
Solving Bi-knapsack Problem Using Tiling

Approach for Dynamic Programming

Benamar Sidi Boulenouar

LAMIH-ROI, UMR 8530,
ISTV - Le mont Houy -BP 311- 59304 Valenciennes Cedex- France

sidi@univ-valenciennes

Abstract. In this paper we present an efficient parallelization of the
dynamic programming applied to bi-knapsack problem, in distributed
memory machines(MMD). Our approach develops the tiling technique
in order to control the grain parallelism and find the optimal granular-
ity. Our proposed approach has been intensively validated on the Intel
Paragon and IBM/SP2 using NX and MPI libraries. The experimental
results show a linear acceleration, which enables to solve huge instances
of the hardest known 0/1 bi-knapsack problems in a very reasonable
time.

1 Introduction

For the knapsack problem, many parallel dynamic programming (DP) imple-
mentations are known [1,4,6,7]. This is not the case for bi-knapsack problem
(BKP).

In this study, we discuss how to find optimal parallelism granularity on a
distributed memory machine (DMM). The proposed approach is based on the
tiling technique, which is a common method to improve the performance of loop
programs on DMM. These techniques are developed very actively these last years
around the automatic parallelization of the nest of loop [3,5,8].

Tiling consists in partitioning the iteration space into blocks called tile; each
tile is executed by a single processor in an atomic way. Finding the optimal tiling
parameters of the tile (shape and size) enables to minimize the execution time
by reducing the extra cost of communications. The tiling technique is today well
developed and widely used in case of Uniform Recurrent Equation(URE).

However, this technique cannot be applied directly to DP recurrences for the
BKP because of the irregular nature of their dependencies, which vary with any
problem instance.

We show here how the tiling technique can be extended and how it can be
successively applied to a DMM DP implementation for the bi-knapsack problem.

2 Dynamic Programming for the Bi-knapsack

The bi-knapsack problem (BKP) is a classic NP-hard problem and can be for-
mulated as follows: we are given a bi-knapsack of capacity c1 and c2, into which

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 560–565, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Solving Bi-knapsack Problem 561

we may put m types of objects. Each object of type i has a profit, pi, and two
weight, (wi, ui), (wi, ui, pi, m, c1 and c2 are all positive integers). Determine, for
i = 1 . . .m, the number xi, of i-th type objects to be chosen so as to maximize
the total profit without exceeding the capacity, i.e.,

max

{
m∑

i=1

pixi :
m∑

i=1

wixi ≤ c1,

m∑
i=1

uixi ≤ c2 xi ∈ {0, 1}, i = 1, 2, . . . , m

}

(1)
The dynamic programming method solves (BKP) following recurrences: let

D = {(i, j, k) : 0 ≤ i ≤ m ; 0 ≤ j ≤ c1 ; 0 ≤ k ≤ c2} be the recurrence domain
of iterations (2) ; for every couple (i, j, k) of D, calculate.

f(i, j, k) =
{

f(i − 1, j, k) if i > 0 and (j < wk or k < uk)
max(f(i − 1, j, k), pi + f(i − 1, j − wi, k − ui)) if i > 0 and (j ≥ wi and k ≥ ui)

(2)
The particularity of these dependencies that the values wi and ui vary in large

interval with any index i and any instance of the problem. Figure 1 shows the
dynamic characters of dependencies : the diagonal dependencies varies according
to the values of wi and ui.

. . . .

. . . .
. . . .

. . . .

. . . .
. . . .

j

k

i

Fig. 1. Bi-knapsack dynamic dependencies

3 Tiling and Processors Allocation

The recurrences (2) are represented by three-dimensional nested loops. The as-
sociated iterations space is a cube of (m×c1×c2) size, in which the dependencies
vectors are (1,0,0) and (1,wi,ui).

The particularity of these dependencies is that the values wi and ui vary in
large interval with any index i and any instance of the problem. For these reasons,
it is not possible to guaranty the local references and constant communications
volume, when using tiling techniques on grid architecture.

562 Benamar Sidi Boulenouar

In order to avoid that such dependencies involve no constant volume com-
munications, the projection of the tile graph is made vertically on a p processors
ring. In this case, by choosing an appropriate projection we can guaranty that
the runtime dependencies require only local references.

The iteration space figure 2(a) is partitioned into rectangular parallelepipeds
of size x1 × x2 × x3. To compute each tile, the processor receive a message
of x2×x3 elements from its left neighbor, and sends to its right neighbor message
of the same size x2 × x3. In this case, the important parameters to determine
the optimal tile size are the values of x1 and x2 × x3. In order to simplify our
model, we put h = x2 × x3 and W = m × c1 × c2. Because the dependencies
are orthogonal, we can easily demonstrate that 3D iteration space can be tiled
which 2D tile [9]. By this transformation, we obtain a 2D iteration space tiled
with rectangular surfaces as it is show in figure 2(b).

P
32

PP1P
0

x1

P1 2
P P

3
P
0

x2
x3

.

.

. .
.
. .

.

. .
.
.

X 1

h

c
2

c
1

c
2*

c
1

(a) (b)

m
m

Fig. 2. Ring: transformation of a tile graph 3D (a) into a graph 2D(b)

Hence, we can apply the Andonov and Rajopadhye results [2] to determine
the optimal tile. The execution time (according to x1 and h) is given by the
function:

T (x1, h) =
2Wβ

px1h
+ (p − 1)αx1h + (p − 1)τh + (p − 1)β +

Wα

p
(3)

The optimal tile size is given by:

(h∗, x∗
1) =

[√
2pc1c2β

(p−1)(mα+pτ) ,
m
p

]
if λ2 > 0 (no cyclic solution)[

1,
√

2Wβ
(p−1)pα

]
else (cyclic solution)

(4)

with λ2 = 2pc1c2β − (p − 1)mα
The constants β and τ respectively correspond to the time to establishing

communication and to the transfer of data. α correspond to the execution time of

Solving Bi-knapsack Problem 563

a single instruction. In our case, λ2 is always positive because c1×c2 � m (BKP
problem), β > α (Distributed Memory Machine) and p ≈ p − 1). Therefore, in
the rest of this paper, we consider the no cyclic solution.

4 Sensitivity of the Model

The same approach can be used in the case of dynamic dependencies of bi-
knapsack type, only if the single instance computing is constant. This assumption
is at the base of the previous results, but it is impossible to be considered here.
The dynamic dependency (of wi and ui length) prevents the reference locality,
the access time to data varies because the cache and pagination techniques. In
this part, we propose a strategy assuring the stability of the result when α is
not a constant. In order to simplify our study, we take a simple knapsack case
with one constraint (c2 = 0 and all ui = 0).

The table 1 shows the computing times of a single instance obtained for
different coefficient instances wi generated randomly in a fixed interval. We can
note that, the time for computing an instance increases with the coefficients
value wi, which confirms the memory effect.

Table 1. variation of α according to the values of coefficients wi

wi [1, 10] [1, 5.102] [103, 15.102] [5.103 , 104] [104, 3.104]

α(average) 3µs 6µs 13µs 15µs 23µs

Figure 3(c) shows the experimental curves which correspond to the total
executing time, by varying the height of the tile (parameter h) for the wi and
coefficient values taken in the said interval. The size of the problem capacity
(c1 = 20700) and number of objects(m=1000) are kept fixed. We can notice that
in a small interval the optimal value of h does not vary much, in spite of the
important variation of the different values of α.

This observation led to consider the minimal value of α (obtained by fixing
the wi to 1) to calculate the optimal tile size. This strategy guarantees that the
optimum calculated this way always stands on the right (hand) side of the real
minimum. On this side, the time function has a weak slope, and the points in the
neighborhood of the real minimum give a good approximation of the minimum
value.

The following table describes a validation of this strategy. Each line represents
a fixed instances of problem where the time value α is known (1st column). These
values are taken into account to calculate h∗ (using eq(4)) . The third column of
the table shows the total executing time obtained for tile of h∗ size. The fourth
and the fifth columns show approximate values (happ, Tapp) obtained using the
minimal value of α.
 means Topt − Tapp. We can see in the last column, that
the relative error does not exceed 3%.

564 Benamar Sidi Boulenouar

α h∗(α) Topt(sec) happ(α = 1µs) Tapp(sec) � �
Topt

1µs 99 10.50 99 10.50 0.00 0.00
3µs 57 30.83 99 31.29 0.45 0.01
6µs 40 61.16 99 62.48 1.31 0.02
13µs 27 131.70 99 135.25 3.54 0.02
15µs 25 151.82 99 156.04 4.21 0.02
23µs 20 232.24 99 239.21 6.96 0.03

5 Experimental Results

We now describe some experimental results of our algorithm. The experiments
were run on Intel Paragon at IRISA and IBM/SP2 at CINES, for bi-knapsack
problems chosen randomly. The main characteristics of these machines are given
in table 2.

Table 2. Technical characteristics of the Intel Paragon and the IBM SP2

Intel Paragon IBM SP2

number of processors 50 207
data cache per node 128KB 16KB
memory per processor 56MB 256MB

max peak processor speed 100Mflops 500Mflops
point to point bandwith 175MB/sec 35MB/sec

τ 0.0015µs 0.0022µs
β 40µs 45.0µs

Figure 3(a)(b)(d)(e) shows that the experimental curve is close to the theo-
retical curve; the optimum (h optimal) coincides with the estimate value. The
experimental evaluation of the speed−up 3(f) allowed us to notice a linear speed-
up, this being due to the memory effect. In fact, the size of the memory used
by each processor is (c1 × c2 × m/p), it decreases by increasing the number of
processor (p), which in turn reduces the time access memory. If we choose the
IBM/SP2, for big problems size, the choice of the optimal tiling is very important
(Figure 3(e)).

6 Conclusion

This paper presents an efficient parallelization of the dynamic programming ap-
plied to bi-knapsack problem. The approach proposed develops the optimal tiling
technique in order to have a best computing/communication ratio, for a partic-
ular case of dynamic dependencies. We analyze the sensitivity of the result for
non-constant cycle times and we propose a strategy for this problem. Compu-
tational tests indicate that the strategy works well, giving linear speedup over

Solving Bi-knapsack Problem 565

SP2(d) SP2(e) (f)

Paragon(a) Paragon(b) (c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 ti
m

e(
se

c)

h

 Problem size : m=100, c1=100, c2=500, p=8

C.Exp
C.Theo

7

8

9

10

11

12

13

14

15

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 ti
m

e(
se

c)

h

 Problem size : m=105, c1=1000, m=1000, p=20

C.Exp
C.Theo

1

2.5

4

5.5

7

8.5

10

11.5

13

14.5

16

17.5

19

2 4 6 8 10 12 14 16 18 20

 ti
m

e

p

 Problem size: m=100, c1=1000 , c2=1000

Y(x)=x
Speed-up(exp)

Speed-up(theo)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 ti
m

e(
se

c)

h

 Problem size : m=100, c1=100, c2=500, p=8

C.Exp
C.Theo

160

160.5

161

161.5

162

162.5

163

163.5

164

164.5

165

50 100 150 200 250 300 350 400

 ti
m

e(
se

c)

h

 Problem size : m=105, c1=1000, c2=1000, p=20

theo
exp

6

8

10

12

14

16

18

20

22

0 100 200 300 400 500 600 700 800 900 1000

 ti
m

e(
se

c)

h

 Problem size: c=20700, m=1000, p=5

13 us
10 us
9 us
7 us
6 us

Fig. 3. Optimal tile size validation and acceleration obtained

a range of processor numbers and tracking theoretical performance predictions
closely. According to our knowledge, it is the first parallel algorithm for the
bi-knapsack problem.

References

1. R. Andonov and S. Rajopadhye. Knapsack on VLSI : from Algorithm to Optimal
Circuit. IEEE Transactions on Parallel and Distributed Systems, 8(6):545–562,
1997. 560

2. R. Andonov and S. Rajopadhye. Optimal Orthogonal Tiling of 2-D Iterations.
Journal of Parallel and Distributed Computing, 45:159–165, September 1997. 562

3. P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-Ultimate Tiling? INTEGRA-
TION, the VLSI journal, 17:33–51, Nov 1994. 560

4. G. H. Chen, M. S. Chern, and J. H. Jang. Pipeline Architectures for Dynamic
Programming Algorithms. Parallel Computing, 13:111–117, 1990. 560

5. F. Irigoin and R. Triolet. Supernode Partitioning. In 15th ACM Symposium on
Principles of Programming Languages, pages 319–328. ACM, Jan 1988. 560

6. J. Lee, E. Shragowitz, and S. Sahni. A Hypercube Algorithm for the 0/1 Knapsack
Problems. J. of Parallel and Distributed Computing, 5:438–456, 1988. 560

7. J. Lin and J. A. Storer. Processor-Efficient Hypercube Algorithm for the Knapsack
Problem. J. of Parallel and Distributed Computing, 13:332–337, 1991. 560

8. J. Ramanujam and P. Sadayappan. Tiling Multidimensional Iteration Spaces for
Non Shared-Memory Machines. In Supercomputing 91, pages 111–120, 1991. 560

9. B. Sidi Boulenouar, H. Bourzoufi, and R. Andonov. Tiling and processors allo-
cation for three dimensional iteration space. In International Conference on Higt
Performance Computing (HiPC), ACM/ IEEE, pages 125–129, India, 1999. 562

	Solving Bi-knapsack Problem Using Tiling Approach for Dynamic Programming
	Introduction
	Dynamic Programming for the Bi-knapsack
	Tiling and Processors Allocation
	Sensitivity of the Model
	Experimental Results
	Conclusion

