Skip to main content

Hierarchy of Monotonically Computable Real Numbers

Extended Abstract

  • Conference paper
  • First Online:
Book cover Mathematical Foundations of Computer Science 2001 (MFCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2136))

Abstract

A real number x is called h-monotonically computable (h- mc), for some function h, if there is a computable sequence (x s )∈ℕ of rational numbers such that h(n)∣ x-x n ∣≥∣ x-x m for any m ≥n.x is called ω -monotonically computable (ω-mc) if it is h-mc for some recursive function h and, for any c ∈ℝ, x is c-mc if it is h-mc for the constant function h ≡ c. In this paper we discuss the properties of c-mc and ω-mc real numbers. Among others we will show a hierarchy theorem of c-mc real numbers that, for any constants c 2 > c 1 ≥1, there is a c 2-mc real number which is not c 1-mc and that there is an ω-mc real number which is not c-mc for any c ∈ ℝ. Furthermore, the class of all ω-mc real numbers is incomparable with the class of weakly computable real numbers which is the arithmetical closure of semi-computable real numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ambos-Spies, K. Weihrauch and X. Zheng Weakly computable real numbers. J. of Complexity. 16(2000), 676–690.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Calude. A characterization of c.e. random reals. CDMTCS Research Report Series 095, March 1999.

    Google Scholar 

  3. C. Calude, P. Hertling, B. Khoussainov, and Y. Wang, Recursive enumerable reals and Chaitin’s Ω-number, in STACS’98, pp596–606.

    Google Scholar 

  4. C. Calude and P. Hertling Computable approximations of reals: An information-theoretic analysis. Fundamenta Informaticae 33(1998), 105–120.

    MATH  MathSciNet  Google Scholar 

  5. G. J. Chaitin A theory of program size formally identical to information theory, J. of ACM., 22(1975), 329–340.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Martin-Löf The definition of random sequences, Information and Control, 9(1966), 602–619.

    Article  MathSciNet  Google Scholar 

  7. R. Rettinger, X. Zheng, R. Gengler and B. von Braunmühl Monotonically computable real numbers. DMTCS’01, July 2–6, 2001, Constançta, Romania.

    Google Scholar 

  8. H. G. Rice Recursive real numbers, Proc. Amer. Math. Soc. 5(1954), 784–791.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. M. Robinson Review of “R. Peter: ‘Rekursive Funktionen’, Akad. Kiado. Budapest, 1951”, J. Symb. Logic 16(1951), 280.

    Article  Google Scholar 

  10. T. A. Slaman Randomness and recursive enumerability, preprint, 1999.

    Google Scholar 

  11. R. Soare Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  12. R. Soare Recursion theory and Dedekind cuts, Trans, Amer. Math. Soc. 140(1969), 271–294.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Soare Cohesive sets and recursively enumerable Dedekind cuts, Pacific J. of Math. 31(1969), no. 1, 215–231.

    MATH  MathSciNet  Google Scholar 

  14. R. Solovay. Draft of a paper (or series of papers) on Chaitin’s work... done for the most part during the period of Sept.–Dec. 1975, unpublished manuscript, IBM Thomas J. Watson Research Center, Yorktoen Heights, New York, May 1975, 215pp.

    Google Scholar 

  15. E. Specker Nicht konstruktive beweisbare Sätze der Analysis, J. Symbolic Logic 14(1949), 145–158

    Article  MATH  MathSciNet  Google Scholar 

  16. A. M. Turing. On computable number, with an application to the “Entschei-dungsproblem”. Proceeding of the London Mathematical Society, 43(1936), no. 2, 230–265.

    Google Scholar 

  17. K. Weihrauch. An Introduction to Computable Analysis. Texts in Theoretical Computer Science, Springer-Verlag, Heidelberg 2000.

    Google Scholar 

  18. K. Weihrauch & X. Zheng A finite hierarchy of the recursively enumerable real numbers, MFCS’98 Brno, Czech Republic, August 1998, pp798–806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rettinger, R., Zheng, X. (2001). Hierarchy of Monotonically Computable Real Numbers. In: Sgall, J., Pultr, A., Kolman, P. (eds) Mathematical Foundations of Computer Science 2001. MFCS 2001. Lecture Notes in Computer Science, vol 2136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44683-4_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-44683-4_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42496-3

  • Online ISBN: 978-3-540-44683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics