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Abstract. Vector processing is gaining attention for supporting multi-
media workloads, particularly small subword vectors. In this paper we
propose a novel vector instruction set combining the benefits of subword
parallelism and traditional vector processing. We also develop a simple
cache prefetching optimisation that exploits the two dimensional data ac-
cess pattern of multimedia MPEG2 video applications. The architecture
parameter space is explored by a simple analytical study. The analysis
is complemented by detailed simulation of the actual system where it
is shown that the optimised cache removes 75% of the misses and the
instruction set performance is equivalent to a subword instruction with
double the word size on the average.

1 Introduction

There is currently a convergence between general-purpose processors and multi-
media processors [2]. Major microprocessor manufacturers have extended their
instruction sets with multimedia specific instructions. These include Intel x86’s
MMX, PowerPC’s AltiVec, UltraSPARC’s VIS, and PA-RISC’s MAX-2. How-
ever, more radical architecture changes are sought for meeting the increasing
high performance requirement of multimedia applications [5,9].
Microprocessor technology is progressing very fast. It is expected that by the
year 2010 it will be possible to build billion-transistor microprocessors with clock
speeds approaching 10 GHz [1]. However, there are two main issues; memory and
global clocking. Memory is not progressing at the same rate and thus the memory
processor gap is increasing. With a billion transistors on a chip, wire delays will
dominate and the global clocking of large synchronous systems will become a
problem. Single-chip multiprocessors may be a way to overcome these problems.
In this paper we develop a two dimensional vector architecture for supporting
multimedia on the Jamaica processor. Jamaica [12] is a proposal for a single-
chip multithreaded multiprocessor targeting Java. The architecture combines
the benefits of traditional vector processing and subword parallelism found in
current general-purpose processors. The instruction set architecture is described
in section 2 together with related work. We have observed 2D spatial locality in
MPEG?2 video data accesses and developed a simple cache optimisation to exploit
that locality. This is described in section 3 together with related work. To explore
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the wide ranging parameter space, we have developed a simple analytical model.
In section 4 we describe the model and use it to analyse MPEG2 encode and
decode applications (mpeg2encode and mpeg2decode). Initial simulation results
are presented in section 5.

2 The 2d-Vector Instruction Set

Multimedia workloads are inherently data-parallel which makes a vector archi-
tecture a suitable candidate. The vector instruction set has the benefit of decreas-
ing address generation and loop control overheads. Our 2d-vector instruction set
combines the benefits of a traditional vector instruction set and the subword
parallelism used in current microprocessor multimedia extensions.

We propose the use of 8 vector registers, each containing a maximum of 8
32-bit elements. The vector length is specified in a ‘vl’ register. Each element
can be viewed as a simple vector of 8-bit or 16-bit subword data types. Thus a
vector register is a vector of simple subword vectors, effectively a two dimensional
vector.

The main memory is addressed in a submatriz addressing mode. The vector
load instruction ‘v1d’, is specified as follows:

vld vi, Xm, Ystride

Where, ‘vi’ is the destination vector register, ‘Xm’ is the number of stride-1
memory accesses, and ‘Ystride’ is a variable stride. The X and Y characters
refer to row and column matrix access respectively. ‘Xm’ memory words (32-bits)
are loaded with stride-1 from a base address (specified in a control register), then
‘Ystride’ is added to the base address, and the process is repeated until ‘v1’
words have been loaded. Another addressing mode is called the transpose mode.
In this mode, ‘Xm’ words are accessed with the ‘Ystride’, the base address is then
incremented by one and the process is repeated as above. A similar instruction
is defined for vector store operations.

Loads and stores are word aligned. Two other instructions are specified for
unaligned access. An extra memory access is required for every row access even
if the address is aligned. This makes the instruction simpler to implement and
it is a compiler/programmer decision instead.

The other instructions are similar to the PowerPC’s AltiVec multimedia ex-
tensions. It is worth noting that pack and unpack instructions are modified so
that they take advantage of the variable vector length. Packing and unpacking
halves and doubles ‘v1’ respectively.

The following is an example code for the metric operation A=B+C. Where
A, B, and C are 16 x 16 byte submatrices. Assuming that each instruction takes
one cycle, the scalar code takes 16 x (16 x 9 + 1 + 5) = 2400 cycles while the
2d-vector takes 8 x (4 x 8 + 2) = 279 cycles (assuming 32-bit word size).
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Scalar instruction set 2d-vector instruction set
mov rl, 16 mov rl, 8

loopl: mov r2, 16 loop: !two rows added
loop2: leach loop iteration
1d r3, 0(r4); add r4, 1, r4d vld vi, 4, r9

1d r5, 0(r6); add r6, 1, r6 vld v2, 4, r9

add r3, r5, r7 vadd v1, v2, v3

st r7, 0(r8); add r8, 1, r8 vst v3, 4, r9

sub r2, 1, r2; jnz r2, loop2;

add r4, r9, r4;

add r6, r9, r6; add r6, r9, r8;

sub rl, 1, rl; jnz rl, loopl sub rl, r, rl; jnz rl, loop

2.1 Related Work

There are two classes for vector addressing modes; regular and sparse address-
ing [8]. Regular addressing is used for dense data that are organised in regular
structures (fixed stride), whereas sparse addressing is used for other sparse struc-
tures. The former is more suited to multimedia applications.

Within the regular class, there are three main addressing varieties; the first
is sequential addressing where data are stored in stride-1 organisation. Current
general-purpose processors’ multimedia extensions [10] implement this address-
ing mode. They exploit the wide data paths in microprocessors and small data
types in multimedia applications and implement small subword vectors in wide
registers (64- and 128-bit). However this implementation restricts matrix ac-
cess and misalignment is introduced. Most implementations have permutation
instructions to overcome the addressing restrictions.

An alternative addressing method is nonsequential addressing where data are
stored with a stride-n organisation. The MOM instruction set architecture [3]
implements this technique and also has a small subword vector in each vector
element. This technique subsumes sequential addressing and adds extra flexibil-
ity, however, the row size is limited by the word size and misalignment problems
still exist.

Our submatriz addressing method is closest to the MOM instruction set. The
main differences are that row size is not limited by word size and the effect of
misalignment is decreased for large row sizes, and column accesses are enhanced.

3 The 2D Cache

Conventional caches exploit spatial and temporal locality. Multimedia applica-
tions process massive amounts of data and temporal locality is not very abun-
dant. Spatial locality for conventional caches occurs in one dimension; on a cache
miss a line is fetched, effectively fetching nearby data. Multimedia video appli-
cations operate on small blocks of data (16 x 16). The operations range from
regular scanning of all the blocks on a frame, to searching for a matching block.
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Such searches are used, for example, in motion estimation and data access is un-
predictable. However, once a block is determined all other rows are predictable.
Data access has thus a two dimensional locality.

Our 2D cache works as follows: on a cache miss, b+ 1 lines are loaded from
memory. The first line fetched is the miss line, and the other b lines are prefetched
with a specified stride. We assume that the data being accessed is within a
big fixed matrix (e.g. a large image). The stride represents the row size of the
matrix. Thus, a submatrix is effectively prefetched on a cache miss. The stride
information is conveyed by vector load and store instructions. Also, a control
register is used to specify stride information for scalar load and store instructions.

3.1 Related Work

The existence of 2D spatial locality in multimedia video applications was ob-
served by Kuroda and Nishitani [10], though no design was suggested. Cucchiara
et al. [4] proposed a 2D cache architecture similar to our technique where lines
are prefetched on a cache miss. However, they maintain the stride information
for every address referring to a 2D data structure, in a hardware table. Our
technique uses instructions instead to control the 2D access; specifying current
stride and possibly turning prefetching off.

Another relevant prefetch technique, though not intended to cache 2D local-
ity, was developed by Fu et al. [6]. They developed a vector cache for vector pro-
cessors. On a cache miss, either consecutive lines or stride-n lines are prefetched
depending on the stride of the vector instruction. The prefetch in the latter case
is similar to the one we propose. However, in our technique stride-n prefetching
can also be initiated on scalar misses. A different technique is software prefetch-
ing where a prefetch is initiated by a prefetch instruction. A main drawback
is the complexity of scheduling the prefetches especially for motion prediction
kernels where data access is not predictable.

4 Analytical Study

The 2d-vector instruction set has the potential to remove address generation,
missalignment, and loop overheads. In addition, the subword parallelism de-
creases the instruction execution cycles. However the relative memory latency
will increase, limiting further improvements. In the next subsection, we develop
a simple analytical model that relates the overall speedup to the instruction set
and cache components and gives performance bounds.

4.1 Analytical Performance Model

The performance can be decomposed into instruction execution cycles and mem-
ory access cycles. Fig. 1-a shows this situation. On average every h execution
cycles a cache miss occurs and instruction execution is stalled for T'1 cycles while
memory is accessed.
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Fig. 1. Performance model

The effect of the 2D cache is that b + 1 memory access cycles happen on
every cache miss but h should be increased (h’). Multiple memory accesses can
be pipelined with a new memory access cycle starting every T2 cycles. The
best case performance occurs with maximum overlap between execution and
prefetching. This is depicted in Fig. 1-b. The worst case occurs when there is no
overlap, as shown in Fig. 1-c.

The minimum and maximum execution cycles (tymin, tmaz respectively.) are
given by:

tmin = misses - max (h' +T1,b-T2+T1) (1)

tmax = misses - (W' +T1+b-T2) (2)

Where misses is the total number of misses.

4.2 Cache Misses

Data cache misses are relatively independent of the instruction set and machine
word size. They are highly dependent on the cache and memory access patterns
(application dependent). With prefetching, the number of misses will be affected
by the number of lines loaded into the cache on a miss.

We have developed a cache simulation using the shade tools [11] and modelled
the 2D cache using a 16Kb, 4-way set associative organisation with 32 byte line
size. The benchmark programs, written in C, were run on an UltraSPARC-II
processor. Our high level language target is Java, however both C and Java
versions have the same data access pattern and we thus opted to use C for this
exercise (the same C program is manually converted into Java). This enabled us
to achieve much higher simulation speed as the program runs in native mode.

Fig. 2-a and Fig. 2-b show the number of misses for the 2D cache against
the number of lines loaded on a cache miss for mpeg2encode and mpeg2decode
applications [7] processing two 720 x 480 frames. ‘Actual’ is the misses obtained
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Fig. 2. Cache misses for mpeg2encode (a), and mpeg2decode (b)

by cache simulation and show that, as the number of lines is increased, up to 75%
and 88% of the misses can be removed for the mpeg2encode and mpeg2decode
respectively.

‘Model’ is the misses obtained by formulating the behaviour of the cache by
the following equation:

misses(b) = misses(0)/(b+ 1) -+ misses(0) - (1 — ) (3)

Where misses(0) is the initial misses (without prefetching), and « is the
ratio of the initial misses that have 2D spatial locality. Since on a cache miss,
b+ 1 lines are loaded, b misses can be removed and thus misses are decreased by
b+ 1. Fitting Equation 3 to the asymptotic simulation results, we get o equal
to 0.75 and 0.88 for mpeg2encode and mpeg2decode respectively. A close fit can
then be observed over the range of b.

We have carried out experiments with different cache sizes. However, the
working data set (3 frames, each of 338Kb) is sufficiently large that it will not
be contained in realistic first level cache sizes and the effects are therefore small.
It is worth noting that prefetching did not increase the number of misses in
any kernel for mpeg2encode. For mpeg2decode some kernels had their misses
doubled. However, these misses are less than 0.5% of the initial misses.

4.3 Instruction Execution Cycles

Fig. 3 shows the speedup of the instruction execution cycles for the vectorised
kernels of the mpeg2encode and mpeg2decode benchmarks for various multime-
dia instruction set proposals relative to a scalar one. The programs have been
manually translated into Java then compiled and assembled using the Jamaica
tools. The 2d-vector instructions can be generated directly, the others have been
hand generated. The cycles are calculated assuming zero memory latency and
no register spills for the scalar model (to isolate the submatrix addressing ben-
efit). The instruction types (address generation, loop control, memory, ALU)
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Fig. 3. Instruction execution cycles for various instruction set models

are scaled to reflect a subword based instruction set (subword), a subword non-
sequential access instruction set (matriz) which is similar to MOM, and our
proposed instruction set (2d-vector).

The 2d-vector outperforms subword for all the kernels, with double the
speedup on average. This is mainly due to the removal of address generation,
missalignment and loop overhead. For smaller word sizes, 2d-vector is generally
faster than matriz (average of 25% for 32-bit word size). We have not used sub-
word permute instructions nor matrix transpose instruction for the subword and
matriz models in order to isolate the effect of the submatrix addressing. Using
these instructions would improve the performance of all the models especially
for the ‘conv422to444’ kernel (data parallelism is in the vertical direction).

4.4 Overall Performance

Fig. 4-a and Fig. 4-b show the speedup bounds (speedup over the scalar case
with no prefetching) for mpeg2encode and mpeg2decode respectively against
the memory latency. The bounds are shown for the 2d-vector architecture with
32-, 64-, and 128-bit word sizes. Three simulations were done: two to obtain
the instruction cycle speedup of the 2d-vector over the scalar instruction set
with zero memory latency (used to adjust the analytical kernel speedups to
account of detailed factors and to have a better estimate of actual speedups),
and the other to obtain A for the scalar instruction set. These data are used in
Equations 1, 2, and 3 together with kernel speedups (section 4.3) to plot the
bounds. The number of lines prefetched on a cache miss (b, prefetch count) is
calculated so that it gives a near optimal (95%) upper bound. These are shown
in Fig. 1-c and Fig. 1-d. Specifying the optimal upper bound will result in large
values to b without having a significant improvement on the bound.

The memory repeat rate T2 is set to 71/3.5 which is a typical value. A
memory access time 7’1 of 70 cycles is typical for current technology assuming 1
GHz CPU speed, we might expect T'1 to be about 220 cycles (10 GHz CPU) in
10 years time.
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Fig. 4. Performance near optimal (95%) bounds for mpeg2encode (a), and
mpeg2decode (b) and corresponding prefetch count curves (¢) and (d)

For fast memory, the upper and lower bounds coincide as there is hardly any
memory latency to hide and thus no prefetching is necessary. For the mpeg2-
encode, as memory latency increases from 70 cycles (Fig. 4-a), the positive effect
of prefetching increases, peaking in the region 400-3000 cycle. As memory latency
increases further, the optimal b is limited by the relative speeds of memory access
and repeat rate and cache efficiency parameter o and thus b stays constant.

The mpeg2decode is more memory bound than mpeg2encode ( h =~ 1980 for
mpeg2encode and h = 335 for mpeg2decode). The prefetching has a much more
significant effect and the bounds are shifted to the right accordingly (peaking
in the region 200-700). It is interesting to note that the lower bound does not
decrease significantly while the upper bound peaks.

5 Simulation Study

We have carried out an initial simulation study to assess how far real results
are from the theoretical bounds presented earlier on. We assume a slow memory
configuration to account for the fact that the memory is shared by other pro-
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cessors in our multiprocessor configuration and thus is likely to emphasise the
effect of the 2D cache.

The base architecture is the Jamaica processor. Jamaica is a single-chip mul-
tiprocessor with multithreading. We have extended the Jamaica simulator [12]
with the multimedia extensions. The architecture, modelled by simulation, is bus
based using shared memory with private 16Kb, 4-way set associative L1 caches
with a 32 byte cache line. The processors share a pipelined, split transaction
bus. The memory is four channel Rambus with a bus speed of 400 MHz. The
processor speed is 10 GHz. We developed a Java translator tool that supports
the 2d-vector instruction set. Mpeg2encode and mpeg2decode applications are
simulated, processing 2 video frames (720 x 480).

Fig. 5 shows the speedup obtained over the scalar case with no prefetching.
The x-axis represents the number of lines prefetched on a cache miss. The sim-
ulation results are shown for mpeg2encode and mpeg2decode together with the
upper bound assuming perfect prefetch (o = 1). For the mpeg2encode, 86% of
the maximum is achieved. The 2d-vector contributes 59% speedup and the 2D
cache contributes 18%. For the mpeg2decode, about 88% of the maximum is
achieved. The 2d-vector contributes 50% speedup and the 2D cache contributes
25%.

It is also interesting to compare the results with the bounds presented in
section 4.4. From the simulation, we can obtain an effective memory access time.
Due to the L2 cache and the bus protocol this is application dependent. For the
mpeg2encode, we get T1 ~ 455 cycles which gives a speedup bound of 1.93
compared to the 1.79 achieved in simulation (within 7%) for 3 prefetched lines.
For mpeg2decode, T'1 = 108 cycles, which gives a speedup bound of 1.91 against
1.84 obtained in simulation for 7 prefetched lines (within 4%). The mpeg2decode
is closer to the bound as the vectorised ‘Conv420t0420’ kernel has a better spatial
locality than the original scalar kernel.

Speedup Speedup

Actual

J Actual
Perfect prefetch bound _+====----

Perfect prefetch-beund B

Prefetch count

(a)

Prefetch count

(b)

Fig. 5. Simulation results for mpeg2encode (a), and mpeg2decode (b)
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6 Conclusions

In this paper we have proposed hardware support mechanisms for multimedia
processing in a general purpose processor. The support comprises a vector-based
instruction set with a submatrix addressing mode which utilises subword vec-
tors. Examining mpeg2encode and decode kernels, the 2d-vector shows a distinct
performance advantages over other instruction sets.

The other hardware support is a simple cache prefetch technique that exploits
the two dimensional data access patterns in MPEG2 encode and decode video
applications. The technique gives a significant reduction in memory latency.

An initial detailed simulation of the system is presented demonstrating the
benefits of the approach. However, an exhaustive simulation study is a subject
for future work, together with examining other multimedia kernels. Future work
is also needed to consider the effect of multithreading and real-time scheduling.
On the software side, just-in-time vectorisation for Java programs needs to be
pursued.
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