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Abstract. We have developed an algorithm for the estimation of eigen-
value spectra and have applied it to the determination of the density
of states in a photonic crystal, which requires the repeated solution of
a generalized eigenvalue problem. We demonstrate that the algorithm
offers significant advantages in time, memory, and ease of parallelization
over conventional subspace iteration algorithms. In particular it is pos-
sible to obtain more than two orders of magnitude speedup in time over
subspace methods for modestly sized matrices. For larger matrices the
savings are even greater, whilst retaining accurate resolution of features
of the eigenspectrum.

1 Introduction

Eigenvalue problems have wide applications in mathematical physics and numer-
ical analysis. The method described in this paper is based on those described
by [6, ch. 3] and [12], which estimate the spectrum of a matrix A by calculating
a distribution from values of moments derived from matrix-vector products (or
solves) starting from a number of randomly chosen initial vectors. The method
remains applicable when the size of the matrix is large and this is the only
operation that can be performed economically.

In this paper we discuss an application of the algorithm to the problem of
determining the density of states in a Photonic Band Gap (PBG) system. PBG
materials are periodic dielectric crystals that exhibit a “photonic band gap”
similar to the electronic band gap present in semiconductors. Photons in the
frequency range of the band gap are completely excluded so that atoms within
such materials are unable to spontaneously absorb and re-emit light in this
region. They have applications for optical processing, optical computing, and
highly efficient narrow band (tunable) lasers [15]. An illustration is in Fig. 1
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Fig. 1. Hexagonal arrangement of air rods in a dielectric medium with ε =
12.25 [3]. The rods are 260nm in diameter and the filling fraction is 50%. Fi-
nite Element mesh is shown (with 100 independent nodes): (left) unit cell for
calculation, (right) the mesh is periodic- one repeat shown in all directions

It has been shown elsewhere that the problem of characterizing the band gap
can be represented as a generalized eigenvalue problem [3,2,4,1],

∇× 1
ε
∇× H = λH (1)

∇ · H = 0, (2)

where H is the magnetic field, ε is the position dependent dielectric constant,
and λ are the permitted eigenmodes of propagation in the device. If the rods
are considered to be infinitely long then we may reduce this to two independent
Helmholtz eigenvalue problems and discretise using the finite element method
giving a generalized eigenvalue problem,

A(k)x = λBx. (3)

In (3), A(k) is an Hermitian matrix dependent on the Bloch quasi momentum
vector,

k ∈ R
2, ||k||∞ ≤ π. (4)

To characterise the PBG device it is necessary to solve (3) repeatedly over values
of k chosen in the region of R

2 to obtain the density of states, which is a union
of the resulting eigenvalues.

This problem may be solved accurately using a Krylov subspace iterative
method [8], [11]. However practical characterisation and optimisation of a PBG
device [5] requires only an approximate estimate of the eigenvalue distribution,
since we need to determine (i) whether there are eigenvalues in a given range,
and (ii) how large the gap is between consecutive groups of eigenvalues. It may
also not be known in advance how many eigenvalues must be found to locate the
band gaps, only that for a finite element calculation with a given mesh, roughly
the first third of the eigenvalues of the full system matrix should be regarded as
representing accurate eigenmodes [11].
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Our algorithm overcomes both of these problems. We introduce it in the next
section, and then describe how it may be applied to a test problem. Finally we
demonstrate that it is straightforward to parallelise, and does not require the
expensive communication steps of Krylov subspace methods [9]

2 Method

We extend the previous work in this area [6],[12] and discuss the generalised
N × N eigenvalue problem

Ax = λBx (5)

where A is Hermitian and B is symmetric positive definite. We further assume
that the matrices are scaled such that λ ∈ (−1, 1). The method constructs
a sequence of vectors bk, k = 0, . . . , m. The starting vector, b0, has elements
chosen from a normal distribution with mean zero and variance 1 and is scaled to
unit length. The remaining values are generated from the Chebyshev recurrence
formulae:

b1 = L−1A(L−1)T b0 (6)
bk = 2L−1A(L−1)T bk−1 − bk−2, k = 2, . . . , m. (7)

where B = LT L. From the vectors bk, k = 0, . . . , m, we can define 2m + 1 real
valued moments, µj :

µ2j = 2b∗jbj − b∗0b0 (8)
µ2j+1 = 2b∗jbj+1 − b∗0b1 (9)

The vectors bj satisfy
bj = Tj(L−1A(L−1)T )b0, (10)

where Tj(t) is a Chebyshev polynomial of the first kind.
The size of the problem that is feasible in this instance is determined by the

ability to calculate the Cholesky decomposition of B. If the Cholesky decom-
position is not economic to compute, it may nevertheless be possible to solve
Bz = w by an iterative method such as preconditioned conjugate gradient. A
recurrence formula similar to (9) can be constructed to produce the vectors bj

and the moments.
Fundamental to our method is the spectral theory of linear self-adjoint op-

erators in Hilbert Spaces [14] that enables us to represent the moments as a
Riemann-Stieltjes integral and so the data represent integrals over the eigen-
spectrum of the generalised eigenvalue problem:

µj =
∫ 1

−1

Tj(x)dσ(x), (11)

where σ(x) is the function defined by

σ(x) =
N∑

i=1

|βl|2H(x − λi) (12)



Eigenvalue Spectrum Estimation and Photonic Crystals 581

with H being the Heaviside step function, λi the eigenvalues and

βl = z∗l b0. (13)

zl is the eigenvector corresponding to λl. Hence the derivative dσ(x) can be
expressed as a sum of delta functions and the purpose of the subsequent analysis
is to recover dσ(x), which gives the distribution of the eigenvalues.

By the change of variables x = cos(θ) and ρ(θ) = 1−σ(cos θ) in (11), we can
show that

µj =
∫ π

0

cos(jθ)dρ(θ). (14)

We identify µj as cosine coefficients of dρ(θ) and the reconstruction by Fourier
analysis gives [6],

dρ(θ) ∼ 1
π

+
2
π

2m∑
j=1

µj cos(jθ). (15)

For efficiency a fast Fourier transform may be used. However the series in (15)
does not converge pointwise and “ringing” is observed in reconstructions based
on (15). The ringing can be reduced significantly by smoothing [7, p. 65] giving
a smoothed reconstruction:

dρ(θ) ∼ 1
π

+
2
π

2m∑
j=1

τjµj cos(jθ) (16)

where
τj =

2m

jπ
sin(

jπ

2m
). (17)

An alternative method of reconstructing the spectrum is to use the Maximum
Entropy method directly on (11). In this case we compute a distribution with
the largest entropy subject to the constraint (11). Details of the method are
found in [10],[5] [12]. The the approximate density has the form

dσ(t) ∼ xm(t) = exp(
2m∑
j=0

cjTj(t)), (18)

where the coefficients cj , j = 0, . . . , 2m can be obtained by minimising the func-
tion

Φ(c0, . . . , c2m) =
∫ 1

−1

exp(
2m∑
j=0

cjTj(t))dt −
2m∑
j=0

µjcj. (19)

Quasi-newton methods are used for the reconstruction. This method can obtain
very smooth and accurate reconstructions with significantly fewer moments than
in the Fourier methods. There are drawbacks: the worst of these is the high
condition number of the Hessian matrix associated with (19).

It is desirable to repeat the process for several (nseed) starting vectors, b0 and
perform the analysis using the averaged moments µj . As is the case in Krylov
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subspace methods [11] we choose (nseed −1) orthogonal starting vectors and the
final vector at random. This reduces the chance of missing an eigenvalue, which
can occur if the starting vector is almost orthogonal to any of the eigenvectors.

2.1 Algorithm

The pseudo-code algorithm is as follows

1. compute iterates using (7);
2. compute moments using (9) and average over different starting seeds;
3. compute smoothing coefficients using (17);
4. reconstruct spectrum using (16) or maximum entropy(19).

2.2 Application to Photonic Crystal Analysis

We set up the generalised eigenvalue problem from the finite element problem
(3) and use nk k-vectors chosen as in (4). This leads to a sequence of generalised
eigenvalue problems. The density of states is then the solution for λ of the
eigenvalue problem:




A(k(1)) 0 0 0

0 A(k(2))
. . . 0

...
. . . . . .

...
0 · · · 0 A(k(nk))


x = λ




B 0 0 0

0 B
. . . 0

...
. . . . . .

...
0 · · · 0 B


x (20)

Clearly if this is tackled using a method which scales less favourably than O(N)
in the matrix size, N , it is much better to solve nk separate smaller eigenprob-
lems. For our algorithm it is straightforward to exploit the block structure in
(20) and determine the vectors in (7) independently for each k, and then average
the resulting moments, so that the Fourier (or Maximum Entropy) analysis of
the moments immediately recovers the density of states.

3 Results

3.1 Ordinary Eigenvalue Problem

We firstly demonstrate that the method can perform extremely accurate eigen-
value spectrum estimation using relatively few iterates on a large matrix. We
show results in Figure 2 for a 7000×7000 dense matrix, A, which has been given
a predefined eigenspectrum. In this case we set B to be the identity matrix and
solve a regular eigenvalue problem. The method resolves not only the general
structure of the distribution, but also shows that there is a single eigenvalue
at zero. This reconstruction is extremely accurate considering that it required
in total only 250 matrix vector products to obtain information about the whole
spectrum. An iterative method would require at least this many iterates to locate
only the first few eigenvalues of a dense matrix [11].
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Fig. 2. Eigenvalue distribution of a 7000 square matrix reconstructed using the
Maximum Entropy method with 50 iterates and 5 seed vectors. (Right) light line
is actual spectrum, dashed is reconstruction

3.2 Generalised Eigenvalue Problem

We have set up and solved the eigenvalue problem in (20) for the photonic crystal
in Figure 1 using 100 randomly chosen k-vectors to estimate the density of states.
Two approaches may be adopted:

1. Solve 100 independent generalised eigenvalue problems of size 100. A Krylov
subspace algorithm [11] was applied to the system to determine the true
spectrum for comparison.

2. Solve a single 10 000 square generalised eigenvalue problem, but exploiting
the block structure in (20) for any matrix-vector solves. The algorithm we
describe was applied in this case.

We resolve the key features of the density of states shown in figure 3 which is
in excellent agreement with those given in [15]. The eigenspectrum reconstructed
using our estimation method matches precisely the form and position of the
true band gaps. Furthermore our estimate was obtained nearly two orders of
magnitude more quickly than the true solution, taking minutes rather than hours
on a desktop machine! The results in figure 2 indicate that using the Maximum
Entropy method to reconstruct the spectrum would reduce the total number of
matrix-vector solves by a further factor of five.
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Fig. 3. Density of States for TE polarisation of a photonic crystal consisting of
air rods (ε = 1) in a dielectric substrate (ε = 12.25). The Fourier reconstructed
spectra used 256 matrix-vector solves and 5 starting seeds

3.3 Parallelism

The algorithm 2.1 proceeds in parallel in three ways for our application:

– It is possible to parallelise over the different k-vector samples in (3). This
is also possible when a subspace iteration method is used. The efficiency
of this ’natural’ parallelism should not be dismissed, so long as the matrix
and associated vectors can fit into the memory available on one processor.
Our method, however, is considerably more memory efficient, since it is only
necessary to store 2 vectors of length N to complete the iterations in (7).
Subspace iteration methods require ∼ p full vectors where p is the number of
eigenvalues required. For a sparse matrix it is this storage which can rapidly
outweigh that required for the matrix and hence make it necessary to use
multiple processors.

– In contrast to subspace iteration methods [11] a second level of parallelism
is possible, since we can start the method with multiple random seeds in
parallel on multiple processors. The resulting moments are averaged using a
single global reduce step. We have implemented this in MPI, and find that
it scales nearly linearly with the number of processors- this method too is
‘naturally’ parallel.

– If the matrix and two vectors of length N are too large to fit into memory
on a single processor, then it is necessary to perform the steps in (7,9) in
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parallel. We have implemented and described elsewhere an efficient parallel
preconditioned conjugate gradient method for this, which scales linearly up
to 16 nodes on a commodity cluster of Pentiums running Red Hat Linux
6.2, and also on a cluster of 21164 Compaq Alphas running Windows NT
4.0 [13].

4 Discussion and Conclusions

We have derived and implemented a new algorithm for estimating the eigenvalue
spectrum of a generalised eigenvalue problem and have applied it to the calcu-
lation of the density of states of a photonic crystal. Our examples were a single
large dense matrix and a sequence of small sparse generalised eigenvalue prob-
lems (equivalent to a single large block sparse problem). In each case we have
demonstrated that a remarkably accurate estimation is possible using relatively
few matrix-vector products offering significant advantages in time, memory, and
ease of parallelisation over subspace iteration methods in the case when only
information about the overall eigenspectrum is required.
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