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Abstract. In this paper we demonstrate the practical portability of a 
simple version of matrix multiplication designed to exploit maximal and 
predictable locality at all levels of the memory hierarchy, with no a priori 
knowledge of the specific organization of the memory system for any 
particular machine. We show that memory hierarchies portability does 
not sacrifice floating point performance, which is always a significant 
fraction of pealc and, at least on one machine, is higher than ATLAS and 
vendor multiplication. 
We present a proof of concept of the fact that the theoretical conclusions 
on locality exploitation yield practical implementations with the desired 
properties. 

1 Introduction 

The ratio between main memory access time and processor cycle in micropro­
cessor systems has been continuously increasing, up to values of a few hundreds 
nowadays. The increase in ILP has been a significant feature in this; consid­
ering that current CPUs can typically issue four to six instructions per cycle, 
the cost of a memory access in term of performance is today an increasingly 
high toll on overall performance of super-scalar/VLIW processors. The archi­
tectural response to this state of affairs has been an increase in the size and 
number of caches, with a second level being available on most machines, and a 
third level becoming now popular. However, the memory hierarchy is of no help 
to performance unless the computation exhibits a sufficient amount of locality 
(code/data). Unfortunately, the amount of locality that is naturally found in 
code is generally no longer sufficient to ensure good performance; algorithm de­
sign and compiler optimization need to explicitly take locality into account. A 
number of studies have begun to explore these issues. An early paper by Aggar­
wal, Alpern, Chandra, and Snir [1] introduced the Hierarchical Memory Model 
(HMM) of computation, as a basis to design and evaluate memory efficient algo­
rithms. This approach has been developed and extended in a number of papers 
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(see, e.g., [2], [32], [26],[3]). Compiling for locality has also received considerable 
attention (see, e.g., [38], [39], [21], [4], [9], [29] ). 

Besides being very burdensome and labor intensive for the user, if it is done 
by hand, algorithm optimization for increased locality has often led to solutions 
that are highly dependent upon the parameters of the specific memory system, 
such as the number, the size, and the speed of the cache levels. In addition to 
introducing a non trivial source of complexity, this dependence makes the per­
formance of the resulting code non optimally portable across different platforms. 
This paper addresses the question whether it is possible to develop a code which, 
unchanged, runs with (near) optimal performance on a wide class of machines. 
Of course, if the answer to this question is negative, it is worthwhile to develop 
a parameterized code which can be tuned to the machine by a suitable adjust­
ment of the parameters. However, there are several reasons to investigate the 
feasibility of fixed, portable code. A first reason is the simplicity of the solution, 
when achievable. A second reason is its robustness: in time shared environments, 
the amount of cache space effectively available to a process varies dynamically; 
a code whose performance is not predicated on careful matching of program and 
architectural parameters is more likely to be robust. A third reason is of a more 
methodological nature: by exposing the mechanisms that imply lack of portabil­
ity in a fixed code, we can obtain valuable insights as to what kind of space the 
code parameters should span to adapt to the hierarchy. 

In this paper we demonstrate the practical portability of a simple version 
of matrix multiplication designed explicitly to ensure maximum of locality at 
all levels of the memory hierarchy, with no a priori knowledge of the specific 
organization of the memory system for any particular machine. It is our con­
tention that such reworking of the code is, and will become, increasingly critical 
for execution on modern ILP, and even more so for massively parallel machine. 
It is our ultimate belief that such reworking of the code to expose/ enhance lo­
cality can be done automatically under compiler control, with some sacrifices 
in optimality. However this is beyond the scope of this paper, which present 
a proof of concept of the fact that the theoretical conclusions on locality ex­
ploitation yield practical implementations with the desired properties. There 
are indeed various potential sources for discrepancy between theory and prac­
tice, especially for current (ILP) machines. One is the asymptotic nature of the 
theoretical analysis; in contrast, we are interested in comparing the portable per­
formance of our approach against that of highly tuned algorithms, where tuning 
on actual machines is usually responsible for performance between 50% and 90% 
of peak. Other sources of discrepancy derive from the differences between real 
super-scalar/VLIW and the model of computation; for example, the theoretical 
models do not fully incorporate the effects of cache line length and of the limited 
degree of associativity of real caches. An additional goal is to get insights on the 
interactions between cache behavior and processor behavior, especially register 
allocation and vertical/horizontal parallelism of instruction scheduling. 

We follow an approach to matrix multiplication which we call the fractal 
approach, since it aims at exposing locality at all temporal scales. The approach 



carefully combines a number of known ideas and techniques as well as some novel 
ones, leading to the following key results: 

1. We show that a particular version of matrix multiplication can indeed be 
implemented on modern ILP machines so as to achieve excellent, portable 
cache performance, incurring a low number of misses at the various levels of 
caches on a set of 7 different machines. 

2. We then show that the overall running time is also very good in practice, 
compared to the lower bound implied by peak performance and to the run­
ning time of the best known code (Automatically Tuned Linear Algebra 
Software, ATLAS, [36]). This indicates that the strategy adopted does not 
sacrifice overall performance. 

3. While the main motivation to develop the fractal approach was provided by 
the goal of portability, at least on some machines such as the R5000 IP32, 
the fractal approach yields the fastest known algorithms. 

2 Related Work 

A few studies have investigated issues related to portability of performance across 
memory hierarchies. In [1], asymptotically optimal implementations are proposed 
for a number of algorithms for matrix multiplication, FFT, and sorting on the 
HMM model of computation. In this model, the time to access a location x 
is a function f(x); the authors observe that optimality of their algorithms is 
achieved for a wide family of functions f. More recently, similar results have 
been obtained for a different model, with automatically managed caches [20]. 
The optimality is established by deriving a lower bound to the access complexity 
Q(S), i.e., to the number of accesses that necessarily miss any given set of S 
memory locations. Lower bounds techniques were pioneered in [26] and recently 
extended in [5, 7]. The question whether arbitrary computations admit optimally 
portable implementations has been investigated in [6] where it is shown that the 
answer is generally negative, by exhibiting computations such that no schedule 
for the operations can be simultaneously optimal for all memory hierarchies of 
a given class. Nevertheless, it appears of interest to further investigate those 
computations that admit portable implementations, particularly so since they 
are likely to include relevant classes such as linear algebra kernels. 

Matrix multiplication is a key kernel in linear algebra, and near optimal 
performance can be achieved by a tuned routine ([27], [28]). A sequence of stud­
ies have aimed at reducing the number of operations from the straightforward 
2n3 , e.g., to O(n10g2 7) [33], or to O(n2·376 ) [12] (although the latter is not ac­
tually used by any library). Wide attention has been given to the impact on 
performance of several issues: number of instructions, data layout, data locality, 
latency hiding, register allocation, instruction scheduling and instruction paral­
lelism, (e.g., [36], [8], [14], [15], [16]). 

The most common data locality optimization performed on ijk-loop algo­
rithm is loop tiling ([29], [31], [38], [30], [40]). Loop tiling increases time locality, 



hence reducing the so called capacity misses. But tile sizes are machine depen­
dent parameters, based on the cache sizes and on any technique to reduce self 
interference ((21], (15]). Vendor libraries exploit their knowledge of the platform 
and determine tile sizes, scheduling instruction and other optimizations. Auto­
matically tuned packages (see (36] and (8] for matrix multiplication and (19] for 
FFT) measure machine parameters by interactive tests and then produce ma­
chine tuned code, generally with better performance than the vendor libraries. 
This approach achieves portability at the level of the package, rather than of the 
actual application code. It is quite promising, although it requires considerable 
development effort and some installation effort on each platform. 

Another approach, called auto-blocking, has the potential to yield portable 
performance for the individual code. Informally, one can think of tiles whose size 
is not determined by any a priori information but arises automatically from a 
recursive decomposition of the problem. This approach has been advocated in 
(23], with applications to LAPACK, and its asymptotic optimality is discussed 
in (20]. Our fractal algorithms belong to this framework. Recursion-based algo­
rithms often exploit various features of non standard layouts, recursive layouts 
((11], (10], (35], (18], (37], (24] and (17]). Conversion from and to standard (i.e., 
row-major and column.:.major) layouts introduces O(n2) overheads, usually neg­
ligible, except for matrices small enough for the n2 /n3 ratio to be insignificant, 
or large enough to require disk access. Recursive algorithms are often based on 
power of two matrixes (with padding, overlapping, or peeling) because of closure 
properties of the decomposition and a simple index computation. In this paper, 
we use a non padded layout for arbitrary square matrices, thus saving space 
and maintaining the conceptual simplicity of the algorithm, while developing an 
approach to burst the recursion and save index computations. Register alloca­
tion and instruction scheduling are still bottlenecks. A small number of loads 
and stores reduces the traffic from/to the cache and latency hiding of loads and 
stores avoid to stall deep pipelined CPUs ((15], (36]). Currently, the practical 
way tiling/blocking is combined with other optimizations is function of the level 
of memory hierarchy which the code is written for. But for recursive algorithms 
no compiler is so smart to perform unfolding of last calls (leaves) and performs 
optimizations on the code. 

The algorithms proposed in this paper do not compromise numerical stability. 
Indeed, for machines without extended precision accumulator and with register 
file, the order of the computation should not affect the worst case error estimation 
(Lemma 2.4.1 (22] or Lemma 3.4 (25]). 

3 Fractal Layout of Matrices 

In this section, we propose a recursive approach to embed a two-dimensional 
array A into a one-dimensional array a. Any m x n matrix A is composed of 
four ordered-by-row sub-arrays, Ao, Ai, A2 and A3. The composition is defined 
balanced and Ao= {aij : 0 :Si< f m/21, 0 :S j < f n/21}, Ai= {aij: 0 :Si< 
f m/21, f n/21 :S j < n }, A2 = { aij : f m/21 :S i < m, 0 :S j < f n/21} and A3 = 



{ aij : r m/21 s i < m, r n/21 s j < n }. The logical order of the sub-blocks is 

Fig. 1. Partition of a matrix and recursive definition of its fractal layout. 

respected by the layout: Ao is in a[h] with h E [O, r m/21rn/21-1], Ai is in a[h] 
with h E [r m/2lr n/21, nr m/21 - 1], A2 is in a[h] with h E [nr m/21, nr m/21 + 
lm/2Jrn/2l -1J and A3 is in a[h] with h E [nrm/21 + lm/2Jrn/2l,mn -1]. 
Each Ai is decomposed and stored recursively. When m = 1orn=1 there is no 
further decomposition. km x n matrix is said near square when In - ml s 1. If 
A is a near-square matrix, so are the blocks Ao, Ai, A2, and A3 of its balanced 
decomposition. Indeed, a straightforward case analysis ( m = n-1, n, n+ 1 and m 
even or odd) shows that, if In- ml s 1 ands= {lm/2J, rm/21, ln/2J, rn/21}, 
then max(S) - min(S) s 1. 

4 Fractal Algorithms for Matrix Multiplication 

In this section, we introduce a class of procedures for matrix multiplication, 
dubbed fractal algorithms, all variants of a common scheme. In fact, we tar­
get the slightly more general operation of matrix multiply-and-add (MADD) 
C = C +AB, also denoted C+ =AB. Let A, B, and C be matrices of respec­
tive sizes m x n, n x p, and m x p. The fractal scheme to perform the matrix 
multiply-and-add C+ =AB is recursively defined as follows: 

fractal( A, B, C) 

1. If IAI = IBI = 1, then C = C +A* B (all matrices being scalar). 
2. Else, execute - in any serial order - the calls fractal( A', B', C') for 

Of particular interest, from the perspective of temporal locality, are those 
orderings where there is always a sub-matrix in common between consecutive 
calls, which increases data reuse. 



The problem of finding such orderings can be formulated by defining an 
undirected graph whose vertices correspond to the 8 recursive calls in the fractal 
scheme, and whose edges join calls that share exactly one sub-matrix (observe 
that no two calls share more than one sub-matrix). This graph is easil:y- recog­
nized to be a 3D binary cube. An ordering that maximizes data reuse corre­
sponds to an Hamiltonian path in this cube (See Fig. 2). Even when restricting 
our attention to Hamiltonian orderings, there are many possibilities. The ex­
act performance of each of them depends on the specific structure and policy 
of the machine cache{s) in a way too complex to evaluate analytically and too 
time consuming to evaluate experimentally. In this paper, we shall focus on two 
Hamiltonian orderings, one reducing write misses and the other one reducing 
read misses, which ought to be representative of the entire class. 

(O,D,O) 

<'-'·'> cw> We call CAB-fractal the algorithm 

(1,2,0) 

== ~~~:~~~::J obtained from the fractal scheme when 
the recursive calls are executed in the 
following order: (Ao,Bo,Co), {Ai,B2,Co), 
{A1,B3,C1), (Ao, Bi, C1), (A2, Bi, C3), 
(A3, B3, C3), {A3,B2,C2), (A2, Bo, C2). 
The label "CAB" underlines the fact 
that sub-matrix sharing between con­

Fig. 2. The cube of calls of the frac- secutive calls is maximum for C { 4 
tal scheme: the Hamiltonian path defining cases), medium for A {2 cases), and 
CAB-fractal and ABC-fractal. minimum for B {1 case). It is reason-

able to expect that CAB-fractal will tend to better reduce write misses, since C 
is the matrix being written. 

In a similar vein, but with a stress on reducing read misses, we consider the 
algorithm ABC-fractal obtained from the fractal scheme when the recursive 
calls are executed in the following order: (Ao, Bo, Co), (Ao, Bi, C1), {A2, Bi, C3), 
{A2, Bo, C2), {A3, B2, C2), {A3, B3, C3), {A1, B3, C1), {A1, B2, Co). 

4.1 Cache Performance 

Fractal multiplication algorithms can be implemented with respect to any mem­
ory layout of the matrices. For an ideal fully associative cache with least re­
cently used replacement policy and with cache lines holding exactly bne matrix 
entry, the layout is immaterial to performance. The key property of the frac­
tal approach is that it makes good use of the cache, irrespective of its size s, 
measured in matrix entries. To estimate performance, let us focus on the high­
est level of recursion such that all three matrix blocks being processed by calls 
at that level fit in cache simultaneously. Approximately, such blocks will be of 
size s/3, will cause s misses while being loaded in cache, and their entries will 
participate in ( Vs/3) 3 = sy'S /3,,/3 scalar madds, leading to an estimate of 
µ = {3,,/3(/ {2y'S) R:j 2.6/ y'S misses per flop. {This is within a constant factor of 
optimal, as a consequence of Corollary 6.2 of [26].) 

For a real machine, the above analysis needs to be refined, keeping into 
account the effects of cache-line length f ·(in matrix entries) and of a typically 



low degree of associativity. Here, the fractal layout, which stores relevant matrix 
blocks in contiguous memory locations, takes full advantage of cache-line effects 
and avoids self interference (for blocks that fit in cache, as those considered in 
the above analysis), even in direct mapped caches. The misses per flop can then 
be estimated atµ= 2.6/ /t/s, where the factor I accounts for cross interference 
between different matrices and other fine effects not captured by our analysis. 
In general, for a given fractal algorithm, / will depend on matrix size ( n), on 
the relative positions of the fractal arrays in memory, and on the degree of 
associativity of the cache. When interference is negligible, we can expect / R::::l 1. 

On recent machines, typical values for a first-level data cache could bes= 212 

and£= 4 double-precision words (32KB and 32B, respectively), leading to µ1 R::::l 

/l 0.01. For a 2MB second-level cache with a 32B line, we have µ2 R::::i /20.0013. 
With a penalty of 15 cycles for missing at the first level and a penalty of 100 
cycles for missing at the second level, and assuming /1 = /2 = 1,we get an 
estimate of 0.15+0.13=0.28 cycles per flop due to cache misses. For a machine 
capable of one fl.op per cycle and which stalls on misses, performance would 
be at most 78% of FP peak, even in the absence of any other loss. In general, 
performance will suffer more when more FP units are available and will suffer 
less when the memory system is pipelined and several misses can be processed 
at the same time. 

4.2 The Structure of the Call Tree 

When pursuing efficient implementations of fractal algorithms, we are faced with 
the issue of managing the recursion, both to reduce its overheads and to establish 
a framework for good register utilization. With this goal, in this section, we study 
the structure of the call tree, exposing some very useful properties. 

Definition 1. Given a fractal algorithm A, its call tree T = (V, E) with respect 
to input (A, B, C) is an ordered, rooted tree defined as follows. V contains one 
node for each call. The root of T corresponds to the main call fractal(A,B, CJ. 
The ordered children v1, V2, ••. , Vs of a internal node v correspond to the calls 
made by v in order of execution. A leaf has no children. 

If A is mxn and Bis nxp, we shall say that the input is of type< m, n,p >.If one 
among m, n, and pis zero, then we shall say that the type is empty and use also 
the notation < 0 >. It is clear that the structure of T is uniquely determined 
by type of the root. We will focus on square matrices, i.e., on inputs of type 
< n, n, n >. For such inputs, it is easy to see that the tree has depth flog n l + 1 
and 8flognl leaves, n3 of which have type< 1, 1, 1 >and correspond (from left to 
right) to the n3 madds executed by the algorithm. The remaining leaves have an 
empty type. Internal nodes are essentially responsible for performing the problem 
decomposition, their specific computation depending on the way matrices are 
represented. An internal node has eight children, typically non empty, except 
when its type has one or two components equal to 1, e.g., < 2, 1, 1 > or < 
2, 2, 1 >,in which case the non empty children are 2 and 4, respectively. While 
the call tree has about n3 nodes, most of them have the same type. To deal with 



Fig. 3. Call-type <lag for Matrix Multiplication < 17, 17, 17 > 

this issue systematically, we introduce the concept of type dag, representing 
the set of types that arise from a given input size, together with the types of 
the children. Given a fractal algorithm A, an input type < m, n,p >, and the 
corresponding call tree T = (V, E), the call type dag D = (U, F) is a directed 
acyclic graph, where the arcs with the same source are ordered, such that: 1) U 
contains exactly one node for each type occurring in T, the node corresponding 
to< m, n,p >is called the root of D; 2) F contains, for each u EU, the ordered 
set of arcs (u, w1), ... , (u, w8), where w1, ... , Ws are the types of the (ordered) 
children of any node in T with type u. 

Next, we study the size of the call-type dag D for the case of square matrix 
multiplication. It turns out that this size grows only logarithmically with the 
matrix size, opening interesting avenues for efficient implementation/removal of 
recursion. We begin by showing that there are at most 8 types of input for the 
calls of a given level of recursion. 

Proposition 1. For any integers n 2: 1 and d 2: 0, let nd be inductively defined 
as no = n and nd+1 = f nd/21. Also, for any integer q 2: 1, define the set of types 
Y(q) = { < r, s, t >: r, s, t E {q, q - 1} }. Then, in the call tree corresponding to 
a square matrix multiplication of type< n, n, n >, the type of each call-tree node 
at distance d from the root belongs to the set Y ( nd), for d = 0, 1, ... , flog n 1 · 

Proof. The statement trivially holds for d = 0 (the root), since < n, n, n >E 
Y ( n) = Y (no). Assume now inductively that the statement holds for a given 
level d. From the closure property of the balance decomposition and the recursive 
decomposition of the algorithm, it follows that all matrix blocks at level d+ 1 have 
dimensions between l(nd -1)/2J and f nd/21. From the identity l(nd -1)/2J = 



f nd/21 - 1, we have that all types at level d + 1 belong to set Y(f nd/21) 
Y(nd+1). 

We are now in a position to give an accurate estimate of the size of the 
call-type dag. 

Proposition 2. Let n be of the form n = 2k s, with s odd. Let D = (U, F) be 
the call-type dag corresponding to input type < n, n, n >. Then, IUI :S k + 1 + 
8 (flog n l - k) . 

Proof It is easy to see that, at level d = 0, 1, ... , k of call tree nodes have type 
< nd,nd,nd >,with nd = n/2d. For each of the remaining (flognl - k) levels, 
there are at most 8 types per level, according to Proposition 1. 

Thus, we always have IUI = O(logn), with IUI = logn+ 1 when n is a power of 
two, with IUI R'j 8flog n l when n is odd, and with IUI somewhere in between for 
general n. 

4.3 Bursting the Recursion 

If vis an internal node of the call tree, the corresponding call receive~ as input a 
triple of blocks of A, B, and C, and produces as output the input for each child 
call. When matrices A, B, and C are fractally represented by the corresponding 
one-dimensional arrays a, b, and c, the input triple is uniquely determined by 
the type < r, s, t > and by the initial positions i, j, and k of the blocks in their 
respective arrays. Specifically, the block of A is stored in a[i, .. . , i + rs - 1], 
the block of B is stored in b[j, ... , j +st - 1], and the block of C is stored in 
c[k, ... , k + rt - 1]. The call at v is then responsible for the computation of 
the type and initial position of the sub-blocks processed by the children. For 
example, for the A-block r x s starting at i, the four sub-blocks have respective 
dimensions f r/21 x f s/21, fr/21 x ls/2J, lr/2J X fs/21, and lr/2J x ls/2J. They 
also have respective starting points io, ii, i2, and i3, of the form ih = i + .dih, 

where: .dio = 0, .di1 = fr/2lfs/2l, .di2 = fr/2ls, .di3 = fr/2ls+lr/2Jfs/2l. In 
a similar way, one can define the analogous quantities ih = j + .djh for the sub­
blocks of B and kh = k + .dkh for the sub-blocks of C, for h = 0, 1, 2, 3. During 
the recursion and in any node of the call tree, every .t1 value is computed twice. 
Hence, a straightforward implementation of the fractal algorithm is bound to be 
rather inefficient. Two avenues can be followed, separately or in combination. 

First, rather than executing the full call tree down to the n3 leaves of type< 
1, 1, 1 >, one can execute a pruned version of the tree. This approach reduces the 
recursion overheads and the straight-line coded leaves are amenable to aggressive 
register allocation, a subject of the next section. 

Second, the integer operations are mostly the same for all calls. Hence, these 
operations can be performed in a preprocessing phase, storing the results in an 
auxiliary data structure built around the call-type dag D, to be accessed during 
the actual processing of the matrices. Counting the number of instructions per 
node, we can see a reduction of 30%. 



5 Register Issues 

The impact of register management on overall performance is captured by the 
number p of memory (load or store) operations per floating point operation, re­
quired by a given assembly code. In a single-pipeline machine with at most one 
FP or memory operation per cycle, 1/(1 + p) is an upper limit to the achievable 
fraction of FP peak performance. The fraction lowers to 1/ (1+2p) for machines 
where madd is available as a single-cycle instruction. To achieve 50% of peak, 
p ~ 1 and p ~ 1/2 is required, respectively. For machines with parallel pipes, say 
1 load/ store pipe every f FP pipes, an upper limit to the achievable fraction of 
FP peak performance becomes max(l, f p), so that memory instructions are not 
a bottleneck as long asp~ 1/ f. As for matrix multiplication, a naive implemen­
tation where each madd reads the three operands from memory and writes the 
result back to memory leads top= 2. In this section, we explore two techniques 
which, for the typical number of registers of current RISC processors, lead to 
values of p approximately in the range 1/4 to 1/2. The general approach con­
sists in stopping the recursion at some point and formulating the corresponding 
leaf computation as a straight-line code. All matrix entries are copied into a set 
of scalar variables, whose number R is chosen so that any reasonable compiler 
will permanently keep these variables in registers ( scalarization). For a given R, 
the goal is then to choose where to stop the recursion and how to sequence the 
operations so as to minimize p, i.e., to minimize the number of assignments to 
and from scalar variables. 

Fractal Sequences. One approach consists in sequencing the operations in the 
order that arises from the fractal scheme when the recursive process is followed 
all the way down to < 1, 1, 1 > leaves. We have heuristically explored sequences 
that arise from changing the order of the subproblems at different nodes of the 
recursion trees (e.g., from ABC to CAB), generalizing a trick proposed in (18] (for 
caches). A systematic analysis will be given in the full paper. As an indication, 
for a < 4, 4, 4 > leaf we obtain p = 0.5 (with R ~ 28) and for a< 32, 32, 32 > 
leaf we obtain p = 0.33 (with R ~ 32). 

C-tiling Sequences. The C-tiling approach, which generalizes the register 
allocation proposed in (36], partitions the result matrix of a generic < m, n, p > 
leaf multiplication into rectangular tiles. An r x s tile of C is the product of an 
r x n sub-matrix of A and an n x s sub-matrix of Band hence can be expressed 
as the sum of n terms, each term is a product of a column of the A sub-matrix 
by a row of the B sub-matrix. If R ~ rs + r + 1 registers (scalar variables) are 
available one can: (i) load the C tile (into rs registers), (ii) load one at the time 
then A-sub-columns (into r registers), (iii) load one at the time the elements of 
the corresponding B-sub-column and execute the r madds involving it and the 
elements of A currently in registers, and (iv) store back the C tiles. The number 
of accesses is 2rs + n(r + s) and the number of FP operations is 2rsn, yielding 
p = ~ + 2~ + 2

1
8 

• The value of p for the full < m, n, p > product is a sort of 
average over the chosen tiles, which might be of different sizes especially at the 



boundaries of the tiled sub-matrices. As an indication, for an < 8, 8, 8 > leaf we 
obtain p = 0.50 (with R ~ 21) and for a < 32, 32, 32 > leaf we obtain p = 0.25 
(with R ~ 32). 

6 Experimental Results 

We have studied experimentally both the cache behavior of fractal algorithms, 
in terms of misses, and the overall performance, in terms of running time. 

6.1 Cache Misses 

The results of this section are based on simulations performed (on an SP ARC 
Ultra 5) using the Shade software package for Solaris, of Sun Microsystems. 
Codes are compiled for the SP ARC. ultra2 processor architecture (V8+) and 
then simulated for various cache configurations, chosen to correspond to those 
of a number of commercial machines. Thus when we refer, say, to the R5000 
IP32, we are really simulating a ultra2 CPU with the memory hierarchy of the 
R5000 IP32. 

In fractal codes, (i) the recursion is stopped when the size of the leaves is 
strictly smaller than problem< 32, 32, 32 >; (ii) the recursive layout is stopped 
when a sub-matrix is strictly smaller than 32 x 32; (iii) the leaves are implemented 
with C-tiling register assignment using R = 24 variables for scalarization (this 
leaves the compiler 8 of the 32 registers to buffer multiplication outputs before 
they are accumulated into C-entries). The leaves are compiled with cc WorkShop 
4.2 and linked statically. The recursive algorithms, i.e. ABC-Fractal and CAB­
Fractal, are compiled with gee 2.95.1. 

We have also simulated the code for ATLAS DGEMM obtained by instal­
lation of the package on the Ultra 5 architecture. This is to have another term 
of reference, and generally fractal has fewer misses. However, it would be unfair 
to regard this as a competitive comparison with ATLAS, which is meant to be 
efficient by adapting to the varying cache configuration. 

We have simulated 7 different cache configurations (Table 1). Notationally, 
I= Instruction cache, D=Data cache, and U=Unified cache. We have measured 
the number µ(n) of misses per flop and compared it against the value of the esti­
mator (Section 4.1) µ(n) = 2.61(n)/(£ys), wheres and .e are the number of (64 
bit) words in the cache and in one line, respectively, and where we expect values 
of f'(n) not much greater than one. In Table 1, we have reported the value of 
µ(1000) measured for CAB-fractal and the corresponding value of !'(1000) (last 
column). More detailed simulation results are given in the Appendix (Figures 
4 to 10). We can see that 'Y is generally between 1 and 2; thus, our estimator 
gives a reasonably accurate prediction of cache performance. This performance 
is consistently good on the various configurations, indicating efficient portabil­
ity. For completeness, we have also reported simulation results for code misses: 
although the comparatively large size of the leaf procedures does increase such 
misses, they remain negligible with respect to data misses. 



Table 1. Summary of simulated configurations 

Simulated Size (Bytes/ s) Line (Bytes,£) Associativity/ µ(1000)/;(1000) 
Configuration Write Policy 
SPARC 1 

Ul 64KB I 8K 16B I 2 1 /through 2.65e-2 / 1.84 
SPARC 5 

I1 16KB 16B 1 I 
Dl 8KB I lK 16B I 2 1 /through 5.96e-2 / 1.47 

Ultra 5 
I1 16KB 32B 2 I 

Dl 16KB I 2K 32B I 4 1 /through 2.51e-2 / i. 75 
U2 2MB I 256K 64B I 8 1 /back i.o5e-3 / 1.66 

R5000 IP32 
11 32KB 32B 2 /back 

Dl 32KB I 4K 32B I 4 2 /back i.06e-2 / i.04 
U2 512KB I 64K 32B I 4 1 /back 3.6le-3 / i.42 

Pentium II 
. 11 16KB 32B i I 
Dl 16KB I 2K 32B I 4 1 /through 2.5oe-2 / 1.74 
U2 512KB I 64K 32B I 4 1 /back 3.98e-3 / i.51 

HAL Station 
11 128KB 128B 4 /back 

Dl 128KB I 16K 128B I 16 4 /back 2.65e-3 / 2.09 
ALPHA 21164 

Il 8KB 32B i I 
Dl 8KB I lK 32B I 4 1 /through 3. 75e-2 / 1.85 
U2 96KB I 12K 32B I 4 3 /back 5.8le-3 / o.99 

6.2 Running Time 

While portability of cache performance is desirable, it is important to explore the 
extent to which it can be combined with optimizations of CPU performance. We 
have tested the fractal approach on the four different processors listed in Table 2, 
using always the same code for the recursive decomposition (which is essentially 
responsible for cache behavior) and varying the code for the leaves, to adapt the 
number of scalar variables R to the processor: R = 24 for Ultra2i (Ultra 5), R = 8 
for Pentium II, and R = 32 for R5000 (IP32) and SPARC64 (HAL Station). We 
compare the running time (or, equivalently, the MFLOPS) of fractal algorithms 
in double precision with peak performance and with the performance of ATALS­
DG EMM, if available. Fractal achieves performances comparable to those of 
ATLAS, being at most 2 times slower (on Pentiumll) and a little fa8ter on SGI 
R5000 IP32. Since no special adaptation to the processor has been performed 
on the fractal codes, except for the number of scalar variables, we conclude that 
the portability of cache performance can be combined with overall performance. 
More detailed running time results are reported in the Appendix (Figures 12 to 
11.) 



Table 2. Processor Configurations 

Processor Ultra 2i (Ultra PentiumII R5000 (IP32) SPARC64 (HAL 
5) Station) 

Registers 32 64-bit 8 80-bit 32 64-bit 32 64-bit 
Structure register file stack file register file register file 
Multiplier distinct distinct single FU single FU 
Adder 
Latency FP 3 8 2 4 
(Cycles) 
Peak 666 400 360 200 
(MFLOPS) 
Peak of CAB-Fr. 425 / 444 x 444 187 / 400 x 400 133 / 504 x 5o4 168 / 512 x 512 
/ matrix size 
Peak of ATLAS 455 / 220 x 220 318 / 848 x 848 113 / unknown not available 
/ matrix size 

7 Conclusions 

In this paper, we have developed a close study of matrix multiplication show­
ing that suitable algorithms can efficiently exploit the cache hierarchy without 
taking cache parameters into account, thus ensuring portability of cache per­
formance. Clearly, performance itself does depend on cache parameters and we 
have provided a reasonable estimator for it. We have also experimentally shown 
that, with a careful implementation of recursion, high performance is achievable. 
We hope the present study will motivate extension in various directions, both in 
terms of results and in terms of techniques. In [13], we have already used the frac­
tal multiplication codes and recursive code optimizations of this paper to obtain 
implementation of other linear algebra algorithms, such as those for LU decom­
position of [34], with overall performance higher than other multiplication-based 
algorithms. 
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Fig.4. SPARC 1, (+)normalized number of data miss, µ(n), and(*) code miss. The 
algorithms DGEMM from ATLAS, ABC-Fractal and CAB fractal have been simulated 
with matrixes in double precision. ATLAS has a slightly smaller number of miss than 
the Fractal approach. ATLAS code size is small, it has good time locality (there is one 
procedure called the most) and interferes a few times with data. Fractal approaches, 
instead, have large code size, it changes frequently and it increases interference with 
the common data. 
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The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated 
with matrixes in double precision. ATLAS has a very good code locality but poor data 
locality. 
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Fig. 6. Ultra 5, ( +) normalized number of data miss, µ(n), and (*) code miss. The 
algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated with 
matrixes in double precision. All algorithms are designed with particular attention 
to this architecture and therefore they have very similar performance. The Fractal 
approaches have a slightly better performance at the second level cache. 
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Fig.7. R5000 IP32,(+) normalized number of data miss, µ(n), and(*) code miss. 
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated 
with matrixes in double precision. Algorithm CAB-Fractal behaves differently: 1) the 
erratic peak of number of misses at problem < 900, 900, 900 > is due to write misses, 
96% of writes are write misses; 2) the code misses are completely negligible. 
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Fig.10. Alpha 21164, (+)normalized number of data miss, µ(n), and(*) code miss. 
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated 
with matrixes in double precision. The Fractal algorithms have a better data locality 
at every level of the memory hierarchy but they have a poor code locality at the first 
level of cache. 
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authors [36]. CAB-Fractal achieves a somewhat better performance. 








