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Abstract. The wavelet transform is more and more widely used in im-
age and video compression. As today the parallelisation of the wavelet
transform is sufficiently investigated this work deals with the compres-
sion algorithm (SPIHT) itself as a next step. A derived algorithm with a
simpler and spacially oriented coefficient scan order is presented, which
is more suitable for parallelisation.

1 Introduction

Algorithms like SPIHT [6] and the JPEG-2000 standard [1] prove the superiority
of wavelet methods in still image coding. Likewise, rate-distortion efficient 3-D
algorithms for video coding exist (as e.g. [3]). A significant amount of work has
already been done on parallel wavelet transform algorithms. This work concen-
trates on the parallelisation of the coding algorithm as the next step. A 3-D
variant [3] of the SPIHT algorithm [6] was chosen for this purpose.

In [2] two approaches to parallelise the EZW algorithm (predecessor of SPIHT)
are proposed: One is a straight-forward parallelisation with local algorithm ex-
ecution on each processor element (PE) for distinct blocks. A similar approach
was applied to SPIHT in [7]. This results in a loss of rate-distortion performance
and bitstreams that are incompatible to the sequential algorithm. Therefore, the
second approach reorders the encoded symbols after collection of the PE-local
results. This approach was adopted to SPIHT in [4]. Unfortunately, it reveales
some drawbacks as e.g. complicated bit-stream handling, additional communi-
cation and sequential code parts.

Here we will follow another approach, that is to modify the algorithm itself.
The basic idea is to substitute the lists of coefficient positions involved in the
algorithm by bitmaps to facilitate the parallelisation of the coefficient scan.
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(a) 2-D case (b) 3-D case (c) Zero-tree

Fig. 1. Distribution of coefficients. Different colours indicate different PEs

2 Wavelet Transform and Zero-Trees

In contrast to the parallelisation of the wavelet transform as presented in [5]
the parallel wavelet transform used here dispenses with video data distribution
as well as collection of transformed data. Parallelisation is data driven by dis-
tributing data in slices. After parallel decomposition data are distributed as
shown in Fig. 1. Note that the speedups reported in this work do not include
I/O operations as I/O is not viewed as a part of the algorithm.

Zero-tree based algorithms arrange the coefficients of a wavelet transform in
a tree-like manner, i.e. each coefficient has a certain number of child coefficients
in another sub-band (mostly 4 in the 2-D, 8 in the 3-D case). Here the following
notations are used: off(p) is the direct offspring of a coefficient p, i.e. all coeffi-
cients whose parent coefficient is p. desc(p) are all descendants of a coefficient
p. This includes off(p), off(off(p)) and so on. parent(p) is the parent coefficient
of p. p ∈ off(parent(p)).

Furthermore, a zero-tree is a sub-tree which entirely consists of insignificant
coefficients. The significance of a coefficient is relative to a threshold: sig(c) ⇔
|c| ≥ threshold. The statistical properties of transformed image or video data
(self-similarity) ensure the existence of many zero-trees. Zero-trees can be viewed
as a collection of coefficients with approximately equal spacial position. While
this fact implies that the coefficients significances are statistically related which
is exploited by the SPIHT algorithm, this also means that zero-trees are local
objects corresponding to the data distribution produced by the parallel wavelet
transform (see Fig. 1(c)). This can be exploited by the parallelisation of the
SPIHT algorithm (see Section 4).

3 The Modified Zero-Tree Compression Algorithm

To substitute the lists of coefficients used in SPIHT by bitmaps we have to
rewrite the whole algorithm. In the following we will use three logical predicates
A(p), B(p) and C(p) as defined in Fig. 2. Corresponding to these predicates we
will use the mappings a, b and c which essentially represent the same as A, B
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ProcessAll :=
threshold← maxp∈allcoefficients | p |
set a, b and c to all false
for each refinement step
threshold← threshold /2
for p in approximation-subband
ProcessCoeff(p, true)

A(p)⇔ | p |≥ threshold
B(p)⇔

_

q∈desc(p)

A(q)

C(p) ⇔
_

q∈off(p)

B(q)

ProcessCoeff(p, ĉ) :=
if ap then Refine(p) else ap ← A(p)
if ¬bp ∧ ĉ then bp ← B(p)
if bp ∧ ¬cp then cp ← C(p)
if bp then
for q in off(p)
ProcessCoeff(q, cp)

p

desc(p) off(p)

desc(off(p))

A(p) B(p) C(p)

Fig. 2. Zero-tree coding algorithm

and C. The difference is that A, B and C implicitly depend on threshold (im-
plemented as a function) while a, b and c have to be updated explicitly (imple-
mented as array of boolean values). We call a, b and c “significance maps”.

The algorithm is responsible for the equality of a, b, c and A, B, C re-
spectively while the threshold is successively decreased by a factor of 1

2 . The
evaluation of A, B and C should be avoided as far as possible because – fol-
lowing the idea of SPIHT – the result of each evaluation will be coded into the
bit-stream as one bit to allow the decoder to reproduce the algorithms decisions.
The algorithm that obeys these rules is shown in Fig. 2. It encodes the same
information as SPIHT. Only, the order of the bits within a refinement step is dif-
ferent. Unfortunately, this causes a loss of rate-distortion efficiency in the middle
of the refinement steps of up to 1 dB. There exists an approach to overcome this
problem.

4 Parallelisation Results

In contrast to [4] the parallelisation of our modified algorithm is easy. All we
have to do is to parallelise the inner loop in the procedure ProcessAll (which
reads “for p in approximation-subband”) according to the data distribution of
the approximation sub-band (see Fig. 1). Each PE produces one continuous
part of the bit-stream for each refinement step. At the end these parts have to
be collected by a single PE and assembled properly (i.e. in an alternating way).

Experimental results were conducted on a Cray T3E-900/LC at the Edin-
burgh Parallel Computing Centre. Video data size is always 864 frames with 88
by 72 pixels. The video sequence used here is the U-part of “grandma”. The
wavelet transform is performed up to a level of 3.

Experiments show that the sequential algorithm outperforms SPIHT for
higher bitrates by a factor of up to 1.6. Fig. 3 shows speedups of the modi-
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Fig. 3. Speedup of decomposition, zero-tree coding and overall speedup for vary-
ing #PE (a) and varying bitrate (b)

fied algorithm for both varying #PE and varying bitrate. For higher numbers of
PEs the assembly of the bit-streams takes more execution time and thus limits
the speedups. Note that although the speedup of the coding part increases with
the bitrate the overall speedup remains almost constant because the share in
execution time of the coding part increases with the bitrate.
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