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Abstract. We describe a parallel Fortran 77 implementation, in ScaLA-
PACK style, of a block matrix 1-norm estimator of Higham and Tisseur.
This estimator differs from that underlying the existing ScaLAPACK
code, PxLACON, in that it iterates with a matrix with t columns, where
t ≥ 1 is a parameter, rather than with a vector, and so the basic compu-
tational kernel is level 3 BLAS operations. Our experiments on an SGI
Origin2000 show that with t = 2 or 4 the new code offers better esti-
mates than PDLACON with a similar execution time. Moreover, with t > 4,
estimates exact over 90% of the time are achieved with execution time
growing much slower than t.

1 Introduction

Error bounds for computed solutions to linear systems, least squares and eigen-
value problems all involve condition numbers, which measure the sensitivity of
the solution to perturbations in the data. Thus, condition numbers are an im-
portant tool for assessing the quality of the computed solutions. Typically, these
condition numbers are as expensive to compute as the solution itself [6]. The LA-
PACK [1] and ScaLAPACK [2] condition numbers and error bounds are based
on estimated condition numbers, using the method of Hager [3], which was sub-
sequently improved by Higham [4]. Hager’s method estimates ‖B‖1 given only
the ability to compute matrix-vector products Bx and BT y. If we take B = A−1

and compute the required products by solving linear systems with A, we obtain
an estimate of the 1-norm condition number κ1(A) = ‖A‖1‖A−1‖1.

In LAPACK and ScaLAPACK Higham’s version of Hager’s method is im-
plemented in routines xLACON and PxLACON, respectively. Both routines have a
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reverse communication interface. There are two advantages to having such an
interface. First it provides flexibility, as the dependence on B and its associated
matrix-vector operations is isolated from the computational routines xLACON
and PxLACON, with the matrix-vector products provided by a “black box” [4].
By changing these black boxes, xLACON and PxLACON can be applied to different
matrix functions for both dense and sparse matrices. Second, as the bulk of the
computational effort is in matrix-vector operations, efficient implementation of
these operations ensures good overall performance of xLACON and PxLACON, and
thus a focus is provided for performance tuning.

The price to pay for using an estimate instead of the exact condition number
is that it can sometimes be a poor estimate. Experiments in [4] show that the
underestimation is rarely by more than a factor of 10 (the estimate is, in fact,
a lower bound), which is acceptable in practice as it is the magnitude of the
condition number that is of interest. However, counterexamples for which the
condition numbers can be arbitrarily poor estimates exist [4], [5]. Moreover, when
the accuracy of the estimates becomes important for certain applications [7], the
method does not provide an obvious way to improve the estimate.

Higham and Tisseur [7] present a block generalization of the estimator of [3,4]
that iterates with an n× t matrix, where t ≥ 1 is a parameter, enabling the ex-
ploitation of matrix-matrix operations (level 3 BLAS) and thus promising greater
efficiency and parallelism. The block algorithm also offers the potential of better
estimates and a faster convergence rate, through providing more information
on which to base decisions. Moreover, part of the starting matrix is randomly
formed, which introduces a stochastic flavour and reduces the importance of
counterexamples.

We have implemented this block algorithm using Fortran 77 in the ScaLA-
PACK programming style and report performance on a 16 processor SGI Ori-
gin2000. The rest of the paper is organized as follows. We describe the block
1-norm estimator in Section 2. In Section 3 we present and explain details of our
parallel implementation of the estimator. The performance of the implementa-
tion is evaluated in Section 4. Finally, we summarize our findings in Section 5.

2 Block 1-Norm Estimator

In this section we give pseudo-code for the block 1-norm estimator, which is
basically a block power method for the matrix 1-norm. See [7] for a derivation and
explanation of the algorithm. We use MATLAB array and indexing notation [8].

Algorithm 1 (block 1-norm estimator) Given A ∈ R
n×n and positive inte-

gers t and itmax ≥ 2, this algorithm computes a scalar est and vectors v and w
such that est ≤ ‖A‖1, w = Av and ‖w‖1 = est‖v‖1.

Choose starting matrix X ∈ R
n×t with columns of unit 1-norm.

ind−hist = [ ] % Integer vector recording indices of used unit vectors ej.
estold = 0, ind = zeros(n, 1), S = zeros(n, t)
for k = 1, 2, . . .
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(1) Y = AX
est = max{ ‖Y (: , j)‖1 : j = 1: t }
if est > estold or k = 2
ind best = indj where est = ‖Y (: , j)‖1, w = Y (: , ind best)

end
if k ≥ 2 and est ≤ estold, est = estold, goto (5), end
estold = est, Sold = S

(2) if k > itmax, goto (5), end
S = sign(Y ) % sign(x) = 1 if x ≥ 0 else −1
If every column of S is parallel to a column of Sold, goto (5), end
if t > 1

(3) Ensure that no column of S is parallel to another column of S
or to a column of Sold by replacing columns of S by rand{−1, 1}.

end
(4) Z = AT S

hi = ‖Z(i, : )‖∞, indi = i, i = 1:n
if k ≥ 2 and max(hi) = hind best, goto (5), end
Sort h so that h1 ≥ · · · ≥ hn and re-order ind correspondingly.
if t > 1
If ind(1: t) is contained in ind−hist, goto (5), end
Replace ind(1: t) by the first t indices in ind(1:n) that are
not in ind−hist.

end
X(: , j) = eindj

, j = 1: t
ind−hist = [ind−hist ind(1: t)]

end
(5) v = eind best

Statements (1) and (4) are the most expensive parts of the computation and
are where a reverse communication interface is employed. It is easily seen that
if statements (1) and (4) are replaced by “Solve AY = X for Y ” and “Solve Z
for AT Z = S for Z”, respectively, then Algorithm 1 estimates ‖A−1‖1.

MATLAB 6 contains an implementation of Algorithm 1 in function normest1,
which is used by the condition number estimation function condest.

3 Parallel Implementation

We have implemented Algorithm 1 in double precision using Fortran 77 in the
ScaLAPACK programming style. For dense matrices, ScaLAPACK assumes the
data to be distributed according to the two-dimensional block-cyclic data layout
scheme; see Figure 1 for an example. Our code uses the highest level of BLAS
and PBLAS whenever possible.

In PxLACON the vectors resulting from the matrix-vector operations are always
stored in the first process column. In order to ensure all processes follow the same
execution path, the resulting vectors are copied to every process column. We
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a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Mapping
=⇒

0 1
a11 a12 a15 a13 a14

0 a21 a22 a25 a23 a24

a51 a52 a55 a53 a54

1 a31 a32 a35 a33 a34

a41 a42 a45 a43 a44

Fig. 1. A 5×5 matrix decomposed into 2×2 blocks mapped onto a 2×2 process
grid using the two-dimensional block-cyclic data layout scheme

have adopted a similar approach in our implementation in that we assume all t
search vectors are stored in the first process column. Consequently, the maximum
value of t is equal to the column block size for partitioning the matrix. This
restriction on t eliminates a large amount of communication between process
columns, which in our experience is very costly. This restriction is not severe,
as good norm estimates are obtained even with t relatively small compared
with the column block size. Moreover, instead of copying the search vectors
across process columns, which becomes increasingly expensive as t increases, the
first process column performs all the computational work and then broadcasts
two scalar variables (est in Algorithm 1 and an integer variable used in the
reverse communication mechanism) across the process columns to ensure all
processes follow the same execution path. This provides another large saving in
communication cost. Furthermore, we arrange that S (the current sign matrix,
whose elements are ±1) and Sold (the previous sign matrix) share the same
distribution scheme.

We set the maximum number of iterations itmax to 5, which is rarely reached.
When this limit is reached we have, in fact, performed 5 1

2 iterations, as the test
(2) in Algorithm 1 comes after the matrix product Y = AX . This allows us to
make use of the new search direction generated at the end of the fifth iteration.

Most of Algorithm 1 is straightforwardly translated into Fortran code apart
from statement (3), which deserves detailed explanation. Statement (3) is a novel
feature of Algorithm 1 in which parallel columns within the current sign matrix S
and between S and Sold are replaced by rand{−1, 1}, where rand{−1, 1} denotes
a random vector with entries−1 or 1. The replacement of parallel columns avoids
redundant computation and may lead to a better estimate [7]. The detection of
parallel columns is done by forming inner products between columns and looking
for elements of magnitude n. Obviously, we should only check for parallel columns
when t > 1. Using the notation of Algorithm 1, statement (3) is implemented as
follows:

iter = 0
for i = 1: t

while iter < n/t
(A) y = ST

oldS(: , i)
iter = iter + 1
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if ‖y‖∞ < n
(B) y = S(: , 1: i − 1)T S(: , i)

iter = iter + 1
if ‖y‖∞ < n, goto (#), end

end
S(: , i) = rand{−1, 1}

end
(#) end

In the inner loop the number of matrix-vector products is limited to n/t. As
the computational cost of Algorithm 1 is O(n2t) flops and (A) and (B) both
cost O(nt) flops, this choice of limit ensures that the cost of replacing parallel
columns does not dominate the overall cost.

The replacement of parallel columns involves the use of a random number
generator and ScaLAPACK is intended to work in a heterogeneous environment.
Our restriction that the first process column performs all the computations of
random numbers ensures that the code works properly in a heterogeneous en-
vironment. Furthermore, by keeping a single copy of the search vectors, rather
than multiple copies on each process column as in ScaLAPACK, we eliminate a
potential performance-degrading communication overhead.

The new code is called PDLACON1. Its storage requirements are not signifi-
cantly greater than those of PxLACON, unless t is large. Let m denote the number
of process rows in the process grid. To be precise, PDLACON1 and PDLACON require
(2nt+ n)/m+ 4n+ t and 3n/m storage space per process respectively.

Note that the replacement of parallel columns is not essential for Algorithm 1
to produce good estimates. The advantage of this feature in the distributed
context is less clear than in the serial and shared-memory cases. We include this
feature in our implementation so that it is consistent with our MATLAB and
LAPACK-style versions.

4 Numerical Experiments

In this section, our aim is to examine the performance of PDLACON1. We have
addressed the issues of accuracy and reliability of PDLACON1 by reproducing
parts of the experimental results in Higham and Tisseur [7], thereby validating
our code. Our main focus in this section is to measure the efficiency of our
implementation. We investigate how the relation between accuracy and execution
time varies with n and t.

We tested PDLACON1 on a SGI Origin2000. The compiler and library details
are given in Table 1.

We use the same compiler flags as was used to compile the ScaLAPACK in-
stallation. This provides a basis for measuring and comparing the performance
of our implementation with that of the ScaLAPACK routine PDLACON. All tim-
ing results were obtained on a shared machine with exclusive access to a set
of consecutive CPUs and their memory using the IRIX command cpuset; see
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Table 1. Characteristics of the SGI Origin2000, libraries and compiler options
for the experiments

Compiler Compiler Flags SGI BLAS Precision

MIPSpro Compilers: -O2 -64 -mips4 -r10000 -lblas double
Version 7.3.1.2m (f77) (optimized)

ScaLAPACK MPI BLACS PBLAS SGI MPI
version 1.6 version1.1 + patch v2.0 -lmpi

Table 2. Parameters set in the configuration file of cpuset

Parameters

EXCLUSIVE, MEMORY LOCAL, MEMORY EXCLUSIVE, MEMORY KERNEL AVOID,
MEMORY MANDATORY, POLICY KILL

Table 2 for the configuration of cpuset. Both row and column block sizes for
partitioning the matrix were set to 64.

We estimate ‖A−1‖1 for random matrices A ∈ R
n×n with 1200 ≤ n ≤

2700. For each n, a total of 500 random matrices A are generated, variously
from the uniform (0, 1), uniform (−1, 1) or normal (0, 1) distributions. The LU
factorization with partial pivoting of A is supplied to the 1-norm estimators.
The cost of this part of computation does not contribute to the overall timing
result. This arrangement is reasonable as the LU factorization is usually readily
available in practice, as when solving a linear system, for example. The inverse
of A is computed explicitly to obtain the “exact” ‖A−1‖1. For a given matrix A
we first generated a starting matrix X1 with 64 columns, where 64 is the largest
value of t to be used, and then ran Algorithm 1 for t = 1, 2, . . . , 64 using starting
matrix X1(:, 1: t). In this way we could see the effect of increasing t with fixed n.
Each set of tests was repeated on 2, 4, 6, 8, 12 processors with different process
grids. For example, we ran tests using 4 processors on 1 × 4, 2 × 2 and 4 × 1
process grids.

For each test matrix we recorded a variety of statistics in which the subscripts
min, max and an overbar denote the minimum, maximum, and average of a
particular measure respectively:

– α: the underestimation ratio α = est/‖A−1‖1 ≤ 1, over each A for fixed t.
– %E: the percentage of estimates that are exact. An estimate is regarded as
exact if the relative error |est−‖A−1‖1|/‖A−1‖1 is no larger than 10−14 (the
unit roundoff is of order 10−16).

– %I: for a given t, the percentage of estimates that are at least as large as the
estimates for all smaller t.

– %A: For a given t, the percentage of the estimates that are at least as large
as the estimates from PDLACON.
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Table 3. Experimental results of 500 randommatrices with dimensions n = 1200
and n = 2700 on a 2× 2 process grid

n = 1200

t αmin α %E %I %A %T Nmax N Cmax C Dmax D Kmax K

1a 0.29 0.98 84.8 – – – – – 1.00 0.71 23.26 20.25 9 5.4
1 0.29 0.98 84.8 – 100.0 0.0 0.94 0.83 7.85 5.15 29.40 28.25 8 4.4
2 0.59 0.99 90.8 98.6 98.6 1.6 1.37 0.88 5.38 5.07 28.65 27.40 6 4.1
4 0.67 1.00 96.0 98.8 99.4 83.2 1.62 1.02 5.41 4.83 25.94 24.91 6 4.0
8 0.97 1.00 98.4 99.8 100.0 97.6 1.80 1.37 5.45 4.50 22.45 21.19 4 4.0
16 0.94 1.00 98.6 99.6 100.0 100.0 2.89 2.20 5.54 4.08 21.02 19.42 4 4.0
32 1.00 1.00 99.0 100.0 100.0 100.0 4.81 3.67 6.01 4.38 18.25 16.36 4 4.0
64 1.00 1.00 99.0 100.0 100.0 100.0 8.97 6.81 6.97 4.85 16.62 14.39 4 4.0

n = 2700

t αmin α %E %I %A %T Nmax N Cmax C Dmax D Kmax K

1a 0.67 0.99 80.2 – – – – – 0.37 0.32 13.64 11.99 11 5.4
1 0.67 0.99 80.2 – 100.0 0.0 0.94 0.83 3.37 2.97 17.58 16.88 10 4.4
2 0.76 1.00 86.0 98.4 98.4 2.2 1.29 0.83 3.14 3.07 17.90 17.22 8 4.1
4 0.89 1.00 91.0 99.4 99.6 0.8 1.48 0.94 3.08 2.99 16.67 16.06 6 4.0
8 0.94 1.00 92.0 99.2 99.6 83.0 1.97 1.25 2.90 2.72 14.07 13.63 6 4.0
16 0.96 1.00 92.6 99.8 100.0 99.8 2.10 1.97 2.65 2.44 13.20 12.72 4 4.0
32 1.00 1.00 92.8 100.0 100.0 100.0 3.58 3.36 2.97 2.53 11.82 11.26 4 4.0
64 1.00 1.00 92.8 100.0 100.0 100.0 6.96 6.53 3.35 2.77 10.90 10.21 4 4.0

a Data for PDLACON

– %T: the percentage of the cases for which our implementation took longer
to complete than PDLACON.

– N: The execution time for PDLACON1 normalized against the time taken by
PDLACON.

– C: the percentage of time spent in PDLACON1 for a given A on the leading
process column.

– D: the percentage of time spent in PDLACON1 for a given A on non-leading
process columns.

– K: the number of matrix-matrix operations for a given A.

We present a subset of experimental results that capture general character-
istics of the performance of PDLACON1. In Table 3 we show detailed statistical
results for a 2 × 2 process grid. In Figure 2 we compare the performance when
running the experiments on the same number of processors but different process
grids. We make the following comments.

– Increasing t usually improves the quality of the estimates. However, this is
not always true as %I is not monotonic increasing. Nevertheless, estimates
exact over 90% of the time can be computed with t relatively small compared
with n. Fast convergence, which is not explained by the underlying theory, is
recorded throughout the experiments. All these observations are consistent
with those in [7].
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Fig. 2. Averaged execution time N of PDLACON1, normalized with respect to
PDLACON, when experiments were run on 4 processors with 1× 4, 2× 2 and 4× 1
process grids

– As t increases, the time taken for each iteration increases. However, using
multiple search vectors (t > 1) also accelerates the rate of convergence. The
results show that it is possible to obtain better estimates using less time
on average compared with PDLACON. The cut-off is at t = 2 or t = 4 in
our experiments, in which the matrix-matrix products in Algorithm 1 are
evaluated by solving with LU factors.
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– As n or t increases, C and D decrease as the matrix-matrix operations start
to dominate the overall cost. However, D is consistently larger (5%–23%)
than C. The additional cost is largely due to the broadcasting of the two
scalar variables from the leading process column to the non-leading process
columns at each reverse communication for PDLACON1. PDLACON suffers in a
similar way as the search vector is broadcast at each reverse communication.

– In Figure 2, it is easy to see that PDLACON1 performs well compared with
PDLACON and the execution time increases at a much slower rate than t,
thanks to the use of level 3 BLAS and PBLAS.

For more processors all the above observations remain true.

5 Concluding Remarks

We have described a parallel Fortran 77 implementation in ScaLAPACK style
of the block matrix 1-norm estimator of Higham and Tisseur [7]. Our experi-
ments show that with t = 2 or 4 the new code offers better estimates than the
existing ScaLAPACK code PDLACON with similar execution time. For larger t,
estimates exact over 90% of the time are achieved, with execution time growing
much slower than t thanks to the parallelism. The new code uses a different pro-
gramming strategy than PDLACON in order to eliminate the cost of broadcasting
search vectors over process columns, which is essential to achieve an efficient
implementation of the block matrix 1-norm estimator.
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