 provides experimental
evidence on the value of our approach and Section 6 concludes the paper.

2 The Proposed System Software Architecture

The goal of the proposed system software architecture is to facilitate execution
adaptability under multiprogramming. This implies that applications must be
armed with mechanisms that enable them to adapt to a dynamically changing
execution environment. The most valuable among these mechanisms are those
that eliminate idling at synchronization points and minimize cache and memory
interference by space sharing the processors of the system. It has been shown
that adapting the number of threads of an application to the available number
of processors and resuming threads that have been preempted while executing
useful work in the critical path can improve significantly the performance of the
operating system scheduler, in terms of execution time and throughput [8]. These
services are orthogonal to both the programming model and the multithreading
back-end used to express parallelism. As a consequence, the natural levels of
implementation and exploitation of such services are the operating system and
the run-time threads libraries respectively.
An implementation of these services should ideally satisfy three conflicting

requirements. The first is efficiency; the overhead of the services must be kept
at a minimum. The second is transparency. These services should be injected
to any thread-based programming model or library, without having to change
the native API. Non-intrusiveness, finally, implies that the services do not alter
the fundamental resource management policies of the operating system, which



Embedding Adaptability to Thread-Based Programming Models 517

Programming Models

(OpenMP, Cilk, ...)

POSIX Threads

Library

Nano-Threads

Library

Other Threads

Libraries

ServicesShared Arena

OS Scheduler

Secondary Schedulers

Kernel

Level

User

Level

Fig. 1. The Proposed System Software Architecture

are always designed to satisfy a broader spectrum of criteria, rather than just
executing efficiently multithreaded programs.
A schematic diagram of a kernel-level infrastructure designed to fulfill these

requirements is depicted in Figure 1. There are three components that interact
to provide the desired functionality. The first is a bidirectional communication
channel between the operating system and each application. This channel allows
applications to inform the kernel about their needs on resources and be informed
about the scheduling decisions taken by the kernel. Since scheduling decisions
are taken frequently, the communication channel has to be asynchronous and
very efficient, in order to let applications access scheduling information with low
overhead and only when required. A shared arena [11], i.e. a set of memory-
resident pages mapped to both the user and the kernel address spaces can serve
this purpose. Using the shared arena, applications exchange information with
the kernel through loads and stores in shared memory.
The second component of our infrastructure is a non-intrusive scheduler,

built on top of the native kernel scheduler. This scheduler controls only adaptive
multithreading applications and its objectives are to distribute fairly CPU time
among adaptive applications and apply suitable scheduling policies that enable
applications to execute efficiently on a dynamically varying set of resources.
The last component of our infrastructure encompasses a set of services that

let the applications effectively utilize idle processors. Most threads libraries over-
come both the problem of eliminating idling at synchronization points and the
implications introduced by inopportune preemptions of threads in an essentially
similar way, i.e. by having idle threads yield their processors to other potentially
non-idle threads. Exploiting this similarity makes it possible to provide a limited
set of common services that can be used by most existing threads libraries.
Implementing such services in the operating system and exploiting them in

threads libraries allows user applications to take advantage of these services
in a totally transparent manner. There is no need to modify or recompile an
application to use these services, provided that it is dynamically linked with
a threads library. A new distribution of the library that uses the kernel-level
infrastructure is sufficient to arm these applications with the desired adaptability.



518 Ioannis E. Venetis et al.

3 Kernel Interface and Services Implementation

We implemented a prototype of our infrastructure in the Linux kernel. The
shared arena has been implemented by allocating a resident memory page for
each application that uses our mechanisms and sharing it between the threads
library and the kernel. This page is used by the threads library to inform the
kernel on the number of processors each application can effectively use. In addi-
tion, the kernel informs the threads library on the number of processors it has
granted to each application, the number of its preempted threads and the states
of its threads.
A new scheduler has been implemented, in order to apply the desired schedul-

ing policies to the applications that use our infrastructure. For the purposes of
this work we use a policy that mixes time- and space-sharing to equalize the
CPU time allocated to each program in the long-term, while letting parallel pro-
grams utilize multiple processors [12]. Our scheduler ensures that all applications
make progress at the same time and no application starves for CPU time. The
decisions of our scheduler are taken into account by the native scheduler only at
specific points. More specifically, the native operating system scheduler selects
the next thread to run on a processor. If the chosen thread belongs to an appli-
cation which is controlled by our scheduler we assign the processor to a thread
of the same application selected by our scheduler. In this way, the native sched-
uler continues to share fairly CPU time between all applications running on the
system, while our scheduler applies the desired policy to adaptive applications.
Two more services have been implemented to assist applications in effectively

utilizing idle processors. The first one comprises a mechanism which a thread
can use to voluntarily handoff a processor to another thread. This mechanism
can be used at thread joining. Each thread that completes its assigned com-
putation checks the shared arena to see if there are preempted threads of the
same application. If this is the case, it hands off the processor to one of them.
The second mechanism handles yielding of processors. A thread can yield its
processor to the operating system if it decides that it cannot use that processor
effectively. If such a thread belongs to an application that uses our infrastructure,
local scheduling is initiated, which means that a new scheduling decision affect-
ing only that processor will be taken. The second-level scheduler tries to assign
the processor to another thread of the same application that has useful work to
execute. If such a thread does not exist, the processor is assigned to a thread of
another application [8]. Local scheduling is also performed if a thread controlled
by our scheduler is dequeued from the run-queue of the native scheduler. Such
a thread cannot use a processor until it is re-inserted in the run-queue.

4 Threads Library Modifications

Only minor modifications are required in threads libraries, in order to exploit
the functionality of the kernel-level infrastructure described earlier. The threads
library has to invoke a registration system call before it starts creating threads.



Embedding Adaptability to Thread-Based Programming Models 519

In practically all implementations of dynamic shared libraries, there exists a
function that initializes the library, which is called at the beginning of execution
of each application and can be used for this purpose. The second addition has to
be made in the function that implements joining of threads. A check is performed
in the shared arena to examine if the application, to which the joining thread
belongs, has preempted threads. If this is the case, a second system call is used
to handoff the processor to another thread in the application.
No modifications are required in the threads library in order to exploit the

functionality offered for threads that yield their processor. The required function-
ality is embedded in the native system call that implements processor yielding
and is activated in the case of registered applications.
As an example, we describe the modifications applied to the LinuxThreads

library, which is a POSIX-like threads library for Linux based systems. In Linux,
the GNU compiler and linker provide the option of constructor functions. These
are functions that are executed on behalf of the application before the execution
of main(). The LinuxThreads library uses such a function to initialize its internal
data for each application that starts executing on the system. The invocation of
the registration system call is added to that function.
The function that implements joining of threads in a POSIX compliant li-

brary is called pthread join(). The check in the shared arena and the invo-
cation of the handoff system call are added, in our case, in this function. The
overall changes required in any threads library are minimal and in the case of
the LinuxThreads library the additional code is only about 30 lines long.
The yielding functionality of our infrastructure is indirectly exploited by the

pthread mutex lock() and pthread cond wait() functions. The first imple-
ments locks and yields its processor when a thread fails several times to grant a
lock, while the second yields its processor when a thread reaches a barrier.

5 Performance Evaluation

To evaluate the efficiency of our approach we used a set of applications writ-
ten with two different programming models, namely OpenMP and Cilk. These
programming models differ in all aspects, including scheduling, synchronization,
and most notably target application domain. OpenMP is nowadays the de facto
standard for portable shared-memory parallel programming in FORTRAN, C
and C++. Cilk is an algorithmic multithreaded language that achieves optimal
scheduling bounds for a certain class of multithreaded computations, i.e. multi-
threaded computations expressed with recursive fork/join sequences and having
unit-distance data-dependencies between their threads.
The first application used in our experiments is Heat, which is distributed as

an example program together with the Cilk programming language. Heat uses a
Jacobi-type iterative algorithm to solve parabolic partial differential equations
using a finite-difference approximation that models the heat diffusion problem.
As representatives of the OpenMP programming model, we have chosen four ap-
plications from the NAS Benchmark Suite [5]. The Embarrassingly Parallel (EP)



520 Ioannis E. Venetis et al.

benchmark generates pairs of Gaussian random deviates. The CG benchmark is
an implementation of the Conjugate Gradient method, which performs unstruc-
tured grid computations and communications. MG uses a MultiGrid method
to compute the solution of the 3-dimensional scalar Poisson equation. Finally,
SP solves a 3-dimensional Scalar Pentadiagonal system. These applications were
chosen because they mimic the data movement and computations of a wide range
of real-world applications, with the exception of EP, which is used to determine
the peak performance that a system can achieve.
We used version 5.3.1 of Cilk to compile Heat. For the applications selected

from the NAS benchmarks suite we used the OmniMP [13] compiler, version 1.2s.
Both environments convert programs written in the corresponding programming
model into equivalent C programs that use POSIX threads. The executables are
created from the intermediate code using the native C compiler of the system,
which in our case is gcc 2.95.2.
The machine used for the evaluation is a Compaq Proliant 5500, equipped

with 512 MBytes of physical memory and four Pentium-Pro processors, each one
clocked at 200 MHz and incorporating 512 Kbytes of L2 cache. The operating
system used is Linux 2.2.15 and the LinuxThreads library version is 2.1.3.
The first set of experiments consists of homogeneous workloads, i.e. work-

loads of concurrently running, identical copies of the same benchmark. Each
benchmark creates four threads and the quantity of concurrently active bench-
marks is equal to the degree of multiprogramming we want to achieve. We have
experimented with multiprogramming degrees from 1 to 16 in powers of two.
Each workload has been executed three times and the results reported are the
averages of the three executions. We measure the average turnaround time of
the benchmarks, which is a metric that characterizes the sustained throughput.
The workloads used exceed the CPU capacity of the system by as much as a
factor of four, which we consider as heavy load and representative for state-of-
the-art SMP servers. We have used workloads with a total memory request less
than the amount of memory available in the system, to isolate the impact of
the schedulers on resident CPU-bound parallel jobs and factor out the adverse
effects of paging.
The results are depicted in Figure 2. The absolute turnaround times of each

benchmark have been normalized with respect to the absolute turnaround time
of the same benchmark with 16-way multiprogramming and without using the
kernel infrastructure. Table 1 lists the execution times used as normalization fac-
tors in each case. The maximum variation of run-times among the application
instances within a workload is 2.96% for the modified and 2.4% for the unmod-
ified kernel. The maximum variation of run-times among the repetitions of each
experiment is 1.89% for the modified and 4.47% for the unmodified kernel. The
differences are in both cases very small.
The execution times attained using the modified kernel and library are in

most cases better and in the remaining few cases equal to the ones attained
using the unmodified versions. A second observation is that embarrassingly par-
allel applications, like EP and SP, exhibit very good scalability in the presence



Embedding Adaptability to Thread-Based Programming Models 521

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 2 4 8 16

Multiprogramming Degree

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

S
P

H
e
a
t

M
G

E
P

C
G

S
P

H
e
a
t

M
G

E
P

C
G

S
P

M
G

E
P

C
G

S
P

H
e
a
t

M
G

E
P

C
G

S
P

H
e
a
t

M
G

E
P

C
G

H
e
a
t

Without Kernel Support

With Kernel Support

Fig. 2. Normalized turnaround times of the evaluation workloads

of multiprogramming, even without the modified versions of the kernel and the
library. For such applications the execution times obtained by the modified ver-
sions are equal to the ones obtained by the standard versions. This indicates
that the overhead of our infrastructure is negligible. The real value of our ap-
proach shows up in more complicated applications with irregular communica-
tion patterns and high synchronization requirements, like CG, MG and Heat.
The system throughput improvement for these applications ranges from 4.6% to
41.2%. Moreover, using our services, the execution time increases linearly with
respect to the increase of multiprogramming degree. This is not the case when
the unmodified versions of the kernel and the library are used.
EP and SP have a coarse-grain barrier synchronization pattern, which fa-

cilitates fair allocation of CPU time among processes by the native scheduler.
On the contrary, CG, MG and Heat synchronize more frequently. Under mul-
tiprogramming, the delay between the first and the last process arriving at a
barrier is significantly increased. Our mechanisms reduce this delay by granting
the processor to a process of the same application, whenever a yield occurs. The
fairness of CPU time allocation among processes is preserved in the long term,
via the native scheduler priority mechanism.
The second experiment consists of a mixed workload, which contains all five

benchmarks. Each benchmark creates four threads and a copy of SP is the first

Table 1. Absolute turnaround times (in seconds) of all benchmarks with 16-way
multiprogramming and without using the kernel infrastructure

SP EP CG MG HEAT

3392.61 570.64 351.90 274.61 306.87



522 Ioannis E. Venetis et al.

that starts executing. After 15 seconds a copy of EP starts executing and finally,
after another 15 seconds one copy of CG, MG and Heat start to execute simul-
taneously. The workload has been executed three times and the results, shown
in Table 2, are the averages of the three executions. We measure the time that
each application requires to complete its execution. The results show a signifi-
cant improvement when the modified kernel is used, with the exception of Heat.
This last result is unexpected, according to the execution time that each appli-
cation requires individually. Further investigation showed that Heat never yields
its processors, but its threads have the same probability with all other threads
running in the system to take a processor that another application yields, when
the unmodified kernel is used. This phenomenon raises an issue of unfairness for
the native kernel. In the case of the modified kernel, the yielding system call
tries first to hand off the processor to a thread of the same application. This
reduces significantly the amount of CPU time allocated to the threads of Heat,
thus improving the fairness of the system.

Table 2. Execution times (in seconds) of all benchmarks in the mixed workload

CG MG HEAT EP SP

With kernel support 42.99 47.57 61.13 105.74 271.47
Without kernel support 95.42 77.93 54.12 121.39 289.51
Difference (%) 54.95 38.96 -12.96 12.89 6.23

6 Conclusions

We presented the design and implementation of a kernel-level infrastructure that
provides a set of services to embed multiprogramming adaptability to thread-
based systems in a totally transparent manner. The main advantages of this
infrastructure are efficiency, transparency and non-intrusiveness. These services
can be exploited by any threads library with limited modifications and applica-
tions benefit from our mechanisms and scheduling policies, without changing or
recompiling their source code.
Our results have shown that applications conducting unstructured compu-

tations benefit greatly from the added functionality and that the performance
gain increases when the multiprogramming degree is increased. Moreover, fully
parallel applications that exhibit good scalability in the presence of multipro-
gramming without the modified versions of the kernel and the library, are not
negatively affected by our mechanisms.
Currently, our implementation is focused on CPU bound applications. Our

next step is to fine-tune the implemented services, in order to make them appli-
cable to I/O bound applications. This will enable commercial applications with
high I/O activity (e.g. databases, web servers etc.) to exploit our infrastructure.



Embedding Adaptability to Thread-Based Programming Models 523

Acknowledgments

This work has been supported by the Hellenic General Secretariat of Research
and Technology (G.S.R.T.) research program 99E∆-566.

References

1. N. Arora, R. Blumofe, and G. Plaxton. Thread scheduling for Multiprogrammed
Multiprocessors. In Proc. of the 10th ACM Symposium on Parallel Algorithms and
Architectures, pages 119–129, Puerto Vallarta, Mexico, June 1998. 515

2. M. Frigo, C. Leiserson, and K. Randall. The Implementation of the Cilk-5 Mul-
tithreaded Language. In Proc. of the 1998 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Montreal, Canada, June 1998.
514

3. A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Schedul-
ing Policies and Synchronization Methods on the Performance of Parallel Appli-
cations. In Proc. of the 1991 ACM Conference on Measurement and Modeling of
Computer Systems, pages 120–132, San Diego, USA, May 1991. 515

4. IEEE. Portable Operating System Interface (POSIX)-Part 1: System Application
Program Interface (API) [C Language], 1996 edition, 1996. 514

5. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Paral-
lel Benchmarks and its Performance. Technical report nas-99-011, NASA Ames
Research Center, 1999. 519

6. L. Kontothanassis, R. Wisniewski, and M. Scott. Scheduler-Conscious Synchro-
nization. ACM Transactions on Computer Systems, 15(1):3–40, February 1997.
515

7. X. Leroy. The LinuxThreads library home page. http://pauillac.inria.fr/∼xleroy/
linuxthreads/index.html. 516

8. D. Nikolopoulos, C. Antonopoulos, I. Venetis, P. Hadjidoukas, E. Polychronopou-
los, and T. Papatheodorou. Achieving Multiprogramming Scalability on Intel SMP
Platforms: Nanothreading in the Linux Kernel. In Proc. of the 1999 Parallel Com-
puting Conference, pages 623–630, Delft, The Netherlands, August 1999. 516,
518

9. OpenMP A. R. B. OpenMP Fortran Application Program Interface, Version 2.0,
2000 edition, November 2000. 515

10. D. Papadopoulos. Hood: A User-Level Thread Library for Multiprogrammed Mul-
tiprocessors. Master’s thesis, Department of Computer Sciences, University of
Texas at Austin, August 1998. 515

11. C. Polychronopoulos, N. Bitar, and S. Kleiman. Nanothreads: A User-Level
Threads Architecture. Technical report 1297, CSRD, University of Illinois at
Urbana-Champaign, 1993. 514, 515, 517

12. E. Polychronopoulos, D. Nikolopoulos, T. Papatheodorou, N. Navarro, and X. Mar-
torell. An Efficient Kernel-Level Scheduling Methodology for Multiprogrammed
Shared Memory Multiprocessors. In Proc. of the 12th Int. Conference on Parallel
and Distributed Computing Systems, USA, August 1999. 518

13. M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Compiler for an
SMP Cluster. In Proc. of the 1st European Workshop on OpenMP, pages 32–39,
Lund, September 1999. 520



524 Ioannis E. Venetis et al.

14. A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multipro-
grammed Shared-memory Multiprocessors. In Proc. of the 12th ACM Symposium
on Operating System Principles, Litchfield Pk., USA, December 1989. 515


	A Transparent Operating System Infrastructure for Embedding Adaptability to Thread-Based Programming Models
	Introduction
	The Proposed System Software Architecture
	Kernel Interface and Services Implementation
	Threads Library Modifications
	Performance Evaluation
	Conclusions


