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From its very ineption, one fundamental theme in automata theory is thequest for understanding the relative power of the various onstruts of thetheory. Perhaps the most fundamental result of automata theory is the ro-bustness of the lass of regular languages, the lass of languages de�nable bymeans of �nite automata. Rabin and Sott showed in their lassial paper thatneither nondeterminism nor bidiretionality hanges the expressive power of�nite automata; that is, nondeterministi 2-way automata and deterministi1-way automata have the same expressive power [20℄. This robustness waslater extended to alternating automata, whih an swith bak and forth be-tween existential and universal modes (nondeterminism is an existential mode)[2,6,15℄.In view of this robustness, the onept of relative expressive power was ex-tended to over also suintness of desription. For example, it is known thatnondeterministi automata and two-way automata are exponentially more su-int than deterministi automata. The language Ln = fuv : u; v 2 f0; 1gn and u 6=vg an be expressed using a 1-way nondeterministi automaton or a 2-waydeterministi automaton of size polynomial in n, but a 1-way deterministiautomaton aepting Ln must be of exponential size (f. [23℄). Alternatingautomata, in turn, are doubly exponentially more suint than deterministiautomata [2,6℄.Consequently, a major line of researh in automata theory is establishing tightsimulation results between di�erent types of automata. For example, given a2-way automaton with n states, Shepherdson showed how to onstrut anequivalent 1-way automaton with 2O(n log(n)) states [22℄. Birget showed howto onstrut an equivalent 1-way automaton with 23n states [1℄ (see also [8℄).Vardi onstruted the omplementary automaton, an automaton aeptingthe words rejeted by the 2-way automaton, with 22n states [26℄. Birget alsoshowed, via a hain of redutions, that a 2-way nondeterministi automatonan be onverted to a 1-way alternating automaton with quadrati blow-up[1℄. As the onverse eÆient simulation is impossible [15℄, alternation is morepowerful than bidiretionality.Our fous in this paper is on simulation of bidiretionality by alternation.The interest in bidiretionality and alternation is not merely theoretial. Bothonstruts have been shown to be useful in automated reasoning. For exam-ple, reasoning about modal �-alulus with past temporal onnetives requiresalternation and bidiretionality [24,25,28℄. Reently, model heking of spe-i�ations in �-alulus on ontext-free and pre�x-reognizable systems hasbeen redued to questions about 2-way automata [14℄. In a di�erent �eld ofresearh, 2-way automata were used in query proessing over semistrutureddata [4℄.We found Birget's onstrution, simulating bidiretionality by alternation with2



quadrati blow-up, unsatisfatory. As noted, his onstrution is indiret, usinga hain of redutions. In partiular, it uses the reverse language and, onse-quently, an not be extended to automata on in�nite words. The theory of�nite automata on in�nite objets was established in the 1960s by B�uhi, M-Naughton and Rabin [3,16,19℄. They were motivated by deision problems inmathematial logi. More reently, automata on in�nite words have shown tobe useful in omputer-aided veri�ation [12,30℄. We note that bidiretional-ity does not add expressive power also in the ontext of automata on in�nitewords. Vardi has already shown that given a 2-way nondeterministi B�uhi au-tomaton with n states one an onstrut an equivalent 1-way nondeterministiB�uhi automaton with 2O(n2) states [25℄.Our main result in this paper is a diret quadrati simulation of bidiretional-ity by alternation. Given a 2-way nondeterministi automaton with n states,we onstrut an equivalent 1-way alternating automaton with O(n2) states.Unlike Birget's onstrution, our onstrution is expliit. This has two ad-vantages. First, one an see exatly how alternation an eÆiently simulatebidiretionality. (In order to onvert the nondeterministi automaton into analternating automaton we use the fat that the run of the 2-way nondetermin-isti automaton looks like a tree of \zigzags" 2 . We analyze the form suh atree an take and reognize, using an alternating automaton, when suh a treeexists.) Seond, the expliitness of the onstrution enables us to extend it toB�uhi automata. Sine it is known how to simulate alternating B�uhi automataby nondeterministi B�uhi automata with exponential blow-up [17℄, our on-strution provides another proof of the result that a 2-way nondeterministiB�uhi automaton with n states an be simulated by a 1-way nondeterministiB�uhi with 2O(n2) states [25℄.We also show how to obtain, still with quadrati blow-up, a 1-way alternatingautomaton for the omplementary language. This is trivial for automata on�nite words, but not for automata on in�nite words. Finally, we show how touse our onstrution for 2-way nondeterministi Rabin and parity automata,avoiding an unneessary blow up that results from �rst onverting those into2-way nondeterministi B�uhi automata.2 PreliminariesWe onsider �nite or in�nite sequenes of symbols from some �nite alphabet�. Given a word w, an element in ��[�!, we denote by wi the ith letter of theword w. The length of w is denoted by jwj and is de�ned to be ! for in�nite2 The analysis of the form of the \zigzags" is similar to the analysis of runs ofpushdown-automata done in [21,29℄. 3



words.A 2-way nondeterministi automaton is N = h�; S; s0; Æ; F i, where � is the�nite alphabet, S is the �nite set of states, s0 2 S is the initial state, Æ :S��! 2S�f�1;0;1g is the transition funtion, and F is the aeptane set. Wean run N either on �nite words (2-way nondeterministi �nite automaton or2NFA for short) or on in�nite words (2-way nondeterministi B�uhi automatonor 2NBW for short).A run on a �nite word w = w0; :::; wl is a �nite sequene of states and loations(t0; i0), (t1; i1), : : :, (tm; im) 2 (S � f0; :::; l + 1g)�. The pair (tj; ij) representsthe automaton is in state tj reading letter ij. Formally, t0 = s0, i0 = 0, forall 0 � j < m, we have ij 2 f0; :::; lg, and im 2 f0; :::; l + 1g. Finally, for all0 � j < m, we have (tj+1; ij+1� ij) 2 Æ(tj; wij). A run is aepting if im = l+1and tm 2 F .A run on an in�nite word w = w0; w1; ::: is de�ned similarly as an in�nitesequene. The restrition on the loations is removed (for all j, the loationij an be every number in N). In 2NBW, a run is aepting if it visits F � Nin�nitely often. A word w is aepted by N if it has an aepting run over w.The language of N is the set of words aepted by N , denoted by L(N).A 2-way nondeterministi parity (Rabin) automaton (2NPW and 2NRW forshort) is N = h�; S; s0; Æ; �i where �; S; s0 and Æ are like before and � =fF1; :::; Fmg is a partition of S (� = fhG1; B1i; :::; hGm; Bmig is a subset of2S � 2S). The index of the automaton is the number of sets (pairs) in itsaeptane ondition. A run of a 2NPW or a 2NRW is just like a run of a2NBW. A run r of a 2NPW is aepting if the minimal index 1 � i � m suhthat r visits Fi� N in�nitely is even. A run r of a 2NRW is aepting if thereexists an i, 1 � i � m suh that r visits Gi � N in�nitely often and Bi � Nonly �nitely often.In the �nite ase we are only interested in runs in whih the same state inthe same position does not repeat twie during the run. In the in�nite asewe minimize the amount of repetition to the unavoidable minimum. A runr = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) on a �nite word is simple if for all j andk suh that j < k, either sj 6= sk or ij 6= ik. A run r = (s0; 0); (s1; i1); (s2; i2); :::on an in�nite word is simple if one of the following holds (1) For all j < k, eithersj 6= sk or ij 6= ik. (2) There exists l; m 2 N suh that for all h < p < l +m,either sh 6= sp or ih 6= ip, and for all f � l; sf = sf+m and if = if+m.We show that there exists an aepting run i� there exists a simple aeptingrun.Claim 1 An automaton N (either 2NFA, 2NBW , 2NPW , or 2NRW ) a-epts a word w i� it aepts it with a simple run.4



Proof. For all automata, a simple run is in partiular a run. Given an a-epting run r = (s0; 0); (s1; i1); : : : of A on w, we onstrut a simple run of Non w.Case 1 N is a 2NFAThe run r is �nite and ends in some pair (sm; im). If r is not simple, thereare some j and k suh that j < k, sj = sk and ij = ik, onsider the sequene(s0; 0); :::; (sj; ij); (sk+1; ik+1); :::; (sm; im): Sine (sk+1; ik+1�ik) 2 Æ(sk; aik) andÆ(sk; aik) = Æ(sj; aij ) this sequene is still a run. The last state sm is a memberof F and im = jwj hene the run is aepting. Sine the run is �nite, �nitelymany repetitions of the above operation result in a simple run of A on w.Case 2 N is a 2NBWWe annot simply remove sequenes of states like we did in the �nite ase,sine the visits to F may be hidden in these parts of the run. If for somej < k, we have that sj = sk; ij = ik, and for all j � p � k we have sp =2 F (noaepting state ourring), we an simply remove this part. We have to showthat the limit of all these hanges stays a valid and aepting run.Note that we hange the run only between ourrenes of states from F . Sowe an divide the run into segments. In eah segment the �rst state is fromF and no states from F our elsewhere. As states from F our in�nitelyoften in the run we have in�nitely many segments. Eah of these segmentsis hanged a �nite number of times, the �rst state of the segment does nothange nor does the last state of the segment. Gluing the segments togetherfor a run after performing the hanges results in a valid run (the �rst and thelast state in every segment do not hange). As every segment starts with astate from F and there are in�nitely many segments the run is still aepting.Now if there exists some j < k suh that sj = sk and ij = ik we onludethat there is a visit to F between the two. We take the minimal j and k andreate the run (s0; 0) , : : : , (sj�1; ij�1) , ((sj; ij); : : : ; (sk�1; ik�1))!. Again thisis a valid run and it visits F in�nitely often (between sj and sk�1). If no suhj and k exist the run is simple.Case 3 N is a 2NRWThis ase is very similar to the 2NBW ase. There is some index  suh thatthe set G is visited in�nitely often and the set B is visited �nitely often.Let (sd; id) denote the �rst visit to G after whih there are no visits to B. Forall j < k < d suh that sj = sk and ij = ik we remove the segment of the runbetween sj and sk�1. The run learly stays valid and aepting (�nite numberof hanges). Now just like for B�uhi automata, we identify all loations j < k5



for whih sj = sk and ij = ik and for all j � p � k we have sp =2 G. Theserun segments are removed from the run. As before, the run obtained in thelimit stays valid and aepting.Finally, if there exists some j < k suh that sj = sk and ij = ik we onludethat there is a visit to G between the two. Clearly B annot our betweensj and sk and the segment an be onverted into an aepting loop.The ase that n is a 2NPW is treated similarly. The set F takes the role ofG and S0< F takes the role of B. 2Given a set S we �rst de�ne the set B+(S) as the set of all positive formulasover the set S with true and false (i.e., for all s 2 S, s is a formula and if f1and f2 are formulas, so are f1 ^ f2 and f1 _ f2). We say that a subset S 0 � Ssatis�es a formula ' 2 B+(S) (denoted S 0 j= ') if by assigning true to allmembers of S 0 and false to all members of S n S 0 the formula ' evaluates totrue. Clearly true is satis�ed by the empty set and false annot be satis�ed.Given a formula f 2 B+(S), we dualize f by replaing ^ by _, true by falseand vie versa. The dual of f is denoted ef .A tree is a set T � N� suh that if x �  2 T where x 2 N� and  2 N , thenalso x 2 T . The elements of T are alled nodes, and the empty word � is theroot of T . For every x 2 T , the nodes x �  where  2 N are the suessorsof x. Thus, suessors in our notation are only the immediate suessors. Thenodes x � y where y 2 N� are the desendants of x. A node is a leaf if it has nosuessors. A path � of a tree T is a set � � T suh that � 2 � and for everyx 2 �, either x is a leaf or there exists a unique  2 N suh that x �  2 �.Given an alphabet �, a �-labeled tree is a pair (T; V ) where T is a tree andV : T ! � maps eah node of T to a letter in �.A 1-way alternating automaton is A = h�; Q; q0; �; F i where �, Q, q0, and Fare like in nondeterministi automata and � : S�� ! B+(Q) is the transitionfuntion. Again we may run A on �nite words (1-way alternating automata on�nite words or 1AFA for short) or on in�nite words (1-way alternating B�uhi(o-B�uhi) automata or 1ABW (1ACW) for short).A run of A on a �nite word w = w0:::wl is a labeled tree (T; r) where r : T ! Q.The maximal depth in the tree is l+1. A node x labeled by q desribes a opyof the automaton in state q reading letter wjxj. The labels of a node and itssuessors have to satisfy the transition funtion �. Formally, r(�) = q0 andfor all nodes x with r(x) = q and �(q; wjxj) = ' there is a (possibly empty) setfq1; :::; qng j= ' suh that there are n suessors to x, fx � 0; : : : ; x � (n � 1)gand x � is labeled by q+1 for 0 �  < n. In partiular, there an not appear inthe run a node x for whih �(r(x); wjxj) = false. Clearly, no set of states ansatisfy false. The run is aepting if all the leaves in depth l + 1 are labeled6



by states from F . Note that if x is a leaf suh that jxj � l, it must be thease that �(r(x); wjxj) = true. The formula true is the unique formula thatis satis�ed by the empty set.A run of A on an in�nite word w = w0w1::: is de�ned similarly as a (possibly)in�nite labeled tree. A run of a 1ABW is aepting if every in�nite path visitsthe aepting set in�nitely often. A run of a 1ACW is aepting if every in�nitepath visits the aepting set �nitely often. For a �nite path, the end of thepath is some leaf x suh that �(r(x); wjxj) = true. Thus, �nite paths do nothave to supply other demands. As before, a word w is aepted by A if it hasan aepting run over the word. We similarly de�ne the language of A; L(A).Given an 1AFA A = h�; Q; q0; �; F i, the dual ofA is the 1AFA eA = h�; Q; q0; e�;QnF i where e�(q; a) is the dual of �(q; a). The automata A and eA aept om-plementary languages [6℄, i.e. L( eA) = �� n L(A). The dualization inludes re-plaing the aeptane ondition F by its omplement Q nF . Similarly, givenan 1ABW the dualization of the aeptane ondition amounts to hangingthe aeptane mode from B�uhi to o-B�uhi. Thus, given an 1ABW A =h�; Q; q0; �; F i, the dual of A is the 1ACW eA = h�; Q; q0; e�; F i. Again the au-tomata A and eA aept omplementary languages [18℄, i.e. L( eA) = �! nL(A).Note that dualizing an 1AFA results in an 1AFA and dualizing an 1ABWresults in an 1ACW. Thus, �nding the 1AFA omplement of an 1AFA is quitesimple, while �nding the 1ABW omplement of an 1ABW involves a quadrationstrution [13℄ 3 .We also onsider weak alternating automata. A weak alternating automaton(1AWW) is a 1ABW where the set of states Q is partitioned into disjoint sets,Qi, suh that for eah set Qi, either Qi � F , in whih ase Qi is an aeptingset, or Qi \ F = ;, in whih ase Qi is a rejeting set. In addition there existsa partial order � on the olletion of the Qi's suh that for every q 2 Qi andq0 2 Qj for whih q0 ours in Æ(q; a), for some a 2 �, we have Qj � Qi.Thus, transitions from a state in Qi lead to states in either the same Qi or alower one. It follows that every in�nite path of a run of a 1AWW ultimatelygets \trapped" within some set Qi. The path then satis�es the aeptaneondition F if and only if Qi is an aepting set. Thus, we an view 1AWWwith aeptane ondition F as both a 1ABW with aeptane ondition F ,and a 1ACW with aeptane ondition Q n F .
3 Kupferman and Vardi also prove that this onstrution an not be improved tolinear [13℄. 7



3 Automata on Finite WordsWe start by transforming 2NFA to 1AFA. We analyze the possible form of anaepting run of a 2NFA and using a 1AFA hek when suh a run exists overa word.The onstrution onsists of two stages, in the �rst stage we restrit the au-tomaton so that it an move either forward or bakward (and not stay in thesame plae). In the seond stage we onvert this `always moving' automatoninto an alternating automaton.Theorem 2 For every 2NFA N = h�; S; s0; Æ; F i with n states, there exist1AFA A and A0 with O(n2) states suh that L(A) = L(N) and L(A0) =�� n L(N).Note that if we further onvert the 1AFAs into 1NFAs we get automata with2O(n2) states. The onstrutions of Vardi and Birget [26,1℄ produe smallerautomata.3.1 Removing �-movesAn �-move in a run of a 2NFA is when two adjaent pairs have the samehead position. Formally, in the run (s0; 0); (s1; i1); :::; (sm; im), step j > 0 is an�-move if ij = ij�1.Our �rst onversion is from N = h�; S; s0; Æ; F i with Æ : S � � ! 2S�f�1;0;1gto an equivalent N 0 = h�; S; s0; Æ0; F i with Æ0 : S 0 � � ! 2S�f�1;1g suh thatL(N) = L(N 0). There are no �-moves in the runs of N 0.We start by de�ning for eah state s and alphabet letter a, the set Csa of allstates reahable from s by a sequene of �-moves reading letter a and one lastforward/bakward move.Csa = 8>>>>><>>>>>:(t;�) 2 S � f�1; 1g �����������9(t0; :::; tk) 2 S+ suh thatt0 = s; 81 � j � k; (tj; 0) 2 Æ(tj�1; a);and (t;�) 2 Æ(tk; a)
9>>>>>=>>>>>;De�ne Æ0(s; a) = Csa.Claim 3 L(N) = L(N 0) 8



Proof. Suppose N aepts w. Let r = (s0; 0); :::; (sm; im) be an aepting runof N on w. We turn r into a run r0 of N 0 on w by pruning �-moves: if ij = ij�1simply remove (sj; ij) from the run. It is easy to see that r0 is an aeptingrun of N 0 on w.Suppose N 0 aepts w. Let r0 = (s0; 0); :::; (sm; im) be an aepting run of N 0on w. We append the �-moves from the appropriate sets Csa to omplete a runof N on w. 23.2 Two-way runsFrom this point on we onsider only 2NFAs with no �-moves. Given a 2NFAN = h�; S; s0; Æ; F i, let A = h�; Q; s0; �; F i denote its equivalent 1AFA. Notethat A uses the same aeptane set and initial state as N .Reall that a run of N is a sequene r = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) ofpairs of states and loations, where sj is the state and ij is the loation of theautomaton in the word w. We refer to eah state as a forward or bakwardstate aording to its predeessor in the run. If it resulted from a bakwardmovement it is a bakward state and if from a forward movement it is a forwardstate. Formally, (sj; ij) is a forward state if ij = ij�1 + 1 and bakward stateif ij = ij�1 � 1. The �rst state (s0; 0) is de�ned to be a forward state.Given the 2NFA N our goal is to onstrut the 1AFA A reognizing the samelanguage. In Figure 1a we see that a run of N takes the form of a tree of`zigzags'. Our one-way automaton reads words moving forward and aepts ifsuh a tree exists. In Figure 1a we see that there are two transitions using a1.The �rst (s2; 1) 2 Æ(s1; a1) and the seond (s4; 1) 2 Æ(s3; a1). In the one-waysweep we would like to make sure that s3 indeed resulted from s2 and thatthe run ontinuing from s3 to s4 and further is aepting. Hene when in states1 reading letter a1 we guess that there is a part of the run oming from thefuture and spawn two proesses. The �rst heks that s1 indeed results in s3and the seond ensures that the part s3; s4; ::: of the run is aepting.Hene the state set of the alternating automaton isQ = S[(S�S). A singletonstate s 2 Q represents a part of the run that is only looking forward (s4 inFigure 1a). In fat, we use singleton states to represent only the last forwardstate in the run of A that visits a letter. A pair state (s1; s3) 2 Q representsa part of the run that onsists of a forward moving state and a bakwardmoving state (s1 and s3 in Figure 1a). Suh a pair ensures that there is a runsegment linking the forward state to the bakward state. We introdue onemodi�ation, sine s3 is a bakward state (i.e. (s3;�1) 2 Æ(s2; a2)) it makessense to assoiate it with a2 and not with a1. As the alternating automatonreads a1 (when in state s1), it guesses that s3 omes from the future and9
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s1s2s3a0 a1 a2 a3 a4 a5Fig. 1. (a) A zigzag run (b) The transition at the singleton state thanges diretion. The alternating automaton then spawns two proesses: the�rst, s4 and the seond, (s2; s3); and both read a2. Then it is easier to hekthat (s3;�1) 2 Æ(s2; a2).3.3 The Constrution3.3.1 The transition at a singleton stateWe de�ne the transitions of A in two stages. First we de�ne transitions froma singleton state. When in a singleton state t 2 Q reading letter aj (SeeFigure 1b) the alternating automaton guesses that there are going to be kmore visits to letter aj in the rest of the run (as the run is simple, k is boundedby the number of states of the 2NFA N). We refer to the states reading letteraj aording to the order they appear in the run as s1; :::; sk. We assumethat all states that read letters prior to aj have already been taken are of,hene s1; :::; sk themselves are bakward states (i.e. (si;�1) 2 Æ(pi; aj+1) forsome pi). They read the letter aj and move forward (there exists some tisuh that (ti; 1) 2 Æ(si; aj)). Denote the suessors of s1; :::; sk by t1; :::; tk.The alternating automaton veri�es that there is a run segment onneting thesuessor of t (denoted t0) to s1 (by indution, all states reading letters beforeaj have been taken are of, this run segment should not go bak to lettersbefore aj). Similarly the alternating automaton veri�es that a run segmentonnets t1 to s2, et. In general the alternating automaton heks that thereis a part of the run onneting ti to si+1. Finally, from tk the run has to readthe rest of the word and reah loation jwj in an aepting state.Given a state t and an alphabet letter a, onsider the set Rta of all possiblesequenes of states of length at most 2n � 1 where no two states in an evenplae (forward states) are equal and no two states in an odd plae (bakwardstates) are equal. We further demand that the �rst state in the sequene be10



a suessor of t ((t0; 1) 2 Æ(t; a)) and similarly that ti be a suessor of si((ti; 1) 2 Æ(si; a)). Formally
Rta = 8>>>>>>>><>>>>>>>>:ht0; s1; t1; :::; sk; tki

��������������
0 � k < n(t0; 1) 2 Æ(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>=>>>>>>>>;The transition ofA hooses one of these sequenes and ensures that all promisesare kept, i.e. there exists a run segment onneting ti�1 to si.�(t; a) = _ht0;s1;:::;sk;tki2Rta(t0; s1) ^ (t1; s2) ^ ::: ^ (tk�1; sk) ^ tk
3.3.2 The transition at a pair stateWhen the alternating automaton is in a pair state (t; s) reading letter aj ittries to �nd a run segment onneting t to s using only the suÆx aj:::ajwj�1.We view t as a forward state reading aj and s as a bakward state reading aj�1(Again (s;�1) 2 Æ(p; aj)). As shown in Figure 2a, the run segment onnetingt to s may visit letter aj but should not visit aj�1.Figure 2b provides a detailed example. The automaton in state (t; s) guessesthat the run segment linking t to s visits a2 twie and that the states readingletter a2 are s1 and s2. The automaton further guesses that the predeessorof s is s3 ((s;�1) 2 Æ(s3; a2)) and that the suessors of t; s1 and s2 aret0; t1 and t2 respetively. The alternating automaton spawns three proesses:(t0; s1); (t1; s2) and (t2; s3) all reading letter a3. Eah of these pair states hasto �nd a run segment onneting the two states.We now de�ne the transition from a state in S � S. Given a state (t; s) andan alphabet letter a, we de�ne the set R(t;s)a of all possible sequenes of statesof length at most 2n where no two states in an even position (forward states)are equal and no two states in an odd position (bakward states) are equal.We further demand that the �rst state in the sequene be a suessor oft ((t0; 1) 2 Æ(t; a)), that the last state in the sequene be a predeessor ofs ((s;�1) 2 Æ(sk+1; a)) and similarly that ti be a suessor of si ((ti; 1) 2Æ(si; a)). 11
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Fig. 2. (a) Di�erent onneting segments (b) The transition at the pair state (t; s)
R(t;s)a = 8>>>>>>>>>>>><>>>>>>>>>>>>:ht0; s1; t1; :::; sk; tk; sk+1i

������������������
0 � k < n(t0; 1) 2 Æ(t; a)(s;�1) 2 Æ(sk+1; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>>>>>=>>>>>>>>>>>>;The transition of A hooses one sequene and ensures that all pairs meet:
�((t; s); a) = 8>>>>>><>>>>>>: true If (s;�1) 2 Æ(t; a)Wht0;s1;:::;tk;sk+1i2R(t;s)a (t0; s1) ^ (t1; s2) ^ ::: ^ (tk; sk+1) Otherwise3.4 Proof of orretnessTo onlude, the omplete desription of A is h�; Q; s0; �; F i where the initialstate and the set of aepting states is equal to that of N and � is as de�ned.All the pair-labeled paths in a run of A have to terminate \before falling of12



the edge of the tape" and the singleton-labeled path must \fall o�" with anaepting state.Claim 4 L(A) = L(N)Proof. Given an aepting simple run of N on a word w of the form (s0; 0),(s1; i1), : : : ; (sm; im), we annotate eah pair by the plae it took in the runof N . Thus the run takes the form (s0; 0; 0), (s1; i1; 1), : : : ; (sm; im; m). Webuild a run tree (T; r0) of A by indution. In addition to the labeling r0 : T !S [ (S�S), we attah a single tag to a singleton state and a pair of tags to apair state. The tags are triplets from the annotated run of N . For example theroot of the run tree of A is labeled by s0 and tagged by (s0; 0; 0). The labelingand the tagging onform to the following:� A node x labeled by state s is tagged by (s; i; j) with i = jxj. We build thetree so that all triplets in the run of N whose third element is larger thanj have their seond element at least i.� A node x labeled by state (t; s) is tagged by (t; i1; j1) and (s; i2; j2) withi1 = jxj, i2 = jxj � 1, and j1 < j2. We build the tree so that all triplets inthe run of N whose third element is between j1 and j2 have their seondelement be at least i1.We start with the root labeling it by s0 and tagging it by (s0; 0; 0). Obviouslythis onforms to our demands.Given a node x labeled by t, tagged by (t; i; j), and adhering to our demands(see state t in Figure 1b). If (t; i; j) has no suessor in the run of N , it mustbe the ase that i = jwj and that t 2 F . Otherwise we denote the triplets inthe run of N whose third element is larger than j and whose seond elementis i by (s1; i; j1); :::; (sk; i; jk). By assumption there is no point in the run ofN beyond j visiting a letter before i. Sine the run is simple, k < n. Denoteby (t0; i+ 1; j + 1) the suessor of (t; i; j) and by (t1; i+ 1; j1 + 1); :::; (tk; i+1; jk + 1) the suessors of s1; :::; sk. We add k+ 1 suessors to x, label them(t0; s1); (t1; s2); :::; (tk�1; sk); tk, to a suessor of x labeled by (tl�1; sl) we addthe tags (tl�1; i + 1; jl�1 + 1) and (sl; i; jl), and to the suessor of x labeledby tk we add the tag (tk; i+ 1; jk + 1).We now show that the new nodes added to the tree onform to our demands.By assumption there are no visits beyond the jth step in the run of N to lettersbefore ai and s1; :::; sk are all the visits to ai after the jth step of N .Let y be the suessor of x labeled tk (tagged (tk; i+1; jk + 1)). Sine jxj = i,we onlude jyj = i + 1. All the triplets in the run of N appearing after(tk; i+ 1; jk + 1) do not visit letters before ai+1 (We olleted all visits to ai).13



Let y be a suessor of x labeled by (tl; sl+1) (tagged (tl; i + 1; jl + 1) and(sl+1; i; jl+1)). We know that i = jxj hene i + 1 = jyj; jl + 1 < jl+1 andbetween the jl+1 element in the run of N and the jl+1 element letters beforeai+1 are not visited.We turn to ontinuing the tree below a node labeled by a pair state. Given anode x labeled by (t; s) tagged (t; i; j) and (s; i � 1; k). By assumption thereare no visits to ai�1 in the run of N between the jth triplet and kth triplet.If k = j + 1 then we are done and we leave this node as a leaf. Otherwise wedenote the triplets in the run of N whose third element is between j and k andwhose seond element is i by (s1; i; j1); :::; (sm; i; jm) (see Figure 2b). Denoteby (t1; i + 1; j1 + 1); :::; (tm; i + 1; jm + 1) their suessors, by (t0; i + 1; j + 1)the suessor of t and by (sm+1; i; k � 1) the predeessor of s. We add m + 1suessors to x and label them (t0; s1); (t1; s2); :::; (tm; sm+1). To a suessorof x labeled by (tl�1; sl) we add the tags (tl�1; i + 1; jl�1 + 1) and (sl; i; jl).As in the previous ase when we ombine the assumption with the way wehose t0; :::tm and s1; :::; sm+1, we onlude that the new nodes onform to thedemands.Clearly, all pair-labeled paths terminate with true before reading the wholeword w and the path labeled by singleton states reahes the end of w with anaepting state.In the other diretion we streth the tree run of A into a linear run of N .Let (T; r0) be an aepting run of A on a word w. We assume ordering onthe suessors of eah node aording to the appearane of their labels in thetransition of A. The reursive algorithm in Figure 3 onstruts an aeptingrun of N . When �rst reahing a node x labeled by pair state (t; s), we add t tothe run of N . Then we handle reursively the hildren of x. When we returnto x we add s to the run of N . When reahing a node x labeled by a singletonstate s we simply add s to the run of N and handle the sons of x reursively.build run (x; r0(x) = s; i) build run (x; r0(x) = (t; s); i)r := r � hs; ii; r := r � ht; ii;for all sons x � a of x for all sons x � a of xbuild run (x � a; r0(x � a); i + 1) build run (x � a; r0(x � a); i+ 1)End (for loop) End (for loop)r := r � hs; i� 1i;Fig. 3. Converting a run of A into a run of NStarting from the root � labeled (s0; 0), we add to the run of N the element(s0; 0). We now handle the suessors of the root aording to their order.14



Going up to the �rst suessor  labeled (t; s) we add (t; 1) to the run of N .Obviously from the de�nition of Rs0a0 we know that (t; 1) 2 Æ(s0; a0). We handlethe suessors of  in reursion. When we return to  we add (s; 0) to the runof N (to be justi�ed later). We return now to � and handle the next suessord. The node d is either labeled by (p; q) or by p. In both ases the de�nitionof Rs0a0 ensures that (p; 1) 2 Æ(s; a0). When we return to � after sanning thewhole tree the run of N is omplete.Getting to a node x labeled (t; s) we add (t; jxj) to the run of x. Adding (t; jxj)itself and passing to the suessors of x and between them was justi�ed whenhandling the root. When the reursion �nished handling the last suessor of xwe add (s; jxj�1) to the run of N . Suppose the last suessor of x was labeled(p; q) then from the de�nition of R(t;s)ajxj we know that (s;�1) 2 Æ(q; ajxj) henethis transition is justi�ed.Getting to a node x labeled s is not di�erent from handling the root. Insteadof using the loations 0 and 1 in the run, we use loations jxj and jxj+ 1.We have to show that the run is valid and aepting. Satisfying the transitionwas shown. In the tree run of A there is a single path labeled solely by singletonstates. The last element in the run of N is the same state and reading the sameletter as the last in this path. Sine the path is aepting the last state there hasto be from F and reading letter jwj (whih does not exists, w = a0:::ajwj�1).All other states in the run of N read letters in the range f0; :::; jwj � 1g.Otherwise there is some node x in the run of A suh that jxj � jwj (otherthan the previously designated node). This is impossible sine the run of A isaepting. 2As mentioned in Setion 2 omplementing an 1AFA is simple. The omplementof A is eA = h�; Q; s0; e�;Q n F i. As L(A) = L(N), L( eA) = �� n L(N).4 Automata on in�nite wordsWe may try to run the 1AFA from Setion 3 on in�nite words. We demandthat pair-labeled paths be �nite and that the in�nite singleton-labeled pathvisit F in�nitely often. Although an aepting run of N visited F in�nitelyoften we annot ensure in�nitely many visits to F on the in�nite path. Thevisits may be reeted in the run of A in the pair-labeled paths. Anotherproblem is when the run ends in a loop.Theorem 5 For every 2NBW N = h�; S; s0; Æ; F i with n states, there exist1ABWs A and A0 with O(n2) states suh that L(A) = L(N) and L(A0) =15



�! n L(N).4.1 Removing �-movesLike in the �nite ase we �rst redue the problem to automata without �-moves. Given an automaton N = h�; S; s0; Æ; F i where Æ : S��! 2S�f�1;0;1gwe would like to remove all the �-moves. There are two potential problems,visits to F in an �-move and a loop of �-moves that visits F . We double thenumber of states and add an aepting sink state N 0 = h�; (S � f?;>g) [fAg; (s0;?); Æ0; (F�f?g)[(S�f>g)[fAgi. A sequene like : : : ; ((s;?); i); ((s0;>); i+1); : : : in the run means that in the run of N between the appearane of (s; i)and (s0; i + 1) there was an �-move that visited F . Similarly ? means that�-moves (if oured) have not visited F (in [31,9℄ similar problems are solvedin a similar way).Given a state s and an alphabet letter a, we de�ne NCsa the set of all statesreahable from state s by a sequene of �-moves reading letter a and one lastforward/bakward step. All states avoid the aeptane set F .
NCsa = 8>>>>>>>><>>>>>>>>:((t;?);�) 2 ((S � f?g)� f�1; 1g) ��������������

9(t0; :::; tk) 2 S+ s.t. t0 = s;81 � j � k; (tj; 0) 2 Æ(tj�1; a);tj =2 F;and (t;�) 2 Æ(tk; a)
9>>>>>>>>=>>>>>>>>;In addition we de�ne ACsa the set of all states reahable from state s by asequene of �-moves reading letter a and one last forward/bakward step. Oneof the states in the sequene is an aepting state.

ACsa = 8>>>>>>>><>>>>>>>>:((t;>);�) 2 ((S � f>g)� f�1; 1g) ��������������
9(t0; :::; tk) 2 S+ s.t. t0 = s;9j > 0 s.t. tj 2 F;81 � j � k; (tj; 0) 2 Æ(tj�1; a)and (t;�) 2 Æ(tk; a)

9>>>>>>>>=>>>>>>>>;We also have to take are of situations where there is a loop of �-moves thatvisits F . The boolean variable ACCEPT sa is set to 1 if suh a sequene existsand to 0 otherwise. Formally, the variable ACCEPT sa is set to 1 i� there existsa sequene (t0; :::; tk) 2 S+ that satis�es all the following onditions.� t0 = s.� There exist j and l suh that 0 � j � l � k, (tj; 0) 2 Æ(tk; a) and tl 2 F .16



� For all j where 1 � j � k, we have (sj; 0) 2 Æ(sj�1; a)We use the two �-losures and the variable de�ned above in the de�nition ofthe transition funtion of the 1NFA N 0.Æ0((s;?); a) = Æ0((s;>); a) = 8><>: f(A; 1)g ACCEPT sa = 1NCsa [ ACsa ACCEPT sa = 0Æ0(A; a) = f(A; 1)gApparently, N 0 is �-move free.Claim 6 L(N')=L(N)Proof. Suppose N aepts w. There exists an aepting run r of N on w. Ifa �nite sequene of �-moves appears in r we simply prune it. If that sequeneontained a visit to F add > to the forward/bakward move at the end of thesequene. If r ends in an in�nite sequene of �-moves, this sequene has a �nitepre�x (si; l); (si+1; l); :::; (si+p; l) suh that si = si+p and, as r is aepting,there is a visit to F in this pre�x. We take the pre�x of the run (s0; 0); :::; (si; l)and add to it the in�nite suÆx (A; l + 1); (A; l + 2); :::. Finally, we addlabels? to all unlabeled states. It is easy to see that the resulting run is a validrun of N 0. It is also an aepting run. If the run ends in a suÆx A! then it islearly aepting. Otherwise, removing sequenes of �-moves replaes a �nitenumber of visits to F by a state labeled by >. As the original run visited Fin�nitely often, so does the run of N 0.Suppose N 0 aepts w. We append �-moves as promised from the de�nition ofNC and AC. If the run ends with an in�nite sequene of A we an add aloop visiting F . In�nitely many ourrenes of > ensure in�nitely many visitsto F . 24.2 The ConstrutionWe have to reord hidden visits to F . This is done by doubling the set ofstates. While in the �nite ase the state set is S [ (S � S), this time we alsoannotate the states by ? and >. Hene Q = (S [ (S � S))� f?;>g. A pairstate labeled by > is a promise to visit the aeptane set. The state (s; t;>)means that in the run segment linking s to t there has to appear a state fromF . A state (s;>) is displaying a visit to F in the zigzags onneting s to theprevious singleton state. The initial state is q0 = (s0;?).17



With the same notation we solve the problem of a loop. We allow a transitionfrom a singleton state to a sequene of pair states. One of the pairs promisesa visit to F . The aeptane set is F 0 = (S � f>g) [ (F � f?g) and thetransition funtion � is de�ned as follows.4.2.1 The transition at a singleton stateJust like in the �nite ase we onsider all possible sequenes of states of lengthat most 2n� 1 with same demands.
Rta = 8>>>>>>>><>>>>>>>>:ht0; s1; t1; :::; sk; tki

��������������
0 � k < n(t0; 1) 2 Æ(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>=>>>>>>>>;Reall that a sequene (t0; s1); (t1; s2); :::; (tk�1; sk); tk heks that there is azigzag run segment linking t0 to tk. We mentioned that tk is annotated with> in ase this run segment has a visit to F . If tk is annotated with >, at leastone of the pairs has to be annotated with >. Although more than one pairmay visit F we annotate all other pairs by ?. Hene for k 2 N we onsiderthe sequenes of ? and > of length k+1 in whih if the last is > so is anotherone. Otherwise all are ?.�Rk = 8><>:h�0; :::; �ki 2 f?;>gk+1 ������� If �k = > then 9!i s.t. 0 � i < k and �i = >If �k = ? then 8 0 � i < k; �i = ? 9>=>;This is, however, not enough. We have to onsider also the ase of a loop. Theautomaton has to guess that the run terminates with a loop when it reads the�rst letter of w that is read inside the loop. The only states reading this letterinside the loop are bakward states. We onsider pairs of sequenes of at most2n states, where the last state in the two sequenes is equal. This repetitionloses the loop. In both sequenes no two states in an even/odd position areequal. For example, in Figure 4, we see that in state t reading letter a1, thealternating automaton guesses the sequene (t0; s1); (t1; s2) and the sequene(t2; s3); (t3; s2). The last state in both sequenes is s2.More formally, we demand that the �rst state in the �rst sequene be a su-essor of t ((t10; 1) 2 Æ(t; a)), that the �rst state in the seond sequene be asuessor of the last state in the �rst sequene ((t20; 1) 2 Æ(s1k+1; a)), that tpi bea suessor of spi for p 2 f1; 2g ((tpi ; 1) 2 Æ(spi ; a)) and that the last state in the18



a1 a2a0 a3

t t0s1 t1s2 t2s3 t3s2
Fig. 4. A loop�rst sequene be equal to the last state in the seond sequene (s1k+1 = s2l+1).

Lta =
8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
* ht10; s11; t11; :::; s1k; t1k; s1k+1i;ht20; s21; t21; :::; s2l ; t2l ; s2l+1i + ���������������������

0 � k < n; 0 � l < n(t10; 1) 2 Æ(t; a); (t20; 1) 2 Æ(s1k+1; a)8i < j; s1i 6= s1j and t1i 6= t1j8i < j; s2i 6= s2j and t2i 6= t2j8i; 8p; (tpi ; 1) 2 Æ(spi ; a)s1k+1 = s2l+1
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;It is obvious that a visit to F has to our within the loop. Hene we haveto make sure that the run segment onneting one of the pairs in the seondsequene visits F . Hene we annotate one of the pairs (t20; s21); :::; (t2l ; s2l+1) with>. One visit to F is enough hene all other pairs are annotated by ?.�Ll = fh�0; :::; �li 2 f?;>gl+1 j 9!i s.t. �i = >g

The transition of A hooses a sequene in Rta [ Lta and a sequene of ? and>. 19



�((t;?); a) = �((t;>); a) =_ WRta;�Rk (t0; s1; �0) ^ ::: ^ (tk�1; sk; �k�1) ^ (tk; �k)WLta;�Ll 0B� (t10; s11;?) ^ ::: ^ (t1k; s1k+1;?)^(t20; s21; �0) ^ ::: ^ (t2l ; s2l+1; �l) 1CA
4.2.2 The transition at a pair stateIn this ase the only di�erene is the addition of ? and >. The set R(t;s)a isequal to the �nite ase.

R(t;s)a = 8>>>>>>>>>>>><>>>>>>>>>>>>:ht0; s1; t1; :::; sk; tk; sk+1i
������������������
0 � k < n(t0; 1) 2 Æ(t; a)(s;�1) 2 Æ(sk+1; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 Æ(si; a)

9>>>>>>>>>>>>=>>>>>>>>>>>>;In the transition of `top' states we have to make sure that a visit to F indeedours. If the visit oured in this stage the promise (>) an be removed (?).Otherwise the promise must be passed to one of the suessors.�Rs;t;k = 8><>:h�0; :::; �ki 2 f?;>gk+1 ������� If s =2 F and t =2 F then 9!i s.t. �i = >Otherwise 8 0 � i � k; �i = ? 9>=>;The transition of A hooses a sequene of states and a sequene of ? and >.�((t; s;?); a) = 8>><>>: true If (s;�1) 2 Æ(t; a)WR(t;s)a (t0; s1;?) ^ ::: ^ (tk; sk+1;?) Otherwise�((t; s;>); a) = 8>>>>>><>>>>>>: true If (s;�1) 2 Æ(t; a) and(s 2 F or t 2 F )WR(t;s)a ;�Rs;t;k(t0; s1; �0) ^ ::: ^ (tk; sk+1; �k) Otherwise20



4.3 Proof of orretnessThe proof is just an elaboration on the proof of the �nite ase. In both dire-tions we use similar onstrutions. We only have to give speial attention tovisits to the aepting set. As the proofs are almost idential we just highlightthe points of di�erene.Claim 7 L(N)=L(A)Proof. Given an aepting simple run ofN on a word w of the form (s0; 0); (s1; i1); :::we annotate eah pair by the plae it took in the run of N . Thus, the run takesthe form (s0; 0; 0); (s1; i1; 1); :::. If the run does not end in a loop the onstru-tion in the �nite ase works. We have to add the symbols ? and >.When dealing with a node x in the run tree of A labeled by (s; �) tagged by(s; i; j). In the proof of the �nite ase we identi�ed the triplets (s1; i; j1); :::; (sk; i; jk)and (t0; i + 1; j + 1); :::; (tk; i+ 1; jk + 1) and labeled the suessors of x with(t0; s1); :::; (tk�1; sk); tk. If there is no visit to F between j + 1 and jk + 1 weadd to these states ?. Otherwise the visit was between jl+1 and jl+1 for somel (onsider j = j0), in this ase we add > both to tk and to the pair (tl; sl+1),to all other pairs we add ?.When dealing with a node x in the run tree of A labeled by (t; s; �) tagged(t; i; j) and (s; i � 1; k). We identi�ed the set of pairs (t0; s1); :::; (tk; sk+1). Inase � = ? we ontinue just like in the �nite ase. In ase � = > we put itthere beause there was a visit to F between j and k. This visit to F has toour between tl and sl+1 for some l and we pass the obligation to this pair.At some point we reah a visit to F and then the promise is removed.We have now an in�nite run tree of A. All pair-labeled paths are still �nite andthere is one in�nite path labeled by singleton states. Sine every ourreneof > on this path overs a �nite number of visits to F we are ensured that >appears in�nitely often along this path.If the run ends in a loop we have to identify the �rst letter of w read inthis loop. Suppose this letter is i. We build the run tree of A as before untilreahing the node x in level i labeled by a singleton state (s; �) tagged by(s; i; j0). As letter i is visited in the loop there are in�nitely many visits to it.Denote these visits by (s0; i; j0); (s1; i; j1); (s2; i; j2); :::, all bakward states.Let s0 be the �rst state in the sequene above that appears in�nitely often.Denote by (s10; i; j10); : : : ; (s1m; i; j1m) the pre�x of the sequene until the �rstourrene of s0. As the run is simple, there is no other state repeating twiein this pre�x. Similarly denote by (s20; i; j20); : : : (s2p; i; j2p) the sequene of states21



from the �rst ourrene of s0 (exluding the ourrene) to the seond our-rene of s0. Again, as the run is simple there has to be a visit to F betweenloations j10 and j2p in the run of N and p � n. Now denote t10; : : : t1m�1 the su-essors of s10; : : : ; s1m�1, t20 the suessor of s1m, and t21; : : : ; t2p�1 the suessors ofs21; : : : s2p�1. We add m+p suessors to x and label them (t10; s11); : : : (t1m�1; s1m)and (t20; s21); : : : ; (t2p�1; s2p). Obviously, all the onditions required in Lswi areful�lled by this pair of sequenes. There exists some j2h for whih there is avisit to F between loations j2h and j2h+1 in the run of N . We annotate thepair (t2h; s2h+1) by > and all other pairs by ?. We tag a pair (t�d ; s�d+1) by(t�d ; i; j�d + 1) and (s�d ; i; j�d+1).In the other diretion we apply the same reursive algorithm. If the aeptingrun tree of A is in�nite then we never return to � but the run reated is anaepting run of N .If the aepting run tree of A is �nite we have to identify the point in thetree x labeled by a singleton state (s; �) under whih there are no suessorslabeled by singleton states. In this point we identify the loop. There are twopair states below x labeled by (t1; s;?) and (t2; s; �). We start handling thesuessors of x until we �nish handling the suessor labeled (t1; s;?). Then,we put aside the run of N built so far and all it r. Now we build a new run r0starting from the point we stopped. Sine the run of A is �nite the reursionends and the run r0 is �nite. As a �nal step we present r � (r0)! as the new runof N . 2Both in the �nite and the in�nite ase we separated the onstrution into twostages. Namely removing the zero steps and then transforming automata thattake no �-moves. In the �nite ase the �rst stage did not inrease the numberof states. In the in�nite ase the �rst stage doubled the number of states andthen squaring we get approximately 8n2+12n states. We ould atually unitethe two stages of the onstrution into one stage. Suh a onstrution inludesthe �-moves in the de�nition of the sets Ra and La. We believe our onstru-tion is easier to understand, while improving our onstrution to inlude themodi�ation is not so diÆult. Transforming the 2NBW into a 1ABW in onestage results in an automaton with approximately 2n2 + 2n states.Remark 8 In both the �nite and the in�nite ases, we get a 1-way alternat-ing automaton with O(n2) states and transitions of exponential size. Birget'sonstrution also results in exponential-sized transitions [1℄. Globerman andHarel use �-moves in order to redue the transition to polynomial size [8℄.Their onstrution uses the reverse language and an not be applied to in�nitewords. In Appendies B and C, we use �-moves to hange our onstrution sothat it uses only polynomial-sized transitions. We note that the transition sizedoes not a�et the onversion from 1ABW to 1NBW. In the ase of unary22



alphabet, our onstrution, with �-moves, gives a polynomial time algorithmfor heking the emptiness of 2NBW. For 2NFA a log spae algorithm exists[27℄.4.4 Complementing the alternating automatonComplementing an 1ABW is not as easy as omplementing an 1AFA. In the�nite ase dualizing the transition funtion and the aeptane set is enough.In the in�nite ase we an dualize the transition but instead of B�uhi aep-tane we have to use o-B�uhi aeptane. That is, states from the aeptaneset have to appear only �nitely often along every in�nite path [18℄.Kupferman and Vardi [13℄ showed how to omplement alternating automatausing weak alternating automata. Given a 2NBW N with n states, we on-struted a 1ABW A with O(n2) states. If we implement the quadrati on-strution from [13℄ on A we get A0, a 1ABW with O(n4) states aepting theomplementary language of N . We show how to onstrut an 1ABW withO(n2) states whose language is the omplement of N 's language. We reallthe proof in [13℄ and show how to avoid the quadrati prie in our ase. Thefollowing observations about runs of 1ACW are taken from [13℄ with minoradjustments.De�nition 9 [13℄ A tree run (T; r) is memoryless if for all x1; x2 2 T suhthat jx1j = jx2j and r(x1) = r(x2), we have that for all y 2 N� , x1 � y 2 T i�x2 � y 2 T and r(x1 � y) = r(x2 � y).Theorem 10 [7℄ If a o-B�uhi automaton aepts a word w, then there existsa memoryless aepting run on w.We an restrit our attention to memoryless run trees. Hene, the run tree(T; r) an be represented in the form of a direted ayli graph G = (V;E)where V � Q� N and E � S1i=0(Q� fig)� (Q� fi + 1g):V = f(V (x); jxj) j x 2 TgE = f((V (x); jxj); (V (y); jyj)) j x; y 2 T and y suessor of x in TgGiven a (possibly �nite) DAG G0 � G. We de�ne a vertex (s; i) as eventuallysafe in G0 i� only �nitely many verties in G0 are reahable from (s; i). Wede�ne a vertex (s; i) as urrently safe in G0 i� all the verties in G0 reahablefrom (s; i) are not members of F � N .Now de�ne the indutive sequene:� G0 = G 23



� G2i+1 = G2i n f(s; i) j (s; i) is eventually safe in G2ig� G2i+2 = G2i+1 n f(s; i) j (s; i) is urrently safe in G2i+1gDe�nition 11 Border, Ultimate Width(1) Given a graph Gi and a number 0 � p � n the border of p in Gi is thelevel l 2 N suh that for all l0 � l there are at most p verties of the form(s; l0) in Gi. If no suh number exists then we de�ne the border of p inGi to be in�nity.(2) Given a graph Gi the ultimate width of Gi is the minimal number w � nsuh that the border of w in Gi is �nite. We denote the ultimate width ofGi by w(Gi).Lemma 12 [13℄ For every i � 0, either w(G2i) = 0 or w(G2i+2) < w(G2i).In our ase, we have the 1ABW A. Its omplement, the 1ACW eA has the samestate set (S [ (S � S))� f?;>g. The state set of eA an be partitioned intotwo sets, S�f?;>g and S�S�f?;>g. The transition of states of the form(s; t; �) inludes only states from the same set. This set and the aeptaneset do not interset, hene in the graph G1 all the states of this form are`urrently safe' and all of them are missing from G2. We an onlude thatw(G2) � 2jSj. Therefore, if we denote 2jSj by n the graph G2n+2 is �nite andhene G2n+3 is empty.Index the verties in G in the following way:� 2i, if the vertex is eventually safe in G2i� 2i+ 1 if the vertex is urrently safe in G2i+1All indies are in the range f0; : : : ; 2n+ 2g.We denote the set f0; : : : ; kg by [k℄. So we have our o-B�uhi automatoneA = h�; Q; (s0;?); e�; F i where Q = (S [ (S � S))� f?;>g. Kupferman andVardi show how to onstrut a weak alternating automaton with state setQ � [2n + 2℄ that aepts the same language (that is the language of eA, theomplement language of A).We an further redue the number of states. Reall that only pair-states arereahable from pair-states and no pair-state is in the aeptane set. Henewe an de�ne G0 to be G n (S � S � f?;>g � N) i.e. remove from G all thepair labeled states (whih are urrently safe in G). This way all indies are inthe range [2n℄. Furthermore there is no need to multiply all the states in Q by[2n℄. It is enough to multiply S�f?;>g by [2n℄ and onsider (S�S�f?;>gas the minimal set of the weak alternating automaton.To onlude we give the �nal weak alternating automaton aepting the lan-24



guage of eA (the omplement of A). Given A = h�; Q; (s0;?); �; F i whereQ = (S [ (S � S)) � f?;>g we de�ne A = h�; Q0; q00; �; F 0i where Q0 =(S � f?;>g � [2n℄) [ (S � S � f?;>g) where n = 2jSj. We follow the nota-tion from [13℄ and de�ne release : B+(Q)� [2n℄ ! B+(Q0). Given a formula' 2 B+(Q), and a rank i 2 [2n℄, the formula release('; i) is obtained from 'by replaing every atom of the form (s; �) from S � f?;>g by Wl�i(s; �; l).Let e� be the dualization of � then:�((s; �; i); a) = 8><>: release(e�((s; �); a); i) if (s; �) =2 F or i is evenfalse if (s; �) 2 F and i is odd�((s; t; �); a) = e�((s; t; �); a)Finally q00 = (s0;?; 2n) and F 0 = f(s; �; i)ji is oddg [ (S � S � f?;>g).4.5 Parity and Rabin aeptane onditionsOur method works also for 2-way nondeterministi Rabin automata and 2-waynondeterministi Parity automata.Theorem 13 For every 2-way nondeterministi Rabin (parity) automatonN = h�; S; s0; Æ; �i with n states and index m, there exists a 1ABW A withO(n2 �m) states suh that L(A) = L(N).Given a 2NRW N = h�; S; s0; Æ; �i where � = fhG1; B1i; :::; hGm; Bmig withn states it is straightforward to onstrut an equal 2NBW N 0 with O(n �m)states. The onstrution is not di�erent from the onversion of 1-way non-deterministi Rabin automata to 1-way nondeterministi B�uhi automata [5℄.Converting the 2NBW N 0 to a 1ABW A, results in a 1ABW with O(n2 �m2)states.This onstrution an be improved as follows. Build a 1ABW A for N (withoutonstruting N 0 �rst). Multiply the state set of A by the index (and one extraopy) m + 1. The ith opy of the automaton avoids all the states in Bi. Thealternating automaton starts running in opy 0. The transition at a singletonstate in opy 0 inludes also a guess whether to stay in opy 0 or guess thatstates from Bi are not visited again during the run and then move to opyi. We should allow also moving into opy i in the seond sequene in thetransition of a loop. In this ase only the part of the loop itself should avoidBi and should inlude a demand for visiting Gi. The transition at a state fromthe ith opy inludes only states of the same opy. Referene to the aeptingset should be made only outside of opy 0 and in this ase Gi serves as F .25



For 2NPW the hanges to the onstrution are very similar to the ones de-sribed above.5 ConlusionsWe have shown two onstrutions. Both show how to onstrut a 1-way alter-nating automaton that aepts the same language as a 2-way nondeterministiautomaton. The �rst onstrution for automata that work on �nite words andthe seond for automata that work on in�nite words.In the �nite ase omplementation of alternating automata is very easy. Henewe an easily get the automaton reognizing the omplementary language.This automaton an be envisioned as searhing for errors in all the possiblezigzagging run.The number of states of the 1AFA is quadrati in the number of states of the2NFA and the size of the transition is exponential in the size of the originaltransition. If we further onvert our 1AFA into a nondeterministi automatonwe get an automaton with 2O(n2) states. Birget and Vardi [1,26℄ showed thatgiven a 2NFA, it is possible to onstrut 1NFA reognizing the same languageand the omplementary language with 2O(n) states. Given a 2NFA automatonand seeking a 1NFA one should obviously hoose their onstrutions.In the in�nite ase we get similar results. Given a 2NBW with n states weget an 1ABW with O(n2) states. If we use the onstrution in [17℄, we get a1NBW with 2O(n2) states. As mentioned Vardi has already solved this problem[25℄. He shows, given a 2NBW, how to onstrut two 1NBW, one aepting thesame language and one the omplementary language, both with 2O(n2) states.We note that there is an alternative de�nition for alternating automata. Wedenote the previously de�ned alternating automata as type I and de�ne typeII alternating automata as follows. A type II alternating automaton is A =h�; Q; q0; �; F i where �, Q, q0, and F are as before. The transition � : Q�� !2Q assoiates with every state and alphabet letter a subset of the states. Everystate is lassi�ed as either an and state or an or state.A run of a type II alternating automaton is a labeled tree (T; r) where r : T !Q. This time a node satis�es the transition funtion, by having one suessorfor an or state or all suessors for an and state. Formally, if x is labeled byan or state q there exists a unique suessor x �  of x and r(x � ) 2 �(q; wjxj).If x is labeled by an and state t and �(t; wjxj) = ft1; : : : ; tmg then x has msuessors, fx � 0; : : : x � (m � 1)g and r(x � ) = t+1 for 0 �  < m. We getthe transition false if the transition of an or state is the empty set, we get26
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for the rest of the run and a pair-state that is responsible for the onne-tion between the urrent state and the next visit to the same letter. The runsegment onneting the two may not visit letters before the urrent letter.Spawning states that an read the same letter has two advantages. We do nothave to use the notion of forward states and bakward states. A state readingletter i in the run of the 2NFA reads letter i in the run of the 1AFA (unlikebefore where we have bakward states reading letter j � 1 in the run of the2NFA assoiated with letter j in the run of the 1AFA). We an also treat�-moves of the 2NFA very easily, by having �-moves of the 1AFA.On the other hand, we have a problem heking bakward moves. When the1AFA follows a bakward move it does not know the letter the move dependson. In order to solve this problem we introdue states of the form s! t for sand t states of the 2NFA. Suh a state means that we an get from state s tostate t by a sequene of �-moves followed by one bakward move 4 .Given a 2NFA N = h�; S; s0; Æ; F i we onstrut an 1AFA with �-moves A =h�; Q; s0; �; F i suh that L(A) = L(N). Our 1AFA uses the initial state andthe aeptane set of the 2NFA. The set of states is Q = (S [ (S�S))[fs!t j s; t 2 Sg, and the transition funtion � is de�ned for every state in Q andletter in � as follows.
�(t; a) =_8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(s;0)2Æ(t;a)(s; 0)Ws2S((t; s); 0) ^ (s; 0)W(s;1)2Æ(t;a)(s; 1)In state t reading letter i the 1AFA an (a) move using an �-move of N, (b)guess that there is some other visit to letter i in state s and spawn two states(t; s) and s both reading letter i, or () guess that there is no other visit to
4 Notie that if j�j < jSj2 it makes more sense to guess the next letter, hek thatusing the guessed letter we an get from s to t using �-moves and one bakwardmove. Finally, make sure that the next letter is indeed equal to the guessed letter.In partiular for 1-letter alphabet, there is no need for adding extra states.30



letter i and use a forward transition of N .
�((t; s); a) = _8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(t1;0)2Æ(t;a)((t1; s); 0)Ws12S((t; s1); 0) ^ ((s1; s); 0)W(t1;1)2Æ(t;a) Ws12S((t1; s1); 1) ^ (s1 ! s; 1)In state (t; s) reading letter i the 1AFA an (a) move from t using an �-moveof N , (b) guess that there is some visit to letter i between t and s in state s1and spawn two states (t; s1) and (s1; s) both reading letter i, or () guess thatthere is no other visit to letter i between t and s and use a forward transitionof N from state t and guess that there is a bakward transition moving tostate s. �(s1 ! s; a) = 8>>>>>><>>>>>>: true (s;�1) 2 Æ(s1; a)W(s2;0)2Æ(s1;a)(s2 ! s; 0)From state s1 ! s the automaton either takes an �-move from s1 or a bakwardstep from s1 to s, using the next letter.Finally, we replae every ourrene of (t; t) in � by true.The proof that L(A) = L(N) is very similar to the previous proof. Notie thata state appearing in the run of N only one, may appear many times in therun of A. When onverting a run of A into a run of N suh states should beadded only one.Finally, denote jSj = n and jÆj = m. We have, jQj = O(n2) and j�j = O(m�n2).C 2NBW to 2ABW with �-movesWe enhane the onstrution in Appendix B to work for 2NBW. Again weannotate eah state by ? and >. A singleton state annotated by > means avisit to the aeptane set oured in the run segment onneting it to theprevious singleton state. A pair-state annotated by > is a promise to visit theaeptane set in the run segment onneting the two states.31



In the set f?;>g onsider ? +? = ?, ? + > = > +? = >, and > +> asunde�ned.Given a 2NBW N = h�; S; s0; Æ; F i we onstrut an 1ABW with �-movesA = h�; Q; q0; �; F 0i suh that L(A) = L(N). Where Q = ((S [ (S � S)) �f?;>g) [ fs ! t j s; t 2 Sg, q0 = (s0;?), F 0 = F � f?g [ S � f>g and �is de�ned for every state in Q and letter in � as follows. First we de�ne twofuntions f� : S � S ! f?;>g where � 2 f?;>g.f?(s; t) = ?f>(s; t) = 8><>:? s 2 F or t 2 F> Otherwise
�((t; �); a) =_8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(s;0)2Æ(t;a)((s;?); 0)Ws2S W�2f?;>g((t; s; f�(t; s)); 0) ^ ((s; �); 0)W(s;1)2Æ(t;a)((s;?); 1)
�((t; s; �); a) = _8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

W(t1;0)2Æ(t;a)((t1; s; f�(t1; s)); 0)Ws12S W�1+�2=�((t; s1; f�1(t; s1)); 0) ^ ((s1; s; f�2(s1; s)); 0)W(t1;1)2Æ(t;a) Ws12S((t1; s1; f�(t1; s1)); 1) ^ (s1 ! s; 1)�(s1 ! s; a) = 8>>>>>><>>>>>>: true (s;�1) 2 Æ(s1; a)W(s2;0)2Æ(s1;a)(s2 ! s; 0)Finally, we replae in � every ourrene of (t; t;>) and (f; f;?) where f 2 Fby true.Again the proof that L(A) = L(N) is not very di�erent from previous proofs.If we denote jSj = n and jÆj = m, we have, jQj = O(n2) and j�j = O(m � n2).The onstrution of the weak automaton that omplements A is not modi�ed32



by the presene of �-moves. Formally, A = h�; Q0; q00; �; F 0i whereQ0 = (S � S � f?;>g) [ (S � f?;>g � [2n℄) [ fs! tgq0 = (s0;?; 2n)F 0 = (S � f?;>g � [2n℄odd) [ (S � S � f?;>g) [ fs! tg�((t; �; i); a) = release(e�((t; �); a); i)�((t; s; �); a) = e�((t; s; �); a)The partition inludes S � S � f?;>g and fs! tg as the minimal sets.The size analysis does not hange and we still have jQ0j = O(n2) and j�j =O(m � n2).
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