Skip to main content

Improved Bounds on the Weak Pigeonhole Principle and Infinitely Many Primes from Weaker Axioms

  • Conference paper
  • First Online:
Book cover Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

We show that the known bounded-depth proofs of the Weak Pigeonhole Principle PHP 2n n in size n O(log(n)) are not optimal in terms of size. More precisely, we give a size-depth trade-off upper bound: there are proofs of size \( n^{O(d(\log (n))^{2/d} )} \) and depth O(d). This solves an open problem of Maciel, Pitassi and Woods (2000). Our technique requires formalizing the ideas underlying Nepomnjaščij’s Theorem which might be of independent interest. Moreover, our result implies a proof of the unboundedness of primes in 0 with a provably weaker ‘large number assumption’ than previously needed.

Supported by the CUR, Generalitat de Catalunya, through grant 1999FI 00532. Partially supported by ALCOM-FT, IST-99-14186.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. The complexity of the pigeonhole principle. In 29th Annual IEEE Symposium on Foundations of Computer Science, pages 346–355, 1988.

    Google Scholar 

  2. A. Berarducci and B. Intrigila. Combinatorial principles in elementary number theory. Annals of Pure and Applied Logic, 55:35–50, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic, 52(4):916–927, 1997.

    MathSciNet  Google Scholar 

  4. S. R. Buss and G. Turán. Resolution proofs of generalized pigeonhole principles. Theoretical Computer Science, 62:311–317, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Fortnow. Time-space tradeoffs for satisfiability. In 12th IEEE Conference in Computational Complexity, pages 52–60, 1997. To appear in Journal of Computer and System Sciences.

    Google Scholar 

  7. L. Fortnow and D. van Meldebeek. Time-space tradeoffs for non-deterministic computation. In 15th IEEE Conference in Computational Complexity, 2000.

    Google Scholar 

  8. H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arithmetic and the MRDP theorem. In Logic and algorithmic, number 30 in Monographies de l’Enseignement Mathématique, pages 187–206. Univeristé de Genève, 1982.

    Google Scholar 

  9. P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer, 1993.

    Google Scholar 

  10. A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Hesse. Division is in uniform TC 0. To appear in ICALP’01, 2001.

    Google Scholar 

  12. J. Krajícek. Bounded arithmetic, propositional logic, and complexity theory. Cambridge University Press, 1995.

    Google Scholar 

  13. J. Krajícek, P. Pudlák, and A. Woods. Exponential lower bound to the size of bounded depth frege proofs of the pigeon hole principle. Random Structures and Algorithms, 7(1):15–39, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. J. Lipton and A. Viglas. On the complexity of SAT. In 40th Annual IEEE Symposium on Foundations of Computer Science, pages 459–464, 1999.

    Google Scholar 

  15. A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle. In 32th Annual ACM Symposium on the Theory of Computing, 2000.

    Google Scholar 

  16. A. J. Macintyre and D. Marker. Primes and their residue rings in models of open induction. Annals of Pure and Applied Logic, 43(1):57–77, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. A. Nepomnjaščij. Rudimentary predicates and Turing calculations. Soviet Math. Dokl., 11:1462–1465, 1970.

    Google Scholar 

  18. J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the pigeonhole principle and the existence of infinitely many primes. Journal of Symbolic Logic, 53(4):1235–1244, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds for the pigeonhole principle. Computational Complexity, 3(2):97–140, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Takeuti. Proof Theory. North-Holland, second edition, 1987.

    Google Scholar 

  21. A. R. Woods. Some problems in logic and number theory, and their connections. PhD thesis, Univerity of Manchester, Department of Mathematics, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atserias, A. (2001). Improved Bounds on the Weak Pigeonhole Principle and Infinitely Many Primes from Weaker Axioms. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics