
Introduction of Static Load Balancing

in Incremental Parallel Programming

Joy Goodman and John O’Donnell

Glasgow University

Abstract. Formal program transformation in a functional language can
be used to support incremental design of parallel programs. This paper il-
lustrates the method with a detailed example: a program transformation
that improves the static load balance of a simple data parallel program.

1 Introduction

Incremental design of programs allows the critical design decisions to be in-
troduced one at a time, in a logical sequence. Sometimes this is simpler than
writing the program directly in its final form, where all interconnected design
decisions are made simultaneously. Incremental design is particularly useful for
parallel programming [2,1], where there is a large space of decisions (eg. how
to employ the available processors, how to distribute the data). One successful
incremental methodology for parallel programming with a mixture of task and
data parallelism is the TwoL model [4].

Incremental programming fits well with pure functional languages, such as
Haskell, which provide a sound foundation for correctness-preserving program
transformation [3]. Each step in the program derivation, which introduces ad-
ditional low level detail about the implementation, can be proved equivalent
to the preceding version of the program. There is also the potential for formal
correctness proofs and support by automated tools.

This paper investigates the use of Haskell for incremental parallel program-
ming based on formal transformations. In particular, we focus on one aspect
of the design: the use of program transformations to improve the static load
balance of a program, using a simple cost model to guide the transformation.

2 Expressing the Parallelism

The program is expressed using a coordination language that specifies how the
computation may be performed using a sequence of operations, which may be
abstract about the parallelism, or sequential or parallel. We use a superscript
S or P to indicate that an operation is definitely sequential or parallel, and no
superscript when this has not yet been decided.

The operations express computations over data structures called finite se-
quences, with types of the form FinSeq α. Variants on this are ParFinSeq α,

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 535–539, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

536 Joy Goodman and John O’Donnell

whose elements are distributed, one per processor, and SeqFinSeq α, where all
the elements reside in the same processor. A typical operation is

map :: (a → b) → FinSeq a → FinSeq b,

which applies a function to each element of its argument. A sequential map,
mapS , iterates the function over data stored in the memory of one processor,
while a parallel map, mapP , can apply the function to multiple data elements
simultaneously since they are stored in different processors.

In the remainder of this paper we will use as a running example the reduction
of the columns of a lower triangular matrix X (Figure 1(a)), using an operator
⊕, which we assume to be a relatively expensive computation. The matrix con-
tains a sequence of n columns Xi = [x0,i, . . . , xn−1,i] for 0 ≤ i < n, where
column i contains i + 1 elements. The aim is to compute the vector of column
sums: si =

⊕n−1
j=0 xj,i for 0 ≤ i < n.

x4,4

x3,3 x4,4

x2,2 x2,3 x2,4

x1,1 x1,2 x1,3 x1,4

x0,0 x0,1 x0,2 x0,3 x0,4

(a)

x4,4

x3,3 x3,4

x2,2 x2,3 x2,4

x1,1 x1,2 x1,3 x1,4

x0,0 x0,1 x0,2 x0,3 x0,4

(b)

x4,4 x3,3 x2,2 x2,3 x2,4

x3,4 x1,1 x1,2 x1,3 x1,4

x0,0 x0,1 x0,2 x0,3 x0,4

(c)

Fig. 1. (a) Original matrix; (b) partitioning; (c) load-balanced computations

This mathematical specification can be expressed in Haskell, with f in place
of ⊕, by representing the matrix as a finite sequence of columns. Each column
is a finite sequence of data values of type α. The columns are reduced using
foldl , which takes an extra parameter, a, a unit of f . The unit parameter is
not necessary at this point, but it simplifies the following presentation of the
transformation. Each column of the matrix is reduced in a dedicated processor,
so the map is parallel, but the reductions (folds) are performed sequentially.
This is a more concrete version of the specification which would be written
using FinSeq α.

maptri :: (α → α → α) → α → ParFinSeq (SeqFinSeq α) → ParFinSeq α
maptri f a xss = mapP (foldlS f a) xss

3 Generic Load Balancing

During the incremental derivation of a parallel program, we gradually transform
it, in order to bring it closer to the low level executable code while improving its

Introduction of Static Load Balancing in Incremental Parallel Programming 537

efficiency. One potential optimisation is static load balancing: reorganising the
program so that the workload is spread evenly across the available processors.
The maptri example is well suited for static load balancing, and this technique
is useful for many realistic applications. Many problems, however, have irregular
or dynamic processor loads that render static load balancing ineffective. In such
cases, a better solution is dynamic load balancing supported by the runtime
system.

The static load balancing is guided by a cost analysis that takes account of
both the computation and communication costs. We illustrate the method by
introducing a simple cost model. Let Tf be the time needed for a processor to
apply f to an argument stored in the local memory, assuming that Tf does not
depend on the value of the argument. Let Tcom = T0+k ·Tc be the time required
by a total exchange operation, where k is the size of the largest message.

In the maptri program, processor i requires time T (foldlS f a [x0,i , . . . , xi,i])
= i · Tf . This implies a poor load balance, since the processors’ computation
times vary from 0 to (n − 1) · Tf , and the time for the whole program depends
on the maximum time required by a processor. By spreading the work evenly
the computation time could be cut in half, although we must also consider the
costs of the communications introduced to balance the load.

The first step in load balancing is to divide the tasks up into smaller pieces,
and a natural idea is to split the folds over a long list into separate folds over
shorter pieces (Figure 1(b)). The partial folds can then be rearranged so that
each processor has about the same amount of work (Figure 1(c)). The following
lemma permits the splitting of folds, provided that f is associative:

Lemma 1. If f :: α → α → α is associative, and xs , ys :: SeqFinSeq α, then
foldlS f a (xs ++ ys) = f (foldlS f a xs) (foldlS f a ys).

Now we have to divide up each of the columns. This can be done using the
following lemma.

Lemma 2. xs = takeS m xs ++ dropS m xs for xs :: SeqFinSeq α, m ≥ 0.

Each processor splits its computation into two parts, work1 = takeS m xs
and work2 = dropS m xs. The parameter m can be calculated so as to minimise
the total time; by leaving m as a variable, we are describing a family of related
algorithms.

The excess work work2 can be offloaded from processors with too much work.
In other processors, work2 = []. This is done using a communication operation
moveP with an inverse move ′P that can be used later to return the partial fold
results to the right processor.

Lemma 3. mapP F = move ′P ◦ (mapP F) ◦ moveP for any permutations
moveP and move ′P such that move ′P ◦ moveP = id .

The following program moves the excess work, work2, to processors that
have room for it. Each processor then computes two fold results, and sends the

538 Joy Goodman and John O’Donnell

second, res2, back to its original processor, where it is combined with the first
result, res1.

maptri f a xss = let work1 = mapP (takeS m) xss
work2 = mapP (dropS m) xss
res1 = mapP (foldlS f a) work1
res2 = move ′P (mapP (foldlS f a) (moveP work2))

in
zipWithP f res1 res2

4 Analysis and Transformation

The next step is to calculate values for m and moveP so as to to minimise the
total time. In general, the best performance may not result from an optimal load
balance, since the communication time entailed by the load balancing must also
be considered. If Tf is low compared to Tcom, then the time taken to rearrange
the data may be higher than the time saved by the improved load balance,
so load balancing is not a good idea. On the other hand, if Tf is expensive,
then the load balanced program is also the cost optimised one. In general, there
are also cases between these two extremes, when moving a few elements can
produce a sufficiently good load redistribution to improve the program, but
achieving a perfect load balance would require a prohibitively large amount of
communication.

There is not space here for a complete formal analysis, but the rest of this
section shows the flavour of the calculation. p, the index permutation function
of moveP , is used to calculate moveP , such that (moveP xs)!!i = xs !! p i . We
assume that Tf � Tcom on the target architecture for all message sizes k, such
that 0 ≤ k ≤ n+1. Then the total cost is minimised by achieving a perfect load
balance, subject to two sub-goals:

1. A processor’s work load is proportional to the number of elements it holds.
The total number of elements is 1

2n(n + 1) ≈ nn
2 , so each processor should

have about n
2 elements.

2. Overloaded processors should only send data, under-loaded processors should
only receive, and no processor should do both.

Now the parameters m and p must be calculated. In the original triangular
matrix, processor i contains i+1 elements. Using this property and standard size
lemmas, the number of elements remaining in processor i after load balancing is
calculated as follows:

task size i = #((mapP (takeS m)xss)!!i) + #((moveP (mapP (dropS m)xss))!!i)
= min(m, i+ 1) + max(0, p i+ 1− m)

The first term in this expression corresponds to data kept and the second
term to data received. The expression can be simplified further by considering

Introduction of Static Load Balancing in Incremental Parallel Programming 539

the sending and receiving processors separately. Note that the sending processors
receive no data, and receiving ones keep all their original data, ie. i+1 elements.

The simplified value of processor i’s workload can now be equated with the
mean workload n

2 , allowing m and p to be calculated: m = n‘div‘2 + 1 and
p = n − i − 1 ⇒ moveP = reverseP = move ′P . All that remains is to substi-
tute the chosen values for the variables:

maptri f a xss = let m = (lengthP xss)‘div ‘2 + 1
work1 = mapP (takeS m) xss
work2 = mapP (dropS m) xss
res1 = mapP (foldlS f a) work1
res2 = reverseP (mapP (foldlS f a) (reverseP work2))

in
zipWithP f res1 res2

However, this is not the end of the story. As indicated in the introduction,
further transformations, which are not shown in this paper, convert the program
into an imperative C+MPI program.

5 Conclusions

In this paper we have demonstrated how static load balancing can be intro-
duced into a data parallel program, using formal program transformations based
on a pure functional language. The transformation is introduced cleanly, with-
out having to worry about other details involved in parallel programming. The
programming methodology uses a library of suitable distributed types, parallel
operations, collective communication operations, and lemmas.

Topics for future research include methods for introducing other optimisa-
tions, extensions to the library of combinators and their lemmas, and tools pro-
viding partially automated support for the programming process.

References

1. Joy Goodman. A methodology for the derivation of parallel programs. Workshop
UMDITR03, Departamento de Informática, Universidade do Minho, September
1998. 535

2. Sergei Gorlatch. Stages and transformations in parallel programming. In Abstract
Machine Models for Parallel and Distributed Computing, pages 147–162. IOS Press,
1996. 535

3. Kevin Hammond and Greg Michaelson, editors. Research Directions in Parallel
Functional Programming. Springer, 1999. 535

4. Thomas Rauber and Gudula Rünger. The compiler TwoL for the design of parallel
implementations. In Proceedings of the 4th International Conference on Parallel
Architecture and Compilation Techniques, pages 292–301. IEEE Computer Society
Press, 1996. 535

	Introduction of Static Load Balancing in Incremental Parallel Programming
	Introduction
	Expressing the Parallelism
	Generic Load Balancing
	Analysis and Transformation
	Conclusions

