
From Bidire
tionality to AlternationNir Piterman a;� Moshe Y. Vardi b;1aWeizmann Institute of S
ien
e, Department of Computer S
ien
e,Rehovot 76100, IsraelbRi
e University, Department of Computer S
ien
e,Houston, TX 77251-1892, U.S.A.Abstra
tWe des
ribe an expli
it simulation of 2-way nondeterministi
 automata by 1-wayalternating automata with quadrati
 blow-up. We �rst des
ribe the
onstru
tion forautomata on �nite words, and extend it to automata on in�nite words.Key words: two-way automata, nondeterminisit
 �nite automata,nondeterministi
 B�u
hi automata, alternating �nite automata, alternating B�u
hiautomata
1 Introdu
tionThe theory of �nite automata is one of the fundamental building blo
ks oftheoreti
al
omputer s
ien
e. As the basi
 theory of �nite-state systems, thistheory is
overed in numerous textbooks and in any basi
 undergraduate
ur-ri
ulum in
omputer s
ien
e. Sin
e its introdu
tion in the 1950's, the theoryhad numerous appli
ations in pra
ti
ally all bran
hes of
omputer s
ien
e,from the
onstru
tion of ele
tri
al
ir
uits [11℄, to the design of lexi
al analyz-ers [10℄, and to the automated veri�
ation of hardware and software designs[30℄.� Corresponding Author.Email addresses: nirp�wisdom.weizmann.a
.il, vardi�
s.ri
e.edu (MosheY. Vardi).URLs: http://www.wisdom.weizmann.a
.il/�nirp,http://www.
s.ri
e.edu/�vardi (Moshe Y. Vardi).1 Supported in part by NSF grants CCR-9700061, CCR-9988322, IIS-9908435, IIS-9978135, and EIA-0086264, by BSF grant 9800096, and by a grant from the IntelCorporation.Preprint submitted to Elsevier S
ien
e 23 February 2003

From its very in
eption, one fundamental theme in automata theory is thequest for understanding the relative power of the various
onstru
ts of thetheory. Perhaps the most fundamental result of automata theory is the ro-bustness of the
lass of regular languages, the
lass of languages de�nable bymeans of �nite automata. Rabin and S
ott showed in their
lassi
al paper thatneither nondeterminism nor bidire
tionality
hanges the expressive power of�nite automata; that is, nondeterministi
 2-way automata and deterministi
1-way automata have the same expressive power [20℄. This robustness waslater extended to alternating automata, whi
h
an swit
h ba
k and forth be-tween existential and universal modes (nondeterminism is an existential mode)[2,6,15℄.In view of this robustness, the
on
ept of relative expressive power was ex-tended to
over also su

in
tness of des
ription. For example, it is known thatnondeterministi
 automata and two-way automata are exponentially more su
-
in
t than deterministi
 automata. The language Ln = fuv : u; v 2 f0; 1gn and u 6=vg
an be expressed using a 1-way nondeterministi
 automaton or a 2-waydeterministi
 automaton of size polynomial in n, but a 1-way deterministi
automaton a

epting Ln must be of exponential size (
f. [23℄). Alternatingautomata, in turn, are doubly exponentially more su

in
t than deterministi
automata [2,6℄.Consequently, a major line of resear
h in automata theory is establishing tightsimulation results between di�erent types of automata. For example, given a2-way automaton with n states, Shepherdson showed how to
onstru
t anequivalent 1-way automaton with 2O(n log(n)) states [22℄. Birget showed howto
onstru
t an equivalent 1-way automaton with 23n states [1℄ (see also [8℄).Vardi
onstru
ted the
omplementary automaton, an automaton a

eptingthe words reje
ted by the 2-way automaton, with 22n states [26℄. Birget alsoshowed, via a
hain of redu
tions, that a 2-way nondeterministi
 automaton
an be
onverted to a 1-way alternating automaton with quadrati
 blow-up[1℄. As the
onverse eÆ
ient simulation is impossible [15℄, alternation is morepowerful than bidire
tionality.Our fo
us in this paper is on simulation of bidire
tionality by alternation.The interest in bidire
tionality and alternation is not merely theoreti
al. Both
onstru
ts have been shown to be useful in automated reasoning. For exam-ple, reasoning about modal �-
al
ulus with past temporal
onne
tives requiresalternation and bidire
tionality [24,25,28℄. Re
ently, model
he
king of spe
-i�
ations in �-
al
ulus on
ontext-free and pre�x-re
ognizable systems hasbeen redu
ed to questions about 2-way automata [14℄. In a di�erent �eld ofresear
h, 2-way automata were used in query pro
essing over semistru
tureddata [4℄.We found Birget's
onstru
tion, simulating bidire
tionality by alternation with2

quadrati
 blow-up, unsatisfa
tory. As noted, his
onstru
tion is indire
t, usinga
hain of redu
tions. In parti
ular, it uses the reverse language and,
onse-quently,
an not be extended to automata on in�nite words. The theory of�nite automata on in�nite obje
ts was established in the 1960s by B�u
hi, M
-Naughton and Rabin [3,16,19℄. They were motivated by de
ision problems inmathemati
al logi
. More re
ently, automata on in�nite words have shown tobe useful in
omputer-aided veri�
ation [12,30℄. We note that bidire
tional-ity does not add expressive power also in the
ontext of automata on in�nitewords. Vardi has already shown that given a 2-way nondeterministi
 B�u
hi au-tomaton with n states one
an
onstru
t an equivalent 1-way nondeterministi
B�u
hi automaton with 2O(n2) states [25℄.Our main result in this paper is a dire
t quadrati
 simulation of bidire
tional-ity by alternation. Given a 2-way nondeterministi
 automaton with n states,we
onstru
t an equivalent 1-way alternating automaton with O(n2) states.Unlike Birget's
onstru
tion, our
onstru
tion is expli
it. This has two ad-vantages. First, one
an see exa
tly how alternation
an eÆ
iently simulatebidire
tionality. (In order to
onvert the nondeterministi
 automaton into analternating automaton we use the fa
t that the run of the 2-way nondetermin-isti
 automaton looks like a tree of \zigzags" 2 . We analyze the form su
h atree
an take and re
ognize, using an alternating automaton, when su
h a treeexists.) Se
ond, the expli
itness of the
onstru
tion enables us to extend it toB�u
hi automata. Sin
e it is known how to simulate alternating B�u
hi automataby nondeterministi
 B�u
hi automata with exponential blow-up [17℄, our
on-stru
tion provides another proof of the result that a 2-way nondeterministi
B�u
hi automaton with n states
an be simulated by a 1-way nondeterministi
B�u
hi with 2O(n2) states [25℄.We also show how to obtain, still with quadrati
 blow-up, a 1-way alternatingautomaton for the
omplementary language. This is trivial for automata on�nite words, but not for automata on in�nite words. Finally, we show how touse our
onstru
tion for 2-way nondeterministi
 Rabin and parity automata,avoiding an unne
essary blow up that results from �rst
onverting those into2-way nondeterministi
 B�u
hi automata.2 PreliminariesWe
onsider �nite or in�nite sequen
es of symbols from some �nite alphabet�. Given a word w, an element in ��[�!, we denote by wi the ith letter of theword w. The length of w is denoted by jwj and is de�ned to be ! for in�nite2 The analysis of the form of the \zigzags" is similar to the analysis of runs ofpushdown-automata done in [21,29℄. 3

words.A 2-way nondeterministi
 automaton is N = h�; S; s0; Æ; F i, where � is the�nite alphabet, S is the �nite set of states, s0 2 S is the initial state, Æ :S��! 2S�f�1;0;1g is the transition fun
tion, and F is the a

eptan
e set. We
an run N either on �nite words (2-way nondeterministi
 �nite automaton or2NFA for short) or on in�nite words (2-way nondeterministi
 B�u
hi automatonor 2NBW for short).A run on a �nite word w = w0; :::; wl is a �nite sequen
e of states and lo
ations(t0; i0), (t1; i1), : : :, (tm; im) 2 (S � f0; :::; l + 1g)�. The pair (tj; ij) representsthe automaton is in state tj reading letter ij. Formally, t0 = s0, i0 = 0, forall 0 � j < m, we have ij 2 f0; :::; lg, and im 2 f0; :::; l + 1g. Finally, for all0 � j < m, we have (tj+1; ij+1� ij) 2 Æ(tj; wij). A run is a

epting if im = l+1and tm 2 F .A run on an in�nite word w = w0; w1; ::: is de�ned similarly as an in�nitesequen
e. The restri
tion on the lo
ations is removed (for all j, the lo
ationij
an be every number in N). In 2NBW, a run is a

epting if it visits F � Nin�nitely often. A word w is a

epted by N if it has an a

epting run over w.The language of N is the set of words a

epted by N , denoted by L(N).A 2-way nondeterministi
 parity (Rabin) automaton (2NPW and 2NRW forshort) is N = h�; S; s0; Æ; �i where �; S; s0 and Æ are like before and � =fF1; :::; Fmg is a partition of S (� = fhG1; B1i; :::; hGm; Bmig is a subset of2S � 2S). The index of the automaton is the number of sets (pairs) in itsa

eptan
e
ondition. A run of a 2NPW or a 2NRW is just like a run of a2NBW. A run r of a 2NPW is a

epting if the minimal index 1 � i � m su
hthat r visits Fi� N in�nitely is even. A run r of a 2NRW is a

epting if thereexists an i, 1 � i � m su
h that r visits Gi � N in�nitely often and Bi � Nonly �nitely often.In the �nite
ase we are only interested in runs in whi
h the same state inthe same position does not repeat twi
e during the run. In the in�nite
asewe minimize the amount of repetition to the unavoidable minimum. A runr = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) on a �nite word is simple if for all j andk su
h that j < k, either sj 6= sk or ij 6= ik. A run r = (s0; 0); (s1; i1); (s2; i2); :::on an in�nite word is simple if one of the following holds (1) For all j < k, eithersj 6= sk or ij 6= ik. (2) There exists l; m 2 N su
h that for all h < p < l +m,either sh 6= sp or ih 6= ip, and for all f � l; sf = sf+m and if = if+m.We show that there exists an a

epting run i� there exists a simple a

eptingrun.Claim 1 An automaton N (either 2NFA, 2NBW , 2NPW , or 2NRW) a
-
epts a word w i� it a

epts it with a simple run.4

Proof. For all automata, a simple run is in parti
ular a run. Given an a
-
epting run r = (s0; 0); (s1; i1); : : : of A on w, we
onstru
t a simple run of Non w.Case 1 N is a 2NFAThe run r is �nite and ends in some pair (sm; im). If r is not simple, thereare some j and k su
h that j < k, sj = sk and ij = ik,
onsider the sequen
e(s0; 0); :::; (sj; ij); (sk+1; ik+1); :::; (sm; im): Sin
e (sk+1; ik+1�ik) 2 Æ(sk; aik) andÆ(sk; aik) = Æ(sj; aij) this sequen
e is still a run. The last state sm is a memberof F and im = jwj hen
e the run is a

epting. Sin
e the run is �nite, �nitelymany repetitions of the above operation result in a simple run of A on w.Case 2 N is a 2NBWWe
annot simply remove sequen
es of states like we did in the �nite
ase,sin
e the visits to F may be hidden in these parts of the run. If for somej < k, we have that sj = sk; ij = ik, and for all j � p � k we have sp =2 F (noa

epting state o

urring), we
an simply remove this part. We have to showthat the limit of all these
hanges stays a valid and a

epting run.Note that we
hange the run only between o

urren
es of states from F . Sowe
an divide the run into segments. In ea
h segment the �rst state is fromF and no states from F o

ur elsewhere. As states from F o

ur in�nitelyoften in the run we have in�nitely many segments. Ea
h of these segmentsis
hanged a �nite number of times, the �rst state of the segment does not
hange nor does the last state of the segment. Gluing the segments togetherfor a run after performing the
hanges results in a valid run (the �rst and thelast state in every segment do not
hange). As every segment starts with astate from F and there are in�nitely many segments the run is still a

epting.Now if there exists some j < k su
h that sj = sk and ij = ik we
on
ludethat there is a visit to F between the two. We take the minimal j and k and
reate the run (s0; 0) , : : : , (sj�1; ij�1) , ((sj; ij); : : : ; (sk�1; ik�1))!. Again thisis a valid run and it visits F in�nitely often (between sj and sk�1). If no su
hj and k exist the run is simple.Case 3 N is a 2NRWThis
ase is very similar to the 2NBW
ase. There is some index
 su
h thatthe set G
 is visited in�nitely often and the set B
 is visited �nitely often.Let (sd; id) denote the �rst visit to G
 after whi
h there are no visits to B
. Forall j < k < d su
h that sj = sk and ij = ik we remove the segment of the runbetween sj and sk�1. The run
learly stays valid and a

epting (�nite numberof
hanges). Now just like for B�u
hi automata, we identify all lo
ations j < k5

for whi
h sj = sk and ij = ik and for all j � p � k we have sp =2 G
. Theserun segments are removed from the run. As before, the run obtained in thelimit stays valid and a

epting.Finally, if there exists some j < k su
h that sj = sk and ij = ik we
on
ludethat there is a visit to G
 between the two. Clearly B

annot o

ur betweensj and sk and the segment
an be
onverted into an a

epting loop.The
ase that n is a 2NPW is treated similarly. The set F
 takes the role ofG
 and S
0<
 F
 takes the role of B
. 2Given a set S we �rst de�ne the set B+(S) as the set of all positive formulasover the set S with true and false (i.e., for all s 2 S, s is a formula and if f1and f2 are formulas, so are f1 ^ f2 and f1 _ f2). We say that a subset S 0 � Ssatis�es a formula ' 2 B+(S) (denoted S 0 j= ') if by assigning true to allmembers of S 0 and false to all members of S n S 0 the formula ' evaluates totrue. Clearly true is satis�ed by the empty set and false
annot be satis�ed.Given a formula f 2 B+(S), we dualize f by repla
ing ^ by _, true by falseand vi
e versa. The dual of f is denoted ef .A tree is a set T � N� su
h that if x �
 2 T where x 2 N� and
 2 N , thenalso x 2 T . The elements of T are
alled nodes, and the empty word � is theroot of T . For every x 2 T , the nodes x �
 where
 2 N are the su

essorsof x. Thus, su

essors in our notation are only the immediate su

essors. Thenodes x � y where y 2 N� are the des
endants of x. A node is a leaf if it has nosu

essors. A path � of a tree T is a set � � T su
h that � 2 � and for everyx 2 �, either x is a leaf or there exists a unique
 2 N su
h that x �
 2 �.Given an alphabet �, a �-labeled tree is a pair (T; V) where T is a tree andV : T ! � maps ea
h node of T to a letter in �.A 1-way alternating automaton is A = h�; Q; q0; �; F i where �, Q, q0, and Fare like in nondeterministi
 automata and � : S�� ! B+(Q) is the transitionfun
tion. Again we may run A on �nite words (1-way alternating automata on�nite words or 1AFA for short) or on in�nite words (1-way alternating B�u
hi(
o-B�u
hi) automata or 1ABW (1ACW) for short).A run of A on a �nite word w = w0:::wl is a labeled tree (T; r) where r : T ! Q.The maximal depth in the tree is l+1. A node x labeled by q des
ribes a
opyof the automaton in state q reading letter wjxj. The labels of a node and itssu

essors have to satisfy the transition fun
tion �. Formally, r(�) = q0 andfor all nodes x with r(x) = q and �(q; wjxj) = ' there is a (possibly empty) setfq1; :::; qng j= ' su
h that there are n su

essors to x, fx � 0; : : : ; x � (n � 1)gand x �
 is labeled by q
+1 for 0 �
 < n. In parti
ular, there
an not appear inthe run a node x for whi
h �(r(x); wjxj) = false. Clearly, no set of states
ansatisfy false. The run is a

epting if all the leaves in depth l + 1 are labeled6

by states from F . Note that if x is a leaf su
h that jxj � l, it must be the
ase that �(r(x); wjxj) = true. The formula true is the unique formula thatis satis�ed by the empty set.A run of A on an in�nite word w = w0w1::: is de�ned similarly as a (possibly)in�nite labeled tree. A run of a 1ABW is a

epting if every in�nite path visitsthe a

epting set in�nitely often. A run of a 1ACW is a

epting if every in�nitepath visits the a

epting set �nitely often. For a �nite path, the end of thepath is some leaf x su
h that �(r(x); wjxj) = true. Thus, �nite paths do nothave to supply other demands. As before, a word w is a

epted by A if it hasan a

epting run over the word. We similarly de�ne the language of A; L(A).Given an 1AFA A = h�; Q; q0; �; F i, the dual ofA is the 1AFA eA = h�; Q; q0; e�;QnF i where e�(q; a) is the dual of �(q; a). The automata A and eA a

ept
om-plementary languages [6℄, i.e. L(eA) = �� n L(A). The dualization in
ludes re-pla
ing the a

eptan
e
ondition F by its
omplement Q nF . Similarly, givenan 1ABW the dualization of the a

eptan
e
ondition amounts to
hangingthe a

eptan
e mode from B�u
hi to
o-B�u
hi. Thus, given an 1ABW A =h�; Q; q0; �; F i, the dual of A is the 1ACW eA = h�; Q; q0; e�; F i. Again the au-tomata A and eA a

ept
omplementary languages [18℄, i.e. L(eA) = �! nL(A).Note that dualizing an 1AFA results in an 1AFA and dualizing an 1ABWresults in an 1ACW. Thus, �nding the 1AFA
omplement of an 1AFA is quitesimple, while �nding the 1ABW
omplement of an 1ABW involves a quadrati

onstru
tion [13℄ 3 .We also
onsider weak alternating automata. A weak alternating automaton(1AWW) is a 1ABW where the set of states Q is partitioned into disjoint sets,Qi, su
h that for ea
h set Qi, either Qi � F , in whi
h
ase Qi is an a

eptingset, or Qi \ F = ;, in whi
h
ase Qi is a reje
ting set. In addition there existsa partial order � on the
olle
tion of the Qi's su
h that for every q 2 Qi andq0 2 Qj for whi
h q0 o

urs in Æ(q; a), for some a 2 �, we have Qj � Qi.Thus, transitions from a state in Qi lead to states in either the same Qi or alower one. It follows that every in�nite path of a run of a 1AWW ultimatelygets \trapped" within some set Qi. The path then satis�es the a

eptan
e
ondition F if and only if Qi is an a

epting set. Thus, we
an view 1AWWwith a

eptan
e
ondition F as both a 1ABW with a

eptan
e
ondition F ,and a 1ACW with a

eptan
e
ondition Q n F .
3 Kupferman and Vardi also prove that this
onstru
tion
an not be improved tolinear [13℄. 7

3 Automata on Finite WordsWe start by transforming 2NFA to 1AFA. We analyze the possible form of ana

epting run of a 2NFA and using a 1AFA
he
k when su
h a run exists overa word.The
onstru
tion
onsists of two stages, in the �rst stage we restri
t the au-tomaton so that it
an move either forward or ba
kward (and not stay in thesame pla
e). In the se
ond stage we
onvert this `always moving' automatoninto an alternating automaton.Theorem 2 For every 2NFA N = h�; S; s0; Æ; F i with n states, there exist1AFA A and A0 with O(n2) states su
h that L(A) = L(N) and L(A0) =�� n L(N).Note that if we further
onvert the 1AFAs into 1NFAs we get automata with2O(n2) states. The
onstru
tions of Vardi and Birget [26,1℄ produ
e smallerautomata.3.1 Removing �-movesAn �-move in a run of a 2NFA is when two adja
ent pairs have the samehead position. Formally, in the run (s0; 0); (s1; i1); :::; (sm; im), step j > 0 is an�-move if ij = ij�1.Our �rst
onversion is from N = h�; S; s0; Æ; F i with Æ : S � � ! 2S�f�1;0;1gto an equivalent N 0 = h�; S; s0; Æ0; F i with Æ0 : S 0 � � ! 2S�f�1;1g su
h thatL(N) = L(N 0). There are no �-moves in the runs of N 0.We start by de�ning for ea
h state s and alphabet letter a, the set Csa of allstates rea
hable from s by a sequen
e of �-moves reading letter a and one lastforward/ba
kward move.Csa = 8>>>>><>>>>>:(t;�) 2 S � f�1; 1g �����������9(t0; :::; tk) 2 S+ su
h thatt0 = s; 81 � j � k; (tj; 0) 2 Æ(tj�1; a);and (t;�) 2 Æ(tk; a)
9>>>>>=>>>>>;De�ne Æ0(s; a) = Csa.Claim 3 L(N) = L(N 0) 8

Proof. Suppose N a

epts w. Let r = (s0; 0); :::; (sm; im) be an a

epting runof N on w. We turn r into a run r0 of N 0 on w by pruning �-moves: if ij = ij�1simply remove (sj; ij) from the run. It is easy to see that r0 is an a

eptingrun of N 0 on w.Suppose N 0 a

epts w. Let r0 = (s0; 0); :::; (sm; im) be an a

epting run of N 0on w. We append the �-moves from the appropriate sets Csa to
omplete a runof N on w. 23.2 Two-way runsFrom this point on we
onsider only 2NFAs with no �-moves. Given a 2NFAN = h�; S; s0; Æ; F i, let A = h�; Q; s0; �; F i denote its equivalent 1AFA. Notethat A uses the same a

eptan
e set and initial state as N .Re
all that a run of N is a sequen
e r = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) ofpairs of states and lo
ations, where sj is the state and ij is the lo
ation of theautomaton in the word w. We refer to ea
h state as a forward or ba
kwardstate a

ording to its prede
essor in the run. If it resulted from a ba
kwardmovement it is a ba
kward state and if from a forward movement it is a forwardstate. Formally, (sj; ij) is a forward state if ij = ij�1 + 1 and ba
kward stateif ij = ij�1 � 1. The �rst state (s0; 0) is de�ned to be a forward state.Given the 2NFA N our goal is to
onstru
t the 1AFA A re
ognizing the samelanguage. In Figure 1a we see that a run of N takes the form of a tree of`zigzags'. Our one-way automaton reads words moving forward and a

epts ifsu
h a tree exists. In Figure 1a we see that there are two transitions using a1.The �rst (s2; 1) 2 Æ(s1; a1) and the se
ond (s4; 1) 2 Æ(s3; a1). In the one-waysweep we would like to make sure that s3 indeed resulted from s2 and thatthe run
ontinuing from s3 to s4 and further is a

epting. Hen
e when in states1 reading letter a1 we guess that there is a part of the run
oming from thefuture and spawn two pro
esses. The �rst
he
ks that s1 indeed results in s3and the se
ond ensures that the part s3; s4; ::: of the run is a

epting.Hen
e the state set of the alternating automaton isQ = S[(S�S). A singletonstate s 2 Q represents a part of the run that is only looking forward (s4 inFigure 1a). In fa
t, we use singleton states to represent only the last forwardstate in the run of A that visits a letter. A pair state (s1; s3) 2 Q representsa part of the run that
onsists of a forward moving state and a ba
kwardmoving state (s1 and s3 in Figure 1a). Su
h a pair ensures that there is a runsegment linking the forward state to the ba
kward state. We introdu
e onemodi�
ation, sin
e s3 is a ba
kward state (i.e. (s3;�1) 2 Æ(s2; a2)) it makessense to asso
iate it with a2 and not with a1. As the alternating automatonreads a1 (when in state s1), it guesses that s3
omes from the future and9

a0 a1 a2 a3
s0 s1 s2s3 s4 s5 t t0t1t2t3

s1s2s3a0 a1 a2 a3 a4 a5Fig. 1. (a) A zigzag run (b) The transition at the singleton state t
hanges dire
tion. The alternating automaton then spawns two pro
esses: the�rst, s4 and the se
ond, (s2; s3); and both read a2. Then it is easier to
he
kthat (s3;�1) 2 Æ(s2; a2).3.3 The Constru
tion3.3.1 The transition at a singleton stateWe de�ne the transitions of A in two stages. First we de�ne transitions froma singleton state. When in a singleton state t 2 Q reading letter aj (SeeFigure 1b) the alternating automaton guesses that there are going to be kmore visits to letter aj in the rest of the run (as the run is simple, k is boundedby the number of states of the 2NFA N). We refer to the states reading letteraj a

ording to the order they appear in the run as s1; :::; sk. We assumethat all states that read letters prior to aj have already been taken
are of,hen
e s1; :::; sk themselves are ba
kward states (i.e. (si;�1) 2 Æ(pi; aj+1) forsome pi). They read the letter aj and move forward (there exists some tisu
h that (ti; 1) 2 Æ(si; aj)). Denote the su

essors of s1; :::; sk by t1; :::; tk.The alternating automaton veri�es that there is a run segment
onne
ting thesu

essor of t (denoted t0) to s1 (by indu
tion, all states reading letters beforeaj have been taken
are of, this run segment should not go ba
k to lettersbefore aj). Similarly the alternating automaton veri�es that a run segment
onne
ts t1 to s2, et
. In general the alternating automaton
he
ks that thereis a part of the run
onne
ting ti to si+1. Finally, from tk the run has to readthe rest of the word and rea
h lo
ation jwj in an a

epting state.Given a state t and an alphabet letter a,
onsider the set Rta of all possiblesequen
es of states of length at most 2n � 1 where no two states in an evenpla
e (forward states) are equal and no two states in an odd pla
e (ba
kwardstates) are equal. We further demand that the �rst state in the sequen
e be10

a su

essor of t ((t0; 1) 2 Æ(t; a)) and similarly that ti be a su

essor of si((ti; 1) 2 Æ(si; a)). Formally
Rta = 8>>>>>>>><>>>>>>>>:ht0; s1; t1; :::; sk; tki

��������������
0 � k < n(t0; 1) 2 Æ(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>=>>>>>>>>;The transition ofA
hooses one of these sequen
es and ensures that all promisesare kept, i.e. there exists a run segment
onne
ting ti�1 to si.�(t; a) = _ht0;s1;:::;sk;tki2Rta(t0; s1) ^ (t1; s2) ^ ::: ^ (tk�1; sk) ^ tk
3.3.2 The transition at a pair stateWhen the alternating automaton is in a pair state (t; s) reading letter aj ittries to �nd a run segment
onne
ting t to s using only the suÆx aj:::ajwj�1.We view t as a forward state reading aj and s as a ba
kward state reading aj�1(Again (s;�1) 2 Æ(p; aj)). As shown in Figure 2a, the run segment
onne
tingt to s may visit letter aj but should not visit aj�1.Figure 2b provides a detailed example. The automaton in state (t; s) guessesthat the run segment linking t to s visits a2 twi
e and that the states readingletter a2 are s1 and s2. The automaton further guesses that the prede
essorof s is s3 ((s;�1) 2 Æ(s3; a2)) and that the su

essors of t; s1 and s2 aret0; t1 and t2 respe
tively. The alternating automaton spawns three pro
esses:(t0; s1); (t1; s2) and (t2; s3) all reading letter a3. Ea
h of these pair states hasto �nd a run segment
onne
ting the two states.We now de�ne the transition from a state in S � S. Given a state (t; s) andan alphabet letter a, we de�ne the set R(t;s)a of all possible sequen
es of statesof length at most 2n where no two states in an even position (forward states)are equal and no two states in an odd position (ba
kward states) are equal.We further demand that the �rst state in the sequen
e be a su

essor oft ((t0; 1) 2 Æ(t; a)), that the last state in the sequen
e be a prede
essor ofs ((s;�1) 2 Æ(sk+1; a)) and similarly that ti be a su

essor of si ((ti; 1) 2Æ(si; a)). 11

a2a1 a3a0 a1 a2a0 a3

ts1s2s3s
t0t1t2s

s

t
ta2a1 a3a0

Fig. 2. (a) Di�erent
onne
ting segments (b) The transition at the pair state (t; s)
R(t;s)a = 8>>>>>>>>>>>><>>>>>>>>>>>>:ht0; s1; t1; :::; sk; tk; sk+1i

������������������
0 � k < n(t0; 1) 2 Æ(t; a)(s;�1) 2 Æ(sk+1; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>>>>>=>>>>>>>>>>>>;The transition of A
hooses one sequen
e and ensures that all pairs meet:
�((t; s); a) = 8>>>>>><>>>>>>: true If (s;�1) 2 Æ(t; a)Wht0;s1;:::;tk;sk+1i2R(t;s)a (t0; s1) ^ (t1; s2) ^ ::: ^ (tk; sk+1) Otherwise3.4 Proof of
orre
tnessTo
on
lude, the
omplete des
ription of A is h�; Q; s0; �; F i where the initialstate and the set of a

epting states is equal to that of N and � is as de�ned.All the pair-labeled paths in a run of A have to terminate \before falling of12

the edge of the tape" and the singleton-labeled path must \fall o�" with ana

epting state.Claim 4 L(A) = L(N)Proof. Given an a

epting simple run of N on a word w of the form (s0; 0),(s1; i1), : : : ; (sm; im), we annotate ea
h pair by the pla
e it took in the runof N . Thus the run takes the form (s0; 0; 0), (s1; i1; 1), : : : ; (sm; im; m). Webuild a run tree (T; r0) of A by indu
tion. In addition to the labeling r0 : T !S [(S�S), we atta
h a single tag to a singleton state and a pair of tags to apair state. The tags are triplets from the annotated run of N . For example theroot of the run tree of A is labeled by s0 and tagged by (s0; 0; 0). The labelingand the tagging
onform to the following:� A node x labeled by state s is tagged by (s; i; j) with i = jxj. We build thetree so that all triplets in the run of N whose third element is larger thanj have their se
ond element at least i.� A node x labeled by state (t; s) is tagged by (t; i1; j1) and (s; i2; j2) withi1 = jxj, i2 = jxj � 1, and j1 < j2. We build the tree so that all triplets inthe run of N whose third element is between j1 and j2 have their se
ondelement be at least i1.We start with the root labeling it by s0 and tagging it by (s0; 0; 0). Obviouslythis
onforms to our demands.Given a node x labeled by t, tagged by (t; i; j), and adhering to our demands(see state t in Figure 1b). If (t; i; j) has no su

essor in the run of N , it mustbe the
ase that i = jwj and that t 2 F . Otherwise we denote the triplets inthe run of N whose third element is larger than j and whose se
ond elementis i by (s1; i; j1); :::; (sk; i; jk). By assumption there is no point in the run ofN beyond j visiting a letter before i. Sin
e the run is simple, k < n. Denoteby (t0; i+ 1; j + 1) the su

essor of (t; i; j) and by (t1; i+ 1; j1 + 1); :::; (tk; i+1; jk + 1) the su

essors of s1; :::; sk. We add k+ 1 su

essors to x, label them(t0; s1); (t1; s2); :::; (tk�1; sk); tk, to a su

essor of x labeled by (tl�1; sl) we addthe tags (tl�1; i + 1; jl�1 + 1) and (sl; i; jl), and to the su

essor of x labeledby tk we add the tag (tk; i+ 1; jk + 1).We now show that the new nodes added to the tree
onform to our demands.By assumption there are no visits beyond the jth step in the run of N to lettersbefore ai and s1; :::; sk are all the visits to ai after the jth step of N .Let y be the su

essor of x labeled tk (tagged (tk; i+1; jk + 1)). Sin
e jxj = i,we
on
lude jyj = i + 1. All the triplets in the run of N appearing after(tk; i+ 1; jk + 1) do not visit letters before ai+1 (We
olle
ted all visits to ai).13

Let y be a su

essor of x labeled by (tl; sl+1) (tagged (tl; i + 1; jl + 1) and(sl+1; i; jl+1)). We know that i = jxj hen
e i + 1 = jyj; jl + 1 < jl+1 andbetween the jl+1 element in the run of N and the jl+1 element letters beforeai+1 are not visited.We turn to
ontinuing the tree below a node labeled by a pair state. Given anode x labeled by (t; s) tagged (t; i; j) and (s; i � 1; k). By assumption thereare no visits to ai�1 in the run of N between the jth triplet and kth triplet.If k = j + 1 then we are done and we leave this node as a leaf. Otherwise wedenote the triplets in the run of N whose third element is between j and k andwhose se
ond element is i by (s1; i; j1); :::; (sm; i; jm) (see Figure 2b). Denoteby (t1; i + 1; j1 + 1); :::; (tm; i + 1; jm + 1) their su

essors, by (t0; i + 1; j + 1)the su

essor of t and by (sm+1; i; k � 1) the prede
essor of s. We add m + 1su

essors to x and label them (t0; s1); (t1; s2); :::; (tm; sm+1). To a su

essorof x labeled by (tl�1; sl) we add the tags (tl�1; i + 1; jl�1 + 1) and (sl; i; jl).As in the previous
ase when we
ombine the assumption with the way we
hose t0; :::tm and s1; :::; sm+1, we
on
lude that the new nodes
onform to thedemands.Clearly, all pair-labeled paths terminate with true before reading the wholeword w and the path labeled by singleton states rea
hes the end of w with ana

epting state.In the other dire
tion we stret
h the tree run of A into a linear run of N .Let (T; r0) be an a

epting run of A on a word w. We assume ordering onthe su

essors of ea
h node a

ording to the appearan
e of their labels in thetransition of A. The re
ursive algorithm in Figure 3
onstru
ts an a

eptingrun of N . When �rst rea
hing a node x labeled by pair state (t; s), we add t tothe run of N . Then we handle re
ursively the
hildren of x. When we returnto x we add s to the run of N . When rea
hing a node x labeled by a singletonstate s we simply add s to the run of N and handle the sons of x re
ursively.build run (x; r0(x) = s; i) build run (x; r0(x) = (t; s); i)r := r � hs; ii; r := r � ht; ii;for all sons x � a of x for all sons x � a of xbuild run (x � a; r0(x � a); i + 1) build run (x � a; r0(x � a); i+ 1)End (for loop) End (for loop)r := r � hs; i� 1i;Fig. 3. Converting a run of A into a run of NStarting from the root � labeled (s0; 0), we add to the run of N the element(s0; 0). We now handle the su

essors of the root a

ording to their order.14

Going up to the �rst su

essor
 labeled (t; s) we add (t; 1) to the run of N .Obviously from the de�nition of Rs0a0 we know that (t; 1) 2 Æ(s0; a0). We handlethe su

essors of
 in re
ursion. When we return to
 we add (s; 0) to the runof N (to be justi�ed later). We return now to � and handle the next su

essord. The node d is either labeled by (p; q) or by p. In both
ases the de�nitionof Rs0a0 ensures that (p; 1) 2 Æ(s; a0). When we return to � after s
anning thewhole tree the run of N is
omplete.Getting to a node x labeled (t; s) we add (t; jxj) to the run of x. Adding (t; jxj)itself and passing to the su

essors of x and between them was justi�ed whenhandling the root. When the re
ursion �nished handling the last su

essor of xwe add (s; jxj�1) to the run of N . Suppose the last su

essor of x was labeled(p; q) then from the de�nition of R(t;s)ajxj we know that (s;�1) 2 Æ(q; ajxj) hen
ethis transition is justi�ed.Getting to a node x labeled s is not di�erent from handling the root. Insteadof using the lo
ations 0 and 1 in the run, we use lo
ations jxj and jxj+ 1.We have to show that the run is valid and a

epting. Satisfying the transitionwas shown. In the tree run of A there is a single path labeled solely by singletonstates. The last element in the run of N is the same state and reading the sameletter as the last in this path. Sin
e the path is a

epting the last state there hasto be from F and reading letter jwj (whi
h does not exists, w = a0:::ajwj�1).All other states in the run of N read letters in the range f0; :::; jwj � 1g.Otherwise there is some node x in the run of A su
h that jxj � jwj (otherthan the previously designated node). This is impossible sin
e the run of A isa

epting. 2As mentioned in Se
tion 2
omplementing an 1AFA is simple. The
omplementof A is eA = h�; Q; s0; e�;Q n F i. As L(A) = L(N), L(eA) = �� n L(N).4 Automata on in�nite wordsWe may try to run the 1AFA from Se
tion 3 on in�nite words. We demandthat pair-labeled paths be �nite and that the in�nite singleton-labeled pathvisit F in�nitely often. Although an a

epting run of N visited F in�nitelyoften we
annot ensure in�nitely many visits to F on the in�nite path. Thevisits may be re
e
ted in the run of A in the pair-labeled paths. Anotherproblem is when the run ends in a loop.Theorem 5 For every 2NBW N = h�; S; s0; Æ; F i with n states, there exist1ABWs A and A0 with O(n2) states su
h that L(A) = L(N) and L(A0) =15

�! n L(N).4.1 Removing �-movesLike in the �nite
ase we �rst redu
e the problem to automata without �-moves. Given an automaton N = h�; S; s0; Æ; F i where Æ : S��! 2S�f�1;0;1gwe would like to remove all the �-moves. There are two potential problems,visits to F in an �-move and a loop of �-moves that visits F . We double thenumber of states and add an a

epting sink state N 0 = h�; (S � f?;>g) [fA

g; (s0;?); Æ0; (F�f?g)[(S�f>g)[fA

gi. A sequen
e like : : : ; ((s;?); i); ((s0;>); i+1); : : : in the run means that in the run of N between the appearan
e of (s; i)and (s0; i + 1) there was an �-move that visited F . Similarly ? means that�-moves (if o

ured) have not visited F (in [31,9℄ similar problems are solvedin a similar way).Given a state s and an alphabet letter a, we de�ne NCsa the set of all statesrea
hable from state s by a sequen
e of �-moves reading letter a and one lastforward/ba
kward step. All states avoid the a

eptan
e set F .
NCsa = 8>>>>>>>><>>>>>>>>:((t;?);�) 2 ((S � f?g)� f�1; 1g) ��������������

9(t0; :::; tk) 2 S+ s.t. t0 = s;81 � j � k; (tj; 0) 2 Æ(tj�1; a);tj =2 F;and (t;�) 2 Æ(tk; a)
9>>>>>>>>=>>>>>>>>;In addition we de�ne ACsa the set of all states rea
hable from state s by asequen
e of �-moves reading letter a and one last forward/ba
kward step. Oneof the states in the sequen
e is an a

epting state.

ACsa = 8>>>>>>>><>>>>>>>>:((t;>);�) 2 ((S � f>g)� f�1; 1g) ��������������
9(t0; :::; tk) 2 S+ s.t. t0 = s;9j > 0 s.t. tj 2 F;81 � j � k; (tj; 0) 2 Æ(tj�1; a)and (t;�) 2 Æ(tk; a)

9>>>>>>>>=>>>>>>>>;We also have to take
are of situations where there is a loop of �-moves thatvisits F . The boolean variable ACCEPT sa is set to 1 if su
h a sequen
e existsand to 0 otherwise. Formally, the variable ACCEPT sa is set to 1 i� there existsa sequen
e (t0; :::; tk) 2 S+ that satis�es all the following
onditions.� t0 = s.� There exist j and l su
h that 0 � j � l � k, (tj; 0) 2 Æ(tk; a) and tl 2 F .16

� For all j where 1 � j � k, we have (sj; 0) 2 Æ(sj�1; a)We use the two �-
losures and the variable de�ned above in the de�nition ofthe transition fun
tion of the 1NFA N 0.Æ0((s;?); a) = Æ0((s;>); a) = 8><>: f(A

; 1)g ACCEPT sa = 1NCsa [ACsa ACCEPT sa = 0Æ0(A

; a) = f(A

; 1)gApparently, N 0 is �-move free.Claim 6 L(N')=L(N)Proof. Suppose N a

epts w. There exists an a

epting run r of N on w. Ifa �nite sequen
e of �-moves appears in r we simply prune it. If that sequen
e
ontained a visit to F add > to the forward/ba
kward move at the end of thesequen
e. If r ends in an in�nite sequen
e of �-moves, this sequen
e has a �nitepre�x (si; l); (si+1; l); :::; (si+p; l) su
h that si = si+p and, as r is a

epting,there is a visit to F in this pre�x. We take the pre�x of the run (s0; 0); :::; (si; l)and add to it the in�nite suÆx (A

; l + 1); (A

; l + 2); :::. Finally, we addlabels? to all unlabeled states. It is easy to see that the resulting run is a validrun of N 0. It is also an a

epting run. If the run ends in a suÆx A

! then it is
learly a

epting. Otherwise, removing sequen
es of �-moves repla
es a �nitenumber of visits to F by a state labeled by >. As the original run visited Fin�nitely often, so does the run of N 0.Suppose N 0 a

epts w. We append �-moves as promised from the de�nition ofNC and AC. If the run ends with an in�nite sequen
e of A

 we
an add aloop visiting F . In�nitely many o

urren
es of > ensure in�nitely many visitsto F . 24.2 The Constru
tionWe have to re
ord hidden visits to F . This is done by doubling the set ofstates. While in the �nite
ase the state set is S [(S � S), this time we alsoannotate the states by ? and >. Hen
e Q = (S [(S � S))� f?;>g. A pairstate labeled by > is a promise to visit the a

eptan
e set. The state (s; t;>)means that in the run segment linking s to t there has to appear a state fromF . A state (s;>) is displaying a visit to F in the zigzags
onne
ting s to theprevious singleton state. The initial state is q0 = (s0;?).17

With the same notation we solve the problem of a loop. We allow a transitionfrom a singleton state to a sequen
e of pair states. One of the pairs promisesa visit to F . The a

eptan
e set is F 0 = (S � f>g) [(F � f?g) and thetransition fun
tion � is de�ned as follows.4.2.1 The transition at a singleton stateJust like in the �nite
ase we
onsider all possible sequen
es of states of lengthat most 2n� 1 with same demands.
Rta = 8>>>>>>>><>>>>>>>>:ht0; s1; t1; :::; sk; tki

��������������
0 � k < n(t0; 1) 2 Æ(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>=>>>>>>>>;Re
all that a sequen
e (t0; s1); (t1; s2); :::; (tk�1; sk); tk
he
ks that there is azigzag run segment linking t0 to tk. We mentioned that tk is annotated with> in
ase this run segment has a visit to F . If tk is annotated with >, at leastone of the pairs has to be annotated with >. Although more than one pairmay visit F we annotate all other pairs by ?. Hen
e for k 2 N we
onsiderthe sequen
es of ? and > of length k+1 in whi
h if the last is > so is anotherone. Otherwise all are ?.�Rk = 8><>:h�0; :::; �ki 2 f?;>gk+1 ������� If �k = > then 9!i s.t. 0 � i < k and �i = >If �k = ? then 8 0 � i < k; �i = ? 9>=>;This is, however, not enough. We have to
onsider also the
ase of a loop. Theautomaton has to guess that the run terminates with a loop when it reads the�rst letter of w that is read inside the loop. The only states reading this letterinside the loop are ba
kward states. We
onsider pairs of sequen
es of at most2n states, where the last state in the two sequen
es is equal. This repetition
loses the loop. In both sequen
es no two states in an even/odd position areequal. For example, in Figure 4, we see that in state t reading letter a1, thealternating automaton guesses the sequen
e (t0; s1); (t1; s2) and the sequen
e(t2; s3); (t3; s2). The last state in both sequen
es is s2.More formally, we demand that the �rst state in the �rst sequen
e be a su
-
essor of t ((t10; 1) 2 Æ(t; a)), that the �rst state in the se
ond sequen
e be asu

essor of the last state in the �rst sequen
e ((t20; 1) 2 Æ(s1k+1; a)), that tpi bea su

essor of spi for p 2 f1; 2g ((tpi ; 1) 2 Æ(spi ; a)) and that the last state in the18

a1 a2a0 a3

t t0s1 t1s2 t2s3 t3s2
Fig. 4. A loop�rst sequen
e be equal to the last state in the se
ond sequen
e (s1k+1 = s2l+1).

Lta =
8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
* ht10; s11; t11; :::; s1k; t1k; s1k+1i;ht20; s21; t21; :::; s2l ; t2l ; s2l+1i + ���������������������

0 � k < n; 0 � l < n(t10; 1) 2 Æ(t; a); (t20; 1) 2 Æ(s1k+1; a)8i < j; s1i 6= s1j and t1i 6= t1j8i < j; s2i 6= s2j and t2i 6= t2j8i; 8p; (tpi ; 1) 2 Æ(spi ; a)s1k+1 = s2l+1
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;It is obvious that a visit to F has to o

ur within the loop. Hen
e we haveto make sure that the run segment
onne
ting one of the pairs in the se
ondsequen
e visits F . Hen
e we annotate one of the pairs (t20; s21); :::; (t2l ; s2l+1) with>. One visit to F is enough hen
e all other pairs are annotated by ?.�Ll = fh�0; :::; �li 2 f?;>gl+1 j 9!i s.t. �i = >g

The transition of A
hooses a sequen
e in Rta [Lta and a sequen
e of ? and>. 19

�((t;?); a) = �((t;>); a) =_ WRta;�Rk (t0; s1; �0) ^ ::: ^ (tk�1; sk; �k�1) ^ (tk; �k)WLta;�Ll 0B� (t10; s11;?) ^ ::: ^ (t1k; s1k+1;?)^(t20; s21; �0) ^ ::: ^ (t2l ; s2l+1; �l) 1CA
4.2.2 The transition at a pair stateIn this
ase the only di�eren
e is the addition of ? and >. The set R(t;s)a isequal to the �nite
ase.

R(t;s)a = 8>>>>>>>>>>>><>>>>>>>>>>>>:ht0; s1; t1; :::; sk; tk; sk+1i
������������������
0 � k < n(t0; 1) 2 Æ(t; a)(s;�1) 2 Æ(sk+1; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>>>>>=>>>>>>>>>>>>;In the transition of `top' states we have to make sure that a visit to F indeedo

urs. If the visit o

ured in this stage the promise (>)
an be removed (?).Otherwise the promise must be passed to one of the su

essors.�Rs;t;k = 8><>:h�0; :::; �ki 2 f?;>gk+1 ������� If s =2 F and t =2 F then 9!i s.t. �i = >Otherwise 8 0 � i � k; �i = ? 9>=>;The transition of A
hooses a sequen
e of states and a sequen
e of ? and >.�((t; s;?); a) = 8>><>>: true If (s;�1) 2 Æ(t; a)WR(t;s)a (t0; s1;?) ^ ::: ^ (tk; sk+1;?) Otherwise�((t; s;>); a) = 8>>>>>><>>>>>>: true If (s;�1) 2 Æ(t; a) and(s 2 F or t 2 F)WR(t;s)a ;�Rs;t;k(t0; s1; �0) ^ ::: ^ (tk; sk+1; �k) Otherwise20

4.3 Proof of
orre
tnessThe proof is just an elaboration on the proof of the �nite
ase. In both dire
-tions we use similar
onstru
tions. We only have to give spe
ial attention tovisits to the a

epting set. As the proofs are almost identi
al we just highlightthe points of di�eren
e.Claim 7 L(N)=L(A)Proof. Given an a

epting simple run ofN on a word w of the form (s0; 0); (s1; i1); :::we annotate ea
h pair by the pla
e it took in the run of N . Thus, the run takesthe form (s0; 0; 0); (s1; i1; 1); :::. If the run does not end in a loop the
onstru
-tion in the �nite
ase works. We have to add the symbols ? and >.When dealing with a node x in the run tree of A labeled by (s; �) tagged by(s; i; j). In the proof of the �nite
ase we identi�ed the triplets (s1; i; j1); :::; (sk; i; jk)and (t0; i + 1; j + 1); :::; (tk; i+ 1; jk + 1) and labeled the su

essors of x with(t0; s1); :::; (tk�1; sk); tk. If there is no visit to F between j + 1 and jk + 1 weadd to these states ?. Otherwise the visit was between jl+1 and jl+1 for somel (
onsider j = j0), in this
ase we add > both to tk and to the pair (tl; sl+1),to all other pairs we add ?.When dealing with a node x in the run tree of A labeled by (t; s; �) tagged(t; i; j) and (s; i � 1; k). We identi�ed the set of pairs (t0; s1); :::; (tk; sk+1). In
ase � = ? we
ontinue just like in the �nite
ase. In
ase � = > we put itthere be
ause there was a visit to F between j and k. This visit to F has too

ur between tl and sl+1 for some l and we pass the obligation to this pair.At some point we rea
h a visit to F and then the promise is removed.We have now an in�nite run tree of A. All pair-labeled paths are still �nite andthere is one in�nite path labeled by singleton states. Sin
e every o

urren
eof > on this path
overs a �nite number of visits to F we are ensured that >appears in�nitely often along this path.If the run ends in a loop we have to identify the �rst letter of w read inthis loop. Suppose this letter is i. We build the run tree of A as before untilrea
hing the node x in level i labeled by a singleton state (s; �) tagged by(s; i; j0). As letter i is visited in the loop there are in�nitely many visits to it.Denote these visits by (s0; i; j0); (s1; i; j1); (s2; i; j2); :::, all ba
kward states.Let s0 be the �rst state in the sequen
e above that appears in�nitely often.Denote by (s10; i; j10); : : : ; (s1m; i; j1m) the pre�x of the sequen
e until the �rsto

urren
e of s0. As the run is simple, there is no other state repeating twi
ein this pre�x. Similarly denote by (s20; i; j20); : : : (s2p; i; j2p) the sequen
e of states21

from the �rst o

urren
e of s0 (ex
luding the o

urren
e) to the se
ond o

ur-ren
e of s0. Again, as the run is simple there has to be a visit to F betweenlo
ations j10 and j2p in the run of N and p � n. Now denote t10; : : : t1m�1 the su
-
essors of s10; : : : ; s1m�1, t20 the su

essor of s1m, and t21; : : : ; t2p�1 the su

essors ofs21; : : : s2p�1. We add m+p su

essors to x and label them (t10; s11); : : : (t1m�1; s1m)and (t20; s21); : : : ; (t2p�1; s2p). Obviously, all the
onditions required in Lswi areful�lled by this pair of sequen
es. There exists some j2h for whi
h there is avisit to F between lo
ations j2h and j2h+1 in the run of N . We annotate thepair (t2h; s2h+1) by > and all other pairs by ?. We tag a pair (t�d ; s�d+1) by(t�d ; i; j�d + 1) and (s�d ; i; j�d+1).In the other dire
tion we apply the same re
ursive algorithm. If the a

eptingrun tree of A is in�nite then we never return to � but the run
reated is ana

epting run of N .If the a

epting run tree of A is �nite we have to identify the point in thetree x labeled by a singleton state (s; �) under whi
h there are no su

essorslabeled by singleton states. In this point we identify the loop. There are twopair states below x labeled by (t1; s;?) and (t2; s; �). We start handling thesu

essors of x until we �nish handling the su

essor labeled (t1; s;?). Then,we put aside the run of N built so far and
all it r. Now we build a new run r0starting from the point we stopped. Sin
e the run of A is �nite the re
ursionends and the run r0 is �nite. As a �nal step we present r � (r0)! as the new runof N . 2Both in the �nite and the in�nite
ase we separated the
onstru
tion into twostages. Namely removing the zero steps and then transforming automata thattake no �-moves. In the �nite
ase the �rst stage did not in
rease the numberof states. In the in�nite
ase the �rst stage doubled the number of states andthen squaring we get approximately 8n2+12n states. We
ould a
tually unitethe two stages of the
onstru
tion into one stage. Su
h a
onstru
tion in
ludesthe �-moves in the de�nition of the sets Ra and La. We believe our
onstru
-tion is easier to understand, while improving our
onstru
tion to in
lude themodi�
ation is not so diÆ
ult. Transforming the 2NBW into a 1ABW in onestage results in an automaton with approximately 2n2 + 2n states.Remark 8 In both the �nite and the in�nite
ases, we get a 1-way alternat-ing automaton with O(n2) states and transitions of exponential size. Birget's
onstru
tion also results in exponential-sized transitions [1℄. Globerman andHarel use �-moves in order to redu
e the transition to polynomial size [8℄.Their
onstru
tion uses the reverse language and
an not be applied to in�nitewords. In Appendi
es B and C, we use �-moves to
hange our
onstru
tion sothat it uses only polynomial-sized transitions. We note that the transition sizedoes not a�e
t the
onversion from 1ABW to 1NBW. In the
ase of unary22

alphabet, our
onstru
tion, with �-moves, gives a polynomial time algorithmfor
he
king the emptiness of 2NBW. For 2NFA a log spa
e algorithm exists[27℄.4.4 Complementing the alternating automatonComplementing an 1ABW is not as easy as
omplementing an 1AFA. In the�nite
ase dualizing the transition fun
tion and the a

eptan
e set is enough.In the in�nite
ase we
an dualize the transition but instead of B�u
hi a

ep-tan
e we have to use
o-B�u
hi a

eptan
e. That is, states from the a

eptan
eset have to appear only �nitely often along every in�nite path [18℄.Kupferman and Vardi [13℄ showed how to
omplement alternating automatausing weak alternating automata. Given a 2NBW N with n states, we
on-stru
ted a 1ABW A with O(n2) states. If we implement the quadrati

on-stru
tion from [13℄ on A we get A0, a 1ABW with O(n4) states a

epting the
omplementary language of N . We show how to
onstru
t an 1ABW withO(n2) states whose language is the
omplement of N 's language. We re
allthe proof in [13℄ and show how to avoid the quadrati
 pri
e in our
ase. Thefollowing observations about runs of 1ACW are taken from [13℄ with minoradjustments.De�nition 9 [13℄ A tree run (T; r) is memoryless if for all x1; x2 2 T su
hthat jx1j = jx2j and r(x1) = r(x2), we have that for all y 2 N� , x1 � y 2 T i�x2 � y 2 T and r(x1 � y) = r(x2 � y).Theorem 10 [7℄ If a
o-B�u
hi automaton a

epts a word w, then there existsa memoryless a

epting run on w.We
an restri
t our attention to memoryless run trees. Hen
e, the run tree(T; r)
an be represented in the form of a dire
ted a
y
li
 graph G = (V;E)where V � Q� N and E � S1i=0(Q� fig)� (Q� fi + 1g):V = f(V (x); jxj) j x 2 TgE = f((V (x); jxj); (V (y); jyj)) j x; y 2 T and y su

essor of x in TgGiven a (possibly �nite) DAG G0 � G. We de�ne a vertex (s; i) as eventuallysafe in G0 i� only �nitely many verti
es in G0 are rea
hable from (s; i). Wede�ne a vertex (s; i) as
urrently safe in G0 i� all the verti
es in G0 rea
hablefrom (s; i) are not members of F � N .Now de�ne the indu
tive sequen
e:� G0 = G 23

� G2i+1 = G2i n f(s; i) j (s; i) is eventually safe in G2ig� G2i+2 = G2i+1 n f(s; i) j (s; i) is
urrently safe in G2i+1gDe�nition 11 Border, Ultimate Width(1) Given a graph Gi and a number 0 � p � n the border of p in Gi is thelevel l 2 N su
h that for all l0 � l there are at most p verti
es of the form(s; l0) in Gi. If no su
h number exists then we de�ne the border of p inGi to be in�nity.(2) Given a graph Gi the ultimate width of Gi is the minimal number w � nsu
h that the border of w in Gi is �nite. We denote the ultimate width ofGi by w(Gi).Lemma 12 [13℄ For every i � 0, either w(G2i) = 0 or w(G2i+2) < w(G2i).In our
ase, we have the 1ABW A. Its
omplement, the 1ACW eA has the samestate set (S [(S � S))� f?;>g. The state set of eA
an be partitioned intotwo sets, S�f?;>g and S�S�f?;>g. The transition of states of the form(s; t; �) in
ludes only states from the same set. This set and the a

eptan
eset do not interse
t, hen
e in the graph G1 all the states of this form are`
urrently safe' and all of them are missing from G2. We
an
on
lude thatw(G2) � 2jSj. Therefore, if we denote 2jSj by n the graph G2n+2 is �nite andhen
e G2n+3 is empty.Index the verti
es in G in the following way:� 2i, if the vertex is eventually safe in G2i� 2i+ 1 if the vertex is
urrently safe in G2i+1All indi
es are in the range f0; : : : ; 2n+ 2g.We denote the set f0; : : : ; kg by [k℄. So we have our
o-B�u
hi automatoneA = h�; Q; (s0;?); e�; F i where Q = (S [(S � S))� f?;>g. Kupferman andVardi show how to
onstru
t a weak alternating automaton with state setQ � [2n + 2℄ that a

epts the same language (that is the language of eA, the
omplement language of A).We
an further redu
e the number of states. Re
all that only pair-states arerea
hable from pair-states and no pair-state is in the a

eptan
e set. Hen
ewe
an de�ne G0 to be G n (S � S � f?;>g � N) i.e. remove from G all thepair labeled states (whi
h are
urrently safe in G). This way all indi
es are inthe range [2n℄. Furthermore there is no need to multiply all the states in Q by[2n℄. It is enough to multiply S�f?;>g by [2n℄ and
onsider (S�S�f?;>gas the minimal set of the weak alternating automaton.To
on
lude we give the �nal weak alternating automaton a

epting the lan-24

guage of eA (the
omplement of A). Given A = h�; Q; (s0;?); �; F i whereQ = (S [(S � S)) � f?;>g we de�ne A = h�; Q0; q00; �; F 0i where Q0 =(S � f?;>g � [2n℄) [(S � S � f?;>g) where n = 2jSj. We follow the nota-tion from [13℄ and de�ne release : B+(Q)� [2n℄ ! B+(Q0). Given a formula' 2 B+(Q), and a rank i 2 [2n℄, the formula release('; i) is obtained from 'by repla
ing every atom of the form (s; �) from S � f?;>g by Wl�i(s; �; l).Let e� be the dualization of � then:�((s; �; i); a) = 8><>: release(e�((s; �); a); i) if (s; �) =2 F or i is evenfalse if (s; �) 2 F and i is odd�((s; t; �); a) = e�((s; t; �); a)Finally q00 = (s0;?; 2n) and F 0 = f(s; �; i)ji is oddg [(S � S � f?;>g).4.5 Parity and Rabin a

eptan
e
onditionsOur method works also for 2-way nondeterministi
 Rabin automata and 2-waynondeterministi
 Parity automata.Theorem 13 For every 2-way nondeterministi
 Rabin (parity) automatonN = h�; S; s0; Æ; �i with n states and index m, there exists a 1ABW A withO(n2 �m) states su
h that L(A) = L(N).Given a 2NRW N = h�; S; s0; Æ; �i where � = fhG1; B1i; :::; hGm; Bmig withn states it is straightforward to
onstru
t an equal 2NBW N 0 with O(n �m)states. The
onstru
tion is not di�erent from the
onversion of 1-way non-deterministi
 Rabin automata to 1-way nondeterministi
 B�u
hi automata [5℄.Converting the 2NBW N 0 to a 1ABW A, results in a 1ABW with O(n2 �m2)states.This
onstru
tion
an be improved as follows. Build a 1ABW A for N (without
onstru
ting N 0 �rst). Multiply the state set of A by the index (and one extra
opy) m + 1. The ith
opy of the automaton avoids all the states in Bi. Thealternating automaton starts running in
opy 0. The transition at a singletonstate in
opy 0 in
ludes also a guess whether to stay in
opy 0 or guess thatstates from Bi are not visited again during the run and then move to
opyi. We should allow also moving into
opy i in the se
ond sequen
e in thetransition of a loop. In this
ase only the part of the loop itself should avoidBi and should in
lude a demand for visiting Gi. The transition at a state fromthe ith
opy in
ludes only states of the same
opy. Referen
e to the a

eptingset should be made only outside of
opy 0 and in this
ase Gi serves as F .25

For 2NPW the
hanges to the
onstru
tion are very similar to the ones de-s
ribed above.5 Con
lusionsWe have shown two
onstru
tions. Both show how to
onstru
t a 1-way alter-nating automaton that a

epts the same language as a 2-way nondeterministi
automaton. The �rst
onstru
tion for automata that work on �nite words andthe se
ond for automata that work on in�nite words.In the �nite
ase
omplementation of alternating automata is very easy. Hen
ewe
an easily get the automaton re
ognizing the
omplementary language.This automaton
an be envisioned as sear
hing for errors in all the possiblezigzagging run.The number of states of the 1AFA is quadrati
 in the number of states of the2NFA and the size of the transition is exponential in the size of the originaltransition. If we further
onvert our 1AFA into a nondeterministi
 automatonwe get an automaton with 2O(n2) states. Birget and Vardi [1,26℄ showed thatgiven a 2NFA, it is possible to
onstru
t 1NFA re
ognizing the same languageand the
omplementary language with 2O(n) states. Given a 2NFA automatonand seeking a 1NFA one should obviously
hoose their
onstru
tions.In the in�nite
ase we get similar results. Given a 2NBW with n states weget an 1ABW with O(n2) states. If we use the
onstru
tion in [17℄, we get a1NBW with 2O(n2) states. As mentioned Vardi has already solved this problem[25℄. He shows, given a 2NBW, how to
onstru
t two 1NBW, one a

epting thesame language and one the
omplementary language, both with 2O(n2) states.We note that there is an alternative de�nition for alternating automata. Wedenote the previously de�ned alternating automata as type I and de�ne typeII alternating automata as follows. A type II alternating automaton is A =h�; Q; q0; �; F i where �, Q, q0, and F are as before. The transition � : Q�� !2Q asso
iates with every state and alphabet letter a subset of the states. Everystate is
lassi�ed as either an and state or an or state.A run of a type II alternating automaton is a labeled tree (T; r) where r : T !Q. This time a node satis�es the transition fun
tion, by having one su

essorfor an or state or all su

essors for an and state. Formally, if x is labeled byan or state q there exists a unique su

essor x �
 of x and r(x �
) 2 �(q; wjxj).If x is labeled by an and state t and �(t; wjxj) = ft1; : : : ; tmg then x has msu

essors, fx � 0; : : : x � (m � 1)g and r(x �
) = t
+1 for 0 �
 < m. We getthe transition false if the transition of an or state is the empty set, we get26

the transition true if the transition of an and state is the empty set. Thede�nition of a run as a

epting does not
hange.It is straight forward to
onvert type II alternating automata to type I alter-nating automata. Converting type I to type II is also quite simple. The onlyproblem is that the number of states of the type II automaton is proportionalto the size of the transition of the type I automaton. As explained above, our
onstru
tion yields a transition whose size is exponential. If we wish to
on-vert a 2-way nondeterministi
 automaton into a polynomial type II alternatingautomaton, we have to use the
onstru
tions in Appendi
es B and C.6 A
knowledgmentsWe would like to thank Orna Kupferman for her remarks on the manus
riptand an anonymous referee for pointing out the works of Ruzzo and Venkateswaran.Referen
es[1℄ J. Birget, State-
omplexity of �nite-state devi
es, state
ompressibility andin
ompressibility, Mathemati
al Systems Theory 26 (3) (1993) 237{269.[2℄ J. Brzozowski, E. Leiss, Finite automata and sequential networks, Theoreti
alComputer S
ien
e 10 (1980) 19{35.[3℄ J. B�u
hi, On a de
ision method in restri
ted se
ond order arithmeti
, in: Pro
.Internat. Congr. Logi
, Method. and Philos. S
i. 1960, Stanford UniversityPress, Stanford, CA, 1962, pp. 1{12.[4℄ D. Calvanese, G. de Gia
omo, M. Lenzerini, M. Vardi, View-based querypro
essing for regular path queries with inverse, in: Pro
. ACM 19th Symposiumon Prin
iples of Database Systems, 2000, pp. 58{66.[5℄ Y. Choueka, Theories of automata on !-tapes: A simpli�ed approa
h, Journalof Computer and System S
ien
es 8 (1974) 117{141.[6℄ A. Chandra, D. Kozen, L. Sto
kmeyer, Alternation, Journal of the Asso
iationfor Computing Ma
hinery 28 (1) (1981) 114{133.[7℄ E. Emerson, C. Jutla, Tree automata, �-
al
ulus and determina
y, in: Pro
.32nd IEEE Symp. on Foundations of Computer S
ien
e, San Juan, 1991, pp.368{377.[8℄ N. Globerman, D. Harel, Complexity results for two-way and multi-pebbleautomata and their logi
s, Theoreti
al Computer S
ien
e 143 (1996) 161{184.27

[9℄ G. Holzmann, O. Kupferman, Not
he
king for
losure under stuttering, in:The Spin Veri�
ation System, Ameri
an Mathemati
al So
iety, 1996, pp. 17{22, pro
. 2nd International SPIN Workshop.[10℄ W. Johnson, J. Porter, S. A
kley, D. Ross, Automati
 generation of eÆ
ientlexi
al pro
essors using �nite state te
hniques, Communi
ations of the ACM11 (12) (1968) 805{813.[11℄ Z. Kohavi, Swit
hing and Finite Automata Theory, M
Graw-Hill, New York,1970.[12℄ R. Kurshan, Computer Aided Veri�
ation of Coordinating Pro
esses, Prin
etonUniv. Press, 1994.[13℄ O. Kupferman, M. Vardi, Weak alternating automata are not that weak, in:Pro
. 5th Israeli Symp. on Theory of Computing and Systems, IEEE ComputerSo
iety Press, 1997, pp. 147{158.[14℄ O. Kupferman, M. Vardi, Synthesis with in
omplete informatio, in: Advan
esin Temporal Logi
, Kluwer A
ademi
 Publishers, 2000, pp. 109{127.[15℄ R. Ladner, R. Lipton, L. Sto
kmeyer, Alternating pushdown and sta
kautomata, SIAM Journal on Computing 13 (1) (1984) 135{155.[16℄ R. M
Naughton, Testing and generating in�nite sequen
es by a �niteautomaton, Information and Control 9 (1966) 521{530.[17℄ S. Miyano, T. Hayashi, Alternating �nite automata on !-words, Theoreti
alComputer S
ien
e 32 (1984) 321{330.[18℄ D. Muller, P. S
hupp, Alternating automata on in�nite trees, Theoreti
alComputer S
ien
e 54 (1987) 267{276.[19℄ M. Rabin, De
idability of se
ond order theories and automata on in�nite trees,Transa
tion of the AMS 141 (1969) 1{35.[20℄ M. Rabin, D. S
ott, Finite automata and their de
ision problems, IBM Journalof Resear
h and Development 3 (1959) 115{125.[21℄ W. Ruzzo, Tree-size bounded alternation, Journal of Computer and SystemS
ien
es 21 (1980) 218{235.[22℄ J. C. Shepherdson, The redu
tion of two-way automata to one-way automata,IBM Journal of Resear
h and Development 3 (1959) 198{200.[23℄ W. Sakoda, M. Sipser, Nondeterminism and the size of two way �nite automata,in: 10th ACM Symposium on Theory of Computing, San Diego, California, 1978,pp. 275{286.[24℄ R. Streett, Propositional dynami
 logi
 of looping and
onverse, Informationand Control 54 (1982) 121{141.[25℄ M. Vardi, A temporal �xpoint
al
ulus, in: Pro
. 15th ACM Symp. on Prin
iplesof Programming Languages, San Diego, 1988, pp. 250{259.28

[26℄ M. Vardi, A note on the redu
tion of two-way automata to one-way automata,Information Pro
essing Letters 30 (5) (1989) 261{264.[27℄ M. Vardi, Endmarkers
an make a di�eren
e, Information Pro
essing Letters35 (3) (1990) 145{148.[28℄ M. Vardi, Reasoning about the past with two-way automata, in: Pro
. 25thInternational Coll. on Automata, Languages, and Programming, Vol. 1443 ofLe
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, 1998, pp. 628{641.[29℄ H. Venkateswaran, Properties that
hara
terize LOGCFL, Journal of Computerand System S
ien
es 43 (2) (1991) 380{404.[30℄ M. Vardi, P. Wolper, An automata-theoreti
 approa
h to automati
 programveri�
ation, in: Pro
. 1st Symp. on Logi
 in Computer S
ien
e, Cambridge,1986, pp. 332{344.[31℄ T. Wilke, CTL+ is exponentially more su

in
t than CTL, in: Pro
. 19th
onferen
e on Foundations of Software Te
hnology and Theoreti
al ComputerS
ien
e, Vol. 1738 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, 1999,pp. 110{121.A Alternating Automata with �-movesAn alternating automaton with �-moves A = h�; Q; q0; �; F i is very similar tothe alternating automata de�ned in Se
tion 2. The only di�eren
e is that it
an pose demands also on the same lo
ation in the word and not only on thenext lo
ation. Formally, the transition fun
tion � : Q � � ! B+(f0; 1g � Q)has every state labeled by the dire
tion 0 or 1. The run of su
h an automatonis still a labeled tree (T; r). The depth in the tree no longer
orresponds to thelo
ation in the word. Thus,the labeling r asso
iates with every node x 2 T apair (q; i) 2 Q� N where q is the state and i is the lo
ation in w.A run of su
h an automaton on a �nite word w = w0; : : : ; wm�1 is a

epting ifall the labels are in S � f0 : : :mg and all the nodes labeled by lo
ation m areleaves labeled by a

epting states. A run of su
h an automaton on an in�niteword is a

epting if all in�nite paths visit F � N in�nitely often.B 2NFA to 1AFA with �-movesAs one may expe
t, the
onstru
tion with �-moves is very similar to the pre-vious
onstru
tion. Instead of guessing in one step all the visits to the nextletter, we guess whether there exists another visit to this letter. In su
h a
ase, the automaton spawns two states, a singleton state that is responsible29

for the rest of the run and a pair-state that is responsible for the
onne
-tion between the
urrent state and the next visit to the same letter. The runsegment
onne
ting the two may not visit letters before the
urrent letter.Spawning states that
an read the same letter has two advantages. We do nothave to use the notion of forward states and ba
kward states. A state readingletter i in the run of the 2NFA reads letter i in the run of the 1AFA (unlikebefore where we have ba
kward states reading letter j � 1 in the run of the2NFA asso
iated with letter j in the run of the 1AFA). We
an also treat�-moves of the 2NFA very easily, by having �-moves of the 1AFA.On the other hand, we have a problem
he
king ba
kward moves. When the1AFA follows a ba
kward move it does not know the letter the move dependson. In order to solve this problem we introdu
e states of the form s! t for sand t states of the 2NFA. Su
h a state means that we
an get from state s tostate t by a sequen
e of �-moves followed by one ba
kward move 4 .Given a 2NFA N = h�; S; s0; Æ; F i we
onstru
t an 1AFA with �-moves A =h�; Q; s0; �; F i su
h that L(A) = L(N). Our 1AFA uses the initial state andthe a

eptan
e set of the 2NFA. The set of states is Q = (S [(S�S))[fs!t j s; t 2 Sg, and the transition fun
tion � is de�ned for every state in Q andletter in � as follows.
�(t; a) =_8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(s;0)2Æ(t;a)(s; 0)Ws2S((t; s); 0) ^ (s; 0)W(s;1)2Æ(t;a)(s; 1)In state t reading letter i the 1AFA
an (a) move using an �-move of N, (b)guess that there is some other visit to letter i in state s and spawn two states(t; s) and s both reading letter i, or (
) guess that there is no other visit to
4 Noti
e that if j�j < jSj2 it makes more sense to guess the next letter,
he
k thatusing the guessed letter we
an get from s to t using �-moves and one ba
kwardmove. Finally, make sure that the next letter is indeed equal to the guessed letter.In parti
ular for 1-letter alphabet, there is no need for adding extra states.30

letter i and use a forward transition of N .
�((t; s); a) = _8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(t1;0)2Æ(t;a)((t1; s); 0)Ws12S((t; s1); 0) ^ ((s1; s); 0)W(t1;1)2Æ(t;a) Ws12S((t1; s1); 1) ^ (s1 ! s; 1)In state (t; s) reading letter i the 1AFA
an (a) move from t using an �-moveof N , (b) guess that there is some visit to letter i between t and s in state s1and spawn two states (t; s1) and (s1; s) both reading letter i, or (
) guess thatthere is no other visit to letter i between t and s and use a forward transitionof N from state t and guess that there is a ba
kward transition moving tostate s. �(s1 ! s; a) = 8>>>>>><>>>>>>: true (s;�1) 2 Æ(s1; a)W(s2;0)2Æ(s1;a)(s2 ! s; 0)From state s1 ! s the automaton either takes an �-move from s1 or a ba
kwardstep from s1 to s, using the next letter.Finally, we repla
e every o

urren
e of (t; t) in � by true.The proof that L(A) = L(N) is very similar to the previous proof. Noti
e thata state appearing in the run of N only on
e, may appear many times in therun of A. When
onverting a run of A into a run of N su
h states should beadded only on
e.Finally, denote jSj = n and jÆj = m. We have, jQj = O(n2) and j�j = O(m�n2).C 2NBW to 2ABW with �-movesWe enhan
e the
onstru
tion in Appendix B to work for 2NBW. Again weannotate ea
h state by ? and >. A singleton state annotated by > means avisit to the a

eptan
e set o

ured in the run segment
onne
ting it to theprevious singleton state. A pair-state annotated by > is a promise to visit thea

eptan
e set in the run segment
onne
ting the two states.31

In the set f?;>g
onsider ? +? = ?, ? + > = > +? = >, and > +> asunde�ned.Given a 2NBW N = h�; S; s0; Æ; F i we
onstru
t an 1ABW with �-movesA = h�; Q; q0; �; F 0i su
h that L(A) = L(N). Where Q = ((S [(S � S)) �f?;>g) [fs ! t j s; t 2 Sg, q0 = (s0;?), F 0 = F � f?g [S � f>g and �is de�ned for every state in Q and letter in � as follows. First we de�ne twofun
tions f� : S � S ! f?;>g where � 2 f?;>g.f?(s; t) = ?f>(s; t) = 8><>:? s 2 F or t 2 F> Otherwise
�((t; �); a) =_8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(s;0)2Æ(t;a)((s;?); 0)Ws2S W�2f?;>g((t; s; f�(t; s)); 0) ^ ((s; �); 0)W(s;1)2Æ(t;a)((s;?); 1)
�((t; s; �); a) = _8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(t1;0)2Æ(t;a)((t1; s; f�(t1; s)); 0)Ws12S W�1+�2=�((t; s1; f�1(t; s1)); 0) ^ ((s1; s; f�2(s1; s)); 0)W(t1;1)2Æ(t;a) Ws12S((t1; s1; f�(t1; s1)); 1) ^ (s1 ! s; 1)�(s1 ! s; a) = 8>>>>>><>>>>>>: true (s;�1) 2 Æ(s1; a)W(s2;0)2Æ(s1;a)(s2 ! s; 0)Finally, we repla
e in � every o

urren
e of (t; t;>) and (f; f;?) where f 2 Fby true.Again the proof that L(A) = L(N) is not very di�erent from previous proofs.If we denote jSj = n and jÆj = m, we have, jQj = O(n2) and j�j = O(m � n2).The
onstru
tion of the weak automaton that
omplements A is not modi�ed32

by the presen
e of �-moves. Formally, A = h�; Q0; q00; �; F 0i whereQ0 = (S � S � f?;>g) [(S � f?;>g � [2n℄) [fs! tgq0 = (s0;?; 2n)F 0 = (S � f?;>g � [2n℄odd) [(S � S � f?;>g) [fs! tg�((t; �; i); a) = release(e�((t; �); a); i)�((t; s; �); a) = e�((t; s; �); a)The partition in
ludes S � S � f?;>g and fs! tg as the minimal sets.The size analysis does not
hange and we still have jQ0j = O(n2) and j�j =O(m � n2).

33

