
UC Irvine
ICS Technical Reports

Title
Fractal matrix multiplication : a case study on portability of cache performance

Permalink
https://escholarship.org/uc/item/6q90x0jk

Authors
Bilardi, Gianfranco
D'Alberto, Paolo
Nicolau, Alex

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6q90x0jk
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Fractal Matrix Multiplication: a Case Study on
Portability of Cache Performance

Gianfranco Bilardi1 , Paolo D'Alberto2 , and Alex Nicolau 2

1 Dipartimento di Elettronica e Informatica, Universita di Padova. Italy.
bilardiOdei.unipd.it ***

2 Information and Computer Science, University of California at Irvine
{paolo ,nicolau}Oics. uci. edu t

Teel! Report: 1fOD-21

Fractal Matrix Multiplication: a Case Study on
Portability of Cache Performance

Gianfranco Bilardi1 , Paolo D' Alberto2 , and Alex Nicolau2

1 Dipartimento dj Elettronica e Informatica, Universita di Padova, Italy.
~ bilardiOdei. unipd. it***

2 Information and Computer Science, University of California at Irvine
{paolo ,nicolau}@ics. uci. edu t

Tecl1 Rep.ort {fOD-21

Abstract. In this paper we demonstrate the practical portability of a
simple version of matrix multiplication designed to exploit maximal and
predictable locality at all levels of the memory hierarchy, with no a priori
knowledge of the specific organization of the memory system for any
particular machine. We show that memory hierarchies portability does
not sacrifice floating point performance, which is always a significant
fraction of pealc and, at least on one machine, is higher than ATLAS and
vendor multiplication.
We present a proof of concept of the fact that the theoretical conclusions
on locality exploitation yield practical implementations with the desired
properties.

1 Introduction

The ratio between main memory access time and processor cycle in micropro­
cessor systems has been continuously increasing, up to values of a few hundreds
nowadays. The increase in ILP has been a significant feature in this; consid­
ering that current CPUs can typically issue four to six instructions per cycle,
the cost of a memory access in term of performance is today an increasingly
high toll on overall performance of super-scalar/VLIW processors. The archi­
tectural response to this state of affairs has been an increase in the size and
number of caches, with a second level being available on most machines, and a
third level becoming now popular. However, the memory hierarchy is of no help
to performance unless the computation exhibits a sufficient amount of locality
(code/data). Unfortunately, the amount of locality that is naturally found in
code is generally no longer sufficient to ensure good performance; algorithm de­
sign and compiler optimization need to explicitly take locality into account. A
number of studies have begun to explore these issues. An early paper by Aggar­
wal, Alpern, Chandra, and Snir [1] introduced the Hierarchical Memory Model
(HMM) of computation, as a basis to design and evaluate memory efficient algo­
rithms. This approach has been developed and extended in a number of papers

***This work was supported, in part, by CNR and MURST of Italy
t Supported by AMRM DABT63-98-C-0045.

(see, e.g., [2], [32], [26],[3]). Compiling for locality has also received considerable
attention (see, e.g., [38], [39], [21], [4], [9], [29]).

Besides being very burdensome and labor intensive for the user, if it is done
by hand, algorithm optimization for increased locality has often led to solutions
that are highly dependent upon the parameters of the specific memory system,
such as the number, the size, and the speed of the cache levels. In addition to
introducing a non trivial source of complexity, this dependence makes the per­
formance of the resulting code non optimally portable across different platforms.
This paper addresses the question whether it is possible to develop a code which,
unchanged, runs with (near) optimal performance on a wide class of machines.
Of course, if the answer to this question is negative, it is worthwhile to develop
a parameterized code which can be tuned to the machine by a suitable adjust­
ment of the parameters. However, there are several reasons to investigate the
feasibility of fixed, portable code. A first reason is the simplicity of the solution,
when achievable. A second reason is its robustness: in time shared environments,
the amount of cache space effectively available to a process varies dynamically;
a code whose performance is not predicated on careful matching of program and
architectural parameters is more likely to be robust. A third reason is of a more
methodological nature: by exposing the mechanisms that imply lack of portabil­
ity in a fixed code, we can obtain valuable insights as to what kind of space the
code parameters should span to adapt to the hierarchy.

In this paper we demonstrate the practical portability of a simple version
of matrix multiplication designed explicitly to ensure maximum of locality at
all levels of the memory hierarchy, with no a priori knowledge of the specific
organization of the memory system for any particular machine. It is our con­
tention that such reworking of the code is, and will become, increasingly critical
for execution on modern ILP, and even more so for massively parallel machine.
It is our ultimate belief that such reworking of the code to expose/ enhance lo­
cality can be done automatically under compiler control, with some sacrifices
in optimality. However this is beyond the scope of this paper, which present
a proof of concept of the fact that the theoretical conclusions on locality ex­
ploitation yield practical implementations with the desired properties. There
are indeed various potential sources for discrepancy between theory and prac­
tice, especially for current (ILP) machines. One is the asymptotic nature of the
theoretical analysis; in contrast, we are interested in comparing the portable per­
formance of our approach against that of highly tuned algorithms, where tuning
on actual machines is usually responsible for performance between 50% and 90%
of peak. Other sources of discrepancy derive from the differences between real
super-scalar/VLIW and the model of computation; for example, the theoretical
models do not fully incorporate the effects of cache line length and of the limited
degree of associativity of real caches. An additional goal is to get insights on the
interactions between cache behavior and processor behavior, especially register
allocation and vertical/horizontal parallelism of instruction scheduling.

We follow an approach to matrix multiplication which we call the fractal
approach, since it aims at exposing locality at all temporal scales. The approach

carefully combines a number of known ideas and techniques as well as some novel
ones, leading to the following key results:

1. We show that a particular version of matrix multiplication can indeed be
implemented on modern ILP machines so as to achieve excellent, portable
cache performance, incurring a low number of misses at the various levels of
caches on a set of 7 different machines.

2. We then show that the overall running time is also very good in practice,
compared to the lower bound implied by peak performance and to the run­
ning time of the best known code (Automatically Tuned Linear Algebra
Software, ATLAS, [36]). This indicates that the strategy adopted does not
sacrifice overall performance.

3. While the main motivation to develop the fractal approach was provided by
the goal of portability, at least on some machines such as the R5000 IP32,
the fractal approach yields the fastest known algorithms.

2 Related Work

A few studies have investigated issues related to portability of performance across
memory hierarchies. In [1], asymptotically optimal implementations are proposed
for a number of algorithms for matrix multiplication, FFT, and sorting on the
HMM model of computation. In this model, the time to access a location x
is a function f(x); the authors observe that optimality of their algorithms is
achieved for a wide family of functions f. More recently, similar results have
been obtained for a different model, with automatically managed caches [20].
The optimality is established by deriving a lower bound to the access complexity
Q(S), i.e., to the number of accesses that necessarily miss any given set of S
memory locations. Lower bounds techniques were pioneered in [26] and recently
extended in [5, 7]. The question whether arbitrary computations admit optimally
portable implementations has been investigated in [6] where it is shown that the
answer is generally negative, by exhibiting computations such that no schedule
for the operations can be simultaneously optimal for all memory hierarchies of
a given class. Nevertheless, it appears of interest to further investigate those
computations that admit portable implementations, particularly so since they
are likely to include relevant classes such as linear algebra kernels.

Matrix multiplication is a key kernel in linear algebra, and near optimal
performance can be achieved by a tuned routine ([27], [28]). A sequence of stud­
ies have aimed at reducing the number of operations from the straightforward
2n3 , e.g., to O(n10g2 7) [33], or to O(n2·376) [12] (although the latter is not ac­
tually used by any library). Wide attention has been given to the impact on
performance of several issues: number of instructions, data layout, data locality,
latency hiding, register allocation, instruction scheduling and instruction paral­
lelism, (e.g., [36], [8], [14], [15], [16]).

The most common data locality optimization performed on ijk-loop algo­
rithm is loop tiling ([29], [31], [38], [30], [40]). Loop tiling increases time locality,

hence reducing the so called capacity misses. But tile sizes are machine depen­
dent parameters, based on the cache sizes and on any technique to reduce self
interference ((21], (15]). Vendor libraries exploit their knowledge of the platform
and determine tile sizes, scheduling instruction and other optimizations. Auto­
matically tuned packages (see (36] and (8] for matrix multiplication and (19] for
FFT) measure machine parameters by interactive tests and then produce ma­
chine tuned code, generally with better performance than the vendor libraries.
This approach achieves portability at the level of the package, rather than of the
actual application code. It is quite promising, although it requires considerable
development effort and some installation effort on each platform.

Another approach, called auto-blocking, has the potential to yield portable
performance for the individual code. Informally, one can think of tiles whose size
is not determined by any a priori information but arises automatically from a
recursive decomposition of the problem. This approach has been advocated in
(23], with applications to LAPACK, and its asymptotic optimality is discussed
in (20]. Our fractal algorithms belong to this framework. Recursion-based algo­
rithms often exploit various features of non standard layouts, recursive layouts
((11], (10], (35], (18], (37], (24] and (17]). Conversion from and to standard (i.e.,
row-major and column.:.major) layouts introduces O(n2) overheads, usually neg­
ligible, except for matrices small enough for the n2 /n3 ratio to be insignificant,
or large enough to require disk access. Recursive algorithms are often based on
power of two matrixes (with padding, overlapping, or peeling) because of closure
properties of the decomposition and a simple index computation. In this paper,
we use a non padded layout for arbitrary square matrices, thus saving space
and maintaining the conceptual simplicity of the algorithm, while developing an
approach to burst the recursion and save index computations. Register alloca­
tion and instruction scheduling are still bottlenecks. A small number of loads
and stores reduces the traffic from/to the cache and latency hiding of loads and
stores avoid to stall deep pipelined CPUs ((15], (36]). Currently, the practical
way tiling/blocking is combined with other optimizations is function of the level
of memory hierarchy which the code is written for. But for recursive algorithms
no compiler is so smart to perform unfolding of last calls (leaves) and performs
optimizations on the code.

The algorithms proposed in this paper do not compromise numerical stability.
Indeed, for machines without extended precision accumulator and with register
file, the order of the computation should not affect the worst case error estimation
(Lemma 2.4.1 (22] or Lemma 3.4 (25]).

3 Fractal Layout of Matrices

In this section, we propose a recursive approach to embed a two-dimensional
array A into a one-dimensional array a. Any m x n matrix A is composed of
four ordered-by-row sub-arrays, Ao, Ai, A2 and A3. The composition is defined
balanced and Ao= {aij : 0 :Si< f m/21, 0 :S j < f n/21}, Ai= {aij: 0 :Si<
f m/21, f n/21 :S j < n }, A2 = { aij : f m/21 :S i < m, 0 :S j < f n/21} and A3 =

{ aij : r m/21 s i < m, r n/21 s j < n }. The logical order of the sub-blocks is

Fig. 1. Partition of a matrix and recursive definition of its fractal layout.

respected by the layout: Ao is in a[h] with h E [O, r m/21rn/21-1], Ai is in a[h]
with h E [r m/2lr n/21, nr m/21 - 1], A2 is in a[h] with h E [nr m/21, nr m/21 +
lm/2Jrn/2l -1J and A3 is in a[h] with h E [nrm/21 + lm/2Jrn/2l,mn -1].
Each Ai is decomposed and stored recursively. When m = 1orn=1 there is no
further decomposition. km x n matrix is said near square when In - ml s 1. If
A is a near-square matrix, so are the blocks Ao, Ai, A2, and A3 of its balanced
decomposition. Indeed, a straightforward case analysis (m = n-1, n, n+ 1 and m
even or odd) shows that, if In- ml s 1 ands= {lm/2J, rm/21, ln/2J, rn/21},
then max(S) - min(S) s 1.

4 Fractal Algorithms for Matrix Multiplication

In this section, we introduce a class of procedures for matrix multiplication,
dubbed fractal algorithms, all variants of a common scheme. In fact, we tar­
get the slightly more general operation of matrix multiply-and-add (MADD)
C = C +AB, also denoted C+ =AB. Let A, B, and C be matrices of respec­
tive sizes m x n, n x p, and m x p. The fractal scheme to perform the matrix
multiply-and-add C+ =AB is recursively defined as follows:

fractal(A, B, C)

1. If IAI = IBI = 1, then C = C +A* B (all matrices being scalar).
2. Else, execute - in any serial order - the calls fractal(A', B', C') for

Of particular interest, from the perspective of temporal locality, are those
orderings where there is always a sub-matrix in common between consecutive
calls, which increases data reuse.

The problem of finding such orderings can be formulated by defining an
undirected graph whose vertices correspond to the 8 recursive calls in the fractal
scheme, and whose edges join calls that share exactly one sub-matrix (observe
that no two calls share more than one sub-matrix). This graph is easil:y- recog­
nized to be a 3D binary cube. An ordering that maximizes data reuse corre­
sponds to an Hamiltonian path in this cube (See Fig. 2). Even when restricting
our attention to Hamiltonian orderings, there are many possibilities. The ex­
act performance of each of them depends on the specific structure and policy
of the machine cache{s) in a way too complex to evaluate analytically and too
time consuming to evaluate experimentally. In this paper, we shall focus on two
Hamiltonian orderings, one reducing write misses and the other one reducing
read misses, which ought to be representative of the entire class.

(O,D,O)

<'-'·'> cw> We call CAB-fractal the algorithm

(1,2,0)

== ~~~:~~~::J obtained from the fractal scheme when
the recursive calls are executed in the
following order: (Ao,Bo,Co), {Ai,B2,Co),
{A1,B3,C1), (Ao, Bi, C1), (A2, Bi, C3),
(A3, B3, C3), {A3,B2,C2), (A2, Bo, C2).
The label "CAB" underlines the fact
that sub-matrix sharing between con­

Fig. 2. The cube of calls of the frac- secutive calls is maximum for C { 4
tal scheme: the Hamiltonian path defining cases), medium for A {2 cases), and
CAB-fractal and ABC-fractal. minimum for B {1 case). It is reason-

able to expect that CAB-fractal will tend to better reduce write misses, since C
is the matrix being written.

In a similar vein, but with a stress on reducing read misses, we consider the
algorithm ABC-fractal obtained from the fractal scheme when the recursive
calls are executed in the following order: (Ao, Bo, Co), (Ao, Bi, C1), {A2, Bi, C3),
{A2, Bo, C2), {A3, B2, C2), {A3, B3, C3), {A1, B3, C1), {A1, B2, Co).

4.1 Cache Performance

Fractal multiplication algorithms can be implemented with respect to any mem­
ory layout of the matrices. For an ideal fully associative cache with least re­
cently used replacement policy and with cache lines holding exactly bne matrix
entry, the layout is immaterial to performance. The key property of the frac­
tal approach is that it makes good use of the cache, irrespective of its size s,
measured in matrix entries. To estimate performance, let us focus on the high­
est level of recursion such that all three matrix blocks being processed by calls
at that level fit in cache simultaneously. Approximately, such blocks will be of
size s/3, will cause s misses while being loaded in cache, and their entries will
participate in (Vs/3) 3 = sy'S /3,,/3 scalar madds, leading to an estimate of
µ = {3,,/3(/ {2y'S) R:j 2.6/ y'S misses per flop. {This is within a constant factor of
optimal, as a consequence of Corollary 6.2 of [26].)

For a real machine, the above analysis needs to be refined, keeping into
account the effects of cache-line length f ·(in matrix entries) and of a typically

low degree of associativity. Here, the fractal layout, which stores relevant matrix
blocks in contiguous memory locations, takes full advantage of cache-line effects
and avoids self interference (for blocks that fit in cache, as those considered in
the above analysis), even in direct mapped caches. The misses per flop can then
be estimated atµ= 2.6/ /t/s, where the factor I accounts for cross interference
between different matrices and other fine effects not captured by our analysis.
In general, for a given fractal algorithm, / will depend on matrix size (n), on
the relative positions of the fractal arrays in memory, and on the degree of
associativity of the cache. When interference is negligible, we can expect / R::::l 1.

On recent machines, typical values for a first-level data cache could bes= 212

and£= 4 double-precision words (32KB and 32B, respectively), leading to µ1 R::::l

/l 0.01. For a 2MB second-level cache with a 32B line, we have µ2 R::::i /20.0013.
With a penalty of 15 cycles for missing at the first level and a penalty of 100
cycles for missing at the second level, and assuming /1 = /2 = 1,we get an
estimate of 0.15+0.13=0.28 cycles per flop due to cache misses. For a machine
capable of one fl.op per cycle and which stalls on misses, performance would
be at most 78% of FP peak, even in the absence of any other loss. In general,
performance will suffer more when more FP units are available and will suffer
less when the memory system is pipelined and several misses can be processed
at the same time.

4.2 The Structure of the Call Tree

When pursuing efficient implementations of fractal algorithms, we are faced with
the issue of managing the recursion, both to reduce its overheads and to establish
a framework for good register utilization. With this goal, in this section, we study
the structure of the call tree, exposing some very useful properties.

Definition 1. Given a fractal algorithm A, its call tree T = (V, E) with respect
to input (A, B, C) is an ordered, rooted tree defined as follows. V contains one
node for each call. The root of T corresponds to the main call fractal(A,B, CJ.
The ordered children v1, V2, ••. , Vs of a internal node v correspond to the calls
made by v in order of execution. A leaf has no children.

If A is mxn and Bis nxp, we shall say that the input is of type< m, n,p >.If one
among m, n, and pis zero, then we shall say that the type is empty and use also
the notation < 0 >. It is clear that the structure of T is uniquely determined
by type of the root. We will focus on square matrices, i.e., on inputs of type
< n, n, n >. For such inputs, it is easy to see that the tree has depth flog n l + 1
and 8flognl leaves, n3 of which have type< 1, 1, 1 >and correspond (from left to
right) to the n3 madds executed by the algorithm. The remaining leaves have an
empty type. Internal nodes are essentially responsible for performing the problem
decomposition, their specific computation depending on the way matrices are
represented. An internal node has eight children, typically non empty, except
when its type has one or two components equal to 1, e.g., < 2, 1, 1 > or <
2, 2, 1 >,in which case the non empty children are 2 and 4, respectively. While
the call tree has about n3 nodes, most of them have the same type. To deal with

Fig. 3. Call-type <lag for Matrix Multiplication < 17, 17, 17 >

this issue systematically, we introduce the concept of type dag, representing
the set of types that arise from a given input size, together with the types of
the children. Given a fractal algorithm A, an input type < m, n,p >, and the
corresponding call tree T = (V, E), the call type dag D = (U, F) is a directed
acyclic graph, where the arcs with the same source are ordered, such that: 1) U
contains exactly one node for each type occurring in T, the node corresponding
to< m, n,p >is called the root of D; 2) F contains, for each u EU, the ordered
set of arcs (u, w1), ... , (u, w8), where w1, ... , Ws are the types of the (ordered)
children of any node in T with type u.

Next, we study the size of the call-type dag D for the case of square matrix
multiplication. It turns out that this size grows only logarithmically with the
matrix size, opening interesting avenues for efficient implementation/removal of
recursion. We begin by showing that there are at most 8 types of input for the
calls of a given level of recursion.

Proposition 1. For any integers n 2: 1 and d 2: 0, let nd be inductively defined
as no = n and nd+1 = f nd/21. Also, for any integer q 2: 1, define the set of types
Y(q) = { < r, s, t >: r, s, t E {q, q - 1} }. Then, in the call tree corresponding to
a square matrix multiplication of type< n, n, n >, the type of each call-tree node
at distance d from the root belongs to the set Y (nd), for d = 0, 1, ... , flog n 1 ·

Proof. The statement trivially holds for d = 0 (the root), since < n, n, n >E
Y (n) = Y (no). Assume now inductively that the statement holds for a given
level d. From the closure property of the balance decomposition and the recursive
decomposition of the algorithm, it follows that all matrix blocks at level d+ 1 have
dimensions between l(nd -1)/2J and f nd/21. From the identity l(nd -1)/2J =

f nd/21 - 1, we have that all types at level d + 1 belong to set Y(f nd/21)
Y(nd+1).

We are now in a position to give an accurate estimate of the size of the
call-type dag.

Proposition 2. Let n be of the form n = 2k s, with s odd. Let D = (U, F) be
the call-type dag corresponding to input type < n, n, n >. Then, IUI :S k + 1 +
8 (flog n l - k) .

Proof It is easy to see that, at level d = 0, 1, ... , k of call tree nodes have type
< nd,nd,nd >,with nd = n/2d. For each of the remaining (flognl - k) levels,
there are at most 8 types per level, according to Proposition 1.

Thus, we always have IUI = O(logn), with IUI = logn+ 1 when n is a power of
two, with IUI R'j 8flog n l when n is odd, and with IUI somewhere in between for
general n.

4.3 Bursting the Recursion

If vis an internal node of the call tree, the corresponding call receive~ as input a
triple of blocks of A, B, and C, and produces as output the input for each child
call. When matrices A, B, and C are fractally represented by the corresponding
one-dimensional arrays a, b, and c, the input triple is uniquely determined by
the type < r, s, t > and by the initial positions i, j, and k of the blocks in their
respective arrays. Specifically, the block of A is stored in a[i, .. . , i + rs - 1],
the block of B is stored in b[j, ... , j +st - 1], and the block of C is stored in
c[k, ... , k + rt - 1]. The call at v is then responsible for the computation of
the type and initial position of the sub-blocks processed by the children. For
example, for the A-block r x s starting at i, the four sub-blocks have respective
dimensions f r/21 x f s/21, fr/21 x ls/2J, lr/2J X fs/21, and lr/2J x ls/2J. They
also have respective starting points io, ii, i2, and i3, of the form ih = i + .dih,

where: .dio = 0, .di1 = fr/2lfs/2l, .di2 = fr/2ls, .di3 = fr/2ls+lr/2Jfs/2l. In
a similar way, one can define the analogous quantities ih = j + .djh for the sub­
blocks of B and kh = k + .dkh for the sub-blocks of C, for h = 0, 1, 2, 3. During
the recursion and in any node of the call tree, every .t1 value is computed twice.
Hence, a straightforward implementation of the fractal algorithm is bound to be
rather inefficient. Two avenues can be followed, separately or in combination.

First, rather than executing the full call tree down to the n3 leaves of type<
1, 1, 1 >, one can execute a pruned version of the tree. This approach reduces the
recursion overheads and the straight-line coded leaves are amenable to aggressive
register allocation, a subject of the next section.

Second, the integer operations are mostly the same for all calls. Hence, these
operations can be performed in a preprocessing phase, storing the results in an
auxiliary data structure built around the call-type dag D, to be accessed during
the actual processing of the matrices. Counting the number of instructions per
node, we can see a reduction of 30%.

5 Register Issues

The impact of register management on overall performance is captured by the
number p of memory (load or store) operations per floating point operation, re­
quired by a given assembly code. In a single-pipeline machine with at most one
FP or memory operation per cycle, 1/(1 + p) is an upper limit to the achievable
fraction of FP peak performance. The fraction lowers to 1/ (1+2p) for machines
where madd is available as a single-cycle instruction. To achieve 50% of peak,
p ~ 1 and p ~ 1/2 is required, respectively. For machines with parallel pipes, say
1 load/ store pipe every f FP pipes, an upper limit to the achievable fraction of
FP peak performance becomes max(l, f p), so that memory instructions are not
a bottleneck as long asp~ 1/ f. As for matrix multiplication, a naive implemen­
tation where each madd reads the three operands from memory and writes the
result back to memory leads top= 2. In this section, we explore two techniques
which, for the typical number of registers of current RISC processors, lead to
values of p approximately in the range 1/4 to 1/2. The general approach con­
sists in stopping the recursion at some point and formulating the corresponding
leaf computation as a straight-line code. All matrix entries are copied into a set
of scalar variables, whose number R is chosen so that any reasonable compiler
will permanently keep these variables in registers (scalarization). For a given R,
the goal is then to choose where to stop the recursion and how to sequence the
operations so as to minimize p, i.e., to minimize the number of assignments to
and from scalar variables.

Fractal Sequences. One approach consists in sequencing the operations in the
order that arises from the fractal scheme when the recursive process is followed
all the way down to < 1, 1, 1 > leaves. We have heuristically explored sequences
that arise from changing the order of the subproblems at different nodes of the
recursion trees (e.g., from ABC to CAB), generalizing a trick proposed in (18] (for
caches). A systematic analysis will be given in the full paper. As an indication,
for a < 4, 4, 4 > leaf we obtain p = 0.5 (with R ~ 28) and for a< 32, 32, 32 >
leaf we obtain p = 0.33 (with R ~ 32).

C-tiling Sequences. The C-tiling approach, which generalizes the register
allocation proposed in (36], partitions the result matrix of a generic < m, n, p >
leaf multiplication into rectangular tiles. An r x s tile of C is the product of an
r x n sub-matrix of A and an n x s sub-matrix of Band hence can be expressed
as the sum of n terms, each term is a product of a column of the A sub-matrix
by a row of the B sub-matrix. If R ~ rs + r + 1 registers (scalar variables) are
available one can: (i) load the C tile (into rs registers), (ii) load one at the time
then A-sub-columns (into r registers), (iii) load one at the time the elements of
the corresponding B-sub-column and execute the r madds involving it and the
elements of A currently in registers, and (iv) store back the C tiles. The number
of accesses is 2rs + n(r + s) and the number of FP operations is 2rsn, yielding
p = ~ + 2~ + 2

1
8

• The value of p for the full < m, n, p > product is a sort of
average over the chosen tiles, which might be of different sizes especially at the

boundaries of the tiled sub-matrices. As an indication, for an < 8, 8, 8 > leaf we
obtain p = 0.50 (with R ~ 21) and for a < 32, 32, 32 > leaf we obtain p = 0.25
(with R ~ 32).

6 Experimental Results

We have studied experimentally both the cache behavior of fractal algorithms,
in terms of misses, and the overall performance, in terms of running time.

6.1 Cache Misses

The results of this section are based on simulations performed (on an SP ARC
Ultra 5) using the Shade software package for Solaris, of Sun Microsystems.
Codes are compiled for the SP ARC. ultra2 processor architecture (V8+) and
then simulated for various cache configurations, chosen to correspond to those
of a number of commercial machines. Thus when we refer, say, to the R5000
IP32, we are really simulating a ultra2 CPU with the memory hierarchy of the
R5000 IP32.

In fractal codes, (i) the recursion is stopped when the size of the leaves is
strictly smaller than problem< 32, 32, 32 >; (ii) the recursive layout is stopped
when a sub-matrix is strictly smaller than 32 x 32; (iii) the leaves are implemented
with C-tiling register assignment using R = 24 variables for scalarization (this
leaves the compiler 8 of the 32 registers to buffer multiplication outputs before
they are accumulated into C-entries). The leaves are compiled with cc WorkShop
4.2 and linked statically. The recursive algorithms, i.e. ABC-Fractal and CAB­
Fractal, are compiled with gee 2.95.1.

We have also simulated the code for ATLAS DGEMM obtained by instal­
lation of the package on the Ultra 5 architecture. This is to have another term
of reference, and generally fractal has fewer misses. However, it would be unfair
to regard this as a competitive comparison with ATLAS, which is meant to be
efficient by adapting to the varying cache configuration.

We have simulated 7 different cache configurations (Table 1). Notationally,
I= Instruction cache, D=Data cache, and U=Unified cache. We have measured
the number µ(n) of misses per flop and compared it against the value of the esti­
mator (Section 4.1) µ(n) = 2.61(n)/(£ys), wheres and .e are the number of (64
bit) words in the cache and in one line, respectively, and where we expect values
of f'(n) not much greater than one. In Table 1, we have reported the value of
µ(1000) measured for CAB-fractal and the corresponding value of !'(1000) (last
column). More detailed simulation results are given in the Appendix (Figures
4 to 10). We can see that 'Y is generally between 1 and 2; thus, our estimator
gives a reasonably accurate prediction of cache performance. This performance
is consistently good on the various configurations, indicating efficient portabil­
ity. For completeness, we have also reported simulation results for code misses:
although the comparatively large size of the leaf procedures does increase such
misses, they remain negligible with respect to data misses.

Table 1. Summary of simulated configurations

Simulated Size (Bytes/ s) Line (Bytes,£) Associativity/ µ(1000)/;(1000)
Configuration Write Policy
SPARC 1

Ul 64KB I 8K 16B I 2 1 /through 2.65e-2 / 1.84
SPARC 5

I1 16KB 16B 1 I
Dl 8KB I lK 16B I 2 1 /through 5.96e-2 / 1.47

Ultra 5
I1 16KB 32B 2 I

Dl 16KB I 2K 32B I 4 1 /through 2.51e-2 / i. 75
U2 2MB I 256K 64B I 8 1 /back i.o5e-3 / 1.66

R5000 IP32
11 32KB 32B 2 /back

Dl 32KB I 4K 32B I 4 2 /back i.06e-2 / i.04
U2 512KB I 64K 32B I 4 1 /back 3.6le-3 / i.42

Pentium II
. 11 16KB 32B i I
Dl 16KB I 2K 32B I 4 1 /through 2.5oe-2 / 1.74
U2 512KB I 64K 32B I 4 1 /back 3.98e-3 / i.51

HAL Station
11 128KB 128B 4 /back

Dl 128KB I 16K 128B I 16 4 /back 2.65e-3 / 2.09
ALPHA 21164

Il 8KB 32B i I
Dl 8KB I lK 32B I 4 1 /through 3. 75e-2 / 1.85
U2 96KB I 12K 32B I 4 3 /back 5.8le-3 / o.99

6.2 Running Time

While portability of cache performance is desirable, it is important to explore the
extent to which it can be combined with optimizations of CPU performance. We
have tested the fractal approach on the four different processors listed in Table 2,
using always the same code for the recursive decomposition (which is essentially
responsible for cache behavior) and varying the code for the leaves, to adapt the
number of scalar variables R to the processor: R = 24 for Ultra2i (Ultra 5), R = 8
for Pentium II, and R = 32 for R5000 (IP32) and SPARC64 (HAL Station). We
compare the running time (or, equivalently, the MFLOPS) of fractal algorithms
in double precision with peak performance and with the performance of ATALS­
DG EMM, if available. Fractal achieves performances comparable to those of
ATLAS, being at most 2 times slower (on Pentiumll) and a little fa8ter on SGI
R5000 IP32. Since no special adaptation to the processor has been performed
on the fractal codes, except for the number of scalar variables, we conclude that
the portability of cache performance can be combined with overall performance.
More detailed running time results are reported in the Appendix (Figures 12 to
11.)

Table 2. Processor Configurations

Processor Ultra 2i (Ultra PentiumII R5000 (IP32) SPARC64 (HAL
5) Station)

Registers 32 64-bit 8 80-bit 32 64-bit 32 64-bit
Structure register file stack file register file register file
Multiplier distinct distinct single FU single FU
Adder
Latency FP 3 8 2 4
(Cycles)
Peak 666 400 360 200
(MFLOPS)
Peak of CAB-Fr. 425 / 444 x 444 187 / 400 x 400 133 / 504 x 5o4 168 / 512 x 512
/ matrix size
Peak of ATLAS 455 / 220 x 220 318 / 848 x 848 113 / unknown not available
/ matrix size

7 Conclusions

In this paper, we have developed a close study of matrix multiplication show­
ing that suitable algorithms can efficiently exploit the cache hierarchy without
taking cache parameters into account, thus ensuring portability of cache per­
formance. Clearly, performance itself does depend on cache parameters and we
have provided a reasonable estimator for it. We have also experimentally shown
that, with a careful implementation of recursion, high performance is achievable.
We hope the present study will motivate extension in various directions, both in
terms of results and in terms of techniques. In [13], we have already used the frac­
tal multiplication codes and recursive code optimizations of this paper to obtain
implementation of other linear algebra algorithms, such as those for LU decom­
position of [34], with overall performance higher than other multiplication-based
algorithms.

References

1. A. Aggarwal, B. Alpern, A.K. Chandra and M. Snir: A model for hierarchical
memory. Proc. of 19th Annual ACM Symposium on the Theory of Computing,
New York, 1987,305-314.

2. A. Aggarwal, A.K. Chandra and M. Snir: Hierarchical memory with block transfer.
1987 IEEE.

3. B. Alpern, L. Carter, E. Feig and T. Selker: The uniform memory hierarchy model
of computation. In Algorithmica, vol. 12, (1994), 72-129.

4. U.Banerjee, R.Eigenmann, A.Nicolau and D.Padua: Automatic program paral­
lelization. Proceedings of the IEEE vol 81, n.2 Feb. 1993.

5. G.Bilardi and F.Preparata: Processor-time tradeoffs under bounded-speed message
propagation. Part II: lower bounds. Theory of Computing Systems, Vol. 32, 531-
559, 1999.

25. N.J.Higham: Accuracy and stability of numerical algorithms ed. SIAM 1996
26. Hong Jia-Wei and T.H.Kung: I/O complexity :The Red-Blue pebble game. Proc.of

the 13th Ann. ACM Symposium on Theory of Computing Oct.1981,326-333.
27. B.Kagstrom, P.Ling and C.Van Loan: Algorithm 784: GEMM-based level 3 BLAS:

portability and optimization issues. ACM transactions on Mathematical Software,
Vol24, No.3, Sept.1998, pages 303-316

28. B.Kagstrom, P.Ling and C.Van Loan: GEMM-based level 3 BLAS: high­
performance model implementations and performance evaluation benchmark.
ACM transactions on Mathematical Software, Vol24, No.3, Sept.1998, pages 268-
302.

29. M.Lam, E.Rothberg and M.Wolfe: The cache performance and optimizations of
blocked algorithms. Proceedings of the fourth international conference on archi­
tectural support for programming languages and operating system, Apr.1991,pg.
63-74.

30. S.S.Muchnick: Advanced compiler design implementation. Morgan Kaufman
31. P.R.Panda, H.Nalramura, N.D.Dutt_ and A.Nicolau: Improving cache performance

through tiling and data alignment. Solving Irregularly Structured Problems in
Parallel Lecture Notes in Computer Science, Springer-Verlag 1997.

32. John E.Savage: Space-Time tradeoff in memory hierarchies. Technical report Oct
19, 1993.

33. V.Strassen: Gaussian elimination is not optimal. Numerische Mathematik
14(3):354-356, 1969.

34. S.Toledo: Locality of reference in LU decomposition with partial pivoting. SIAM
J.Matrix Anal. Appl. Vol.18, No. 4, pp.1065-1081, Oct.1997

35. M.Thottethodi, S.Chatterjee and A.R.Lebeck: Tuning Strassen's matrix
multiplication for memory efficiency. Proc. SC98, Orlando,FL, nov.1998
(http://www.supercomp.org/sc98).

36. RC.Whaley and J.J.Dongarra: Automatically Tuned Linear Algebra Software.
http://www.netlib.org/ atlas /index.html

37. D.S.Wise: Undulant-block elimination and integer-preserving matrix inversion.
Technical Report 418 Computer Science Department Indiana University August
1995

38. M.Wolfe: More iteration space tiling. Proceedings of Supercomputing, Nov.1989,
pg. 655-665.

39. M.Wolfe and M.Lam: A Data locality optimizing algorithm. Proceedings of the
ACM SIGPLAN'91 conference on programming Language Design and Implemen­
tation, Toronto, Ontario,Canada,June 26-28, 1991.

40. M. Wolfe: High performance compilers for parallel computing. Addison-Wesley
Pub.Co.1995

Appendix: Figures

' \
0.04 \

0.035

0.03

lo.02s
:i

0.02

O.G15

\
\
\ ,,. ~,

'+---,

ATV.S:L1m!sses

0.05

0.04
+.,

·'I·-

.... '+"
0.02

?oo 200 400 500 600 700
MatrbcSlzo

ABC-Frnctal: L 1 rrine1

0.04 \

0.035
\ .'\

\ / '·
O.O:J

\\;-......... /
·'+-·-·· -·+·-··-·-+-·-·-

jo.025
5i

O.G15

500 SOO 700 BOO 1000
Matrix Size

,, -t~ ... ·~·+· .. -·-

000 1000

900 1000

Fig.4. SPARC 1, (+)normalized number of data miss, µ(n), and(*) code miss. The
algorithms DGEMM from ATLAS, ABC-Fractal and CAB fractal have been simulated
with matrixes in double precision. ATLAS has a slightly smaller number of miss than
the Fractal approach. ATLAS code size is small, it has good time locality (there is one
procedure called the most) and interferes a few times with data. Fractal approaches,
instead, have large code size, it changes frequently and it increases interference with
the common data.

\
\

·+·- ·- -r-· ·- - .;... ...
.... -+-·- -· ·-·-··•·-·-·-i-·-····+·-·- -

0.08

0.02

ol'--.
100 200 000 400 500 600 700 000 1000

MalrlxSlze

ABC-Fmctal: L 1 nissos
0.09.---,---..---..---..---.,.--....,--....,--....,----,

~0.05

j0.04

o.03

0.02

0.07

0.08

~0.05

~0.04

·,.,._,.- - + ..

... ·+_ -·+-· ... ·-..~···. -+·-····-+-

000 1000

~---·-·

1000

Fig.5. SPARC 5, (+)normalized number of data miss, µ(n), and (*)code miss.
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated
with matrixes in double precision. ATLAS has a very good code locality but poor data
locality.

f\TIAS:L1mlssaa

\

0.05 \

\
\

0.()4

0.02

O.o1

3.5~
\

\

3 \
\
i

2.5 \

1.5

~·~-·-··-·-i· -·-··+".

0.5~

~oo'-r-----'::::200...__..._ _ _,400j--500+--600-*---01ooe----<~----:ooo*::-~1000 ~oo 200 300 400 600 600 100 600 ooo 1000

\
0.04 .

\

\
0.035 \

0.03

0.025

0.02

0.015

0.01

0.005

\

·'+-·-·-·+.

Malril< Silo Matril< SW.

ABC-Froolfil:l1 rrisses

2.5

'·i··-··· ·-t-··-·---!--·- -+·-·-·-·r--·-····_..._

'..-·- -·-+·
.... +'

0.5

000 900

CAB-Fractal:L1 rriste1
0,045~-~-~-~-~-~-~-~-~-~

' 0.04 \
\

0.035 \

0.025

0.02

O.o15

O.o1

0.005

\

+-·- - i-.

··-: ... _ ··+ -·-·-+ ... -
........ _. __ -+-·-·-·+.

\
.\

i

·:L

/~ ____
'·-1··- -·-t--.,·- -

400 500 600 700 000 900 1000 100 200 300 400 500 600 700 600 600 1000
Matrix Sim Matrix Sim

Fig. 6. Ultra 5, (+) normalized number of data miss, µ(n), and (*) code miss. The
algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated with
matrixes in double precision. All algorithms are designed with particular attention
to this architecture and therefore they have very similar performance. The Fractal
approaches have a slightly better performance at the second level cache.

AllAS:L1 mluet
o.02s~-~--.----,---,.----.---,----r--.------,

\
0.02 \

\

~ 0.015

I
.. +-···~ _

0.01

ot--.
100 200

O.o16
\
\

0.014 \

0.012

0.006

0.004

0.01 \

\
0.014

0.012

'0.01
~0.008

0.006

0.004

~00

\
+·-····-t-

\4- -·-·-+·

............ _
- +·-·--·--+·· ... -

500 600 700 800
MatriKSlze

........ +····-·-+-... '-'+····
-·--t--·-· ... +. ····-· +·-·-·-

<400 500 BOO 700 900 1000
MatrlxSlzo

CAB-Fractal: L 1 rrlnes

... '"·-1- - _ _

.... .,....._ ·-·-!·- ·- -·+- -·- _,_ ...

\
\

\
\

\.\ + - -·-+- 4- '""·~ -+-···- -·+·-·-·-
... +-·-·- +·-·--

~ 200 m ~ 500 eoo • ~ 900 ~
MatrixSlzo

ABC-Fractal: L2 m1

):._ -·i-.

'·,'+-·-·····+·-
- -;.- - ... ~·-··~ --1-._

~oo 200 m 400 500 600 700
MalrixSlm

9
x10-l CAB-Fradal:L2mlssos

"+ ••. _ ,.1

........ _ -··+·- -·-+ -····-f'1'

800

/ ,.
I

i

i
;

~"+·-"- -

900 1000

I

Fig.7. R5000 IP32,(+) normalized number of data miss, µ(n), and(*) code miss.
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated
with matrixes in double precision. Algorithm CAB-Fractal behaves differently: 1) the
erratic peak of number of misses at problem < 900, 900, 900 > is due to write misses,
96% of writes are write misses; 2) the code misses are completely negligible.

0.025

0.02

\
\

'· O.Ot '+,,,

ATtAS: L1 niases

- ,,.•w+-
0.005 •• -+·-·-·+- -·-;-·-··-·~

ot==~...._~4--~4--~4--~.__~..._~...._~....___.

m soo ~ ~ -Mnlrixstzo

i
0.016 \

0.014

l 0.01

:.o.ooa

O.OOIJ

0.004

0.002

\

0.016 \

0.014 \

\
0.012

0.006

\

i., .,

200

·,

ABC-Fmclal:lt mlssat

·,

··- ·~
... -

~·+-·-·-.·+·~•·-·-+···-•- T·-·-··-f···- ... ,

300 400 500 ~ 700 1000
MalrixSizo

CAB-Fractal: L 1 mluea

+._

Fig. 9. HAL Station,(+) normalized number of data miss, µ(n), and(*) code miss.
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated
with matrixes in double precision. Code misses are just compulsory misses and Fractal
algorithms are always better than ATLAS.

A11AS:L1 m1u ..
o.oa..---...---....----,----.-----,..--..,.----,r---.-----,

\
0.07 \

\,
0.08 ·+·- -·-·-f·--·- -·+

0.05
.. ·--r-. .. _ -·+ ····- ··+-·-·-+ -t- _

0.03

0.02

0.01

400 500 600 700 000 1000
Matrix Size

ABC-Frudal: L 1 nisS6s
o.oo~-~---,----.-----,..--..,.----,r---.----...-----.

0.05

~ _ +

O.Cl4

0.01

200 300 500 600
Malrix:Slze

CAB-f rudal: l1 hiss0$
0.01.....--...----,----,----.-----,..--..,.----,r---..----,

0.06 \

\

0.05 \
\
~-·-·-·..J

... ~·-··-··+-- --+-·- -··+·- ... -·+······-·+

0.01

Voo 200 400 500 600 700
MntrixSlzo

0.0161\

\

0.012

~0.008
:ii

0.008

0.004

'+···-··- _

300 400

ATLAS: L2 rrisses

....... __

.... "'i--.__. _;-·-·-· .. ·-t·- ... -·

500 600 700 1000
Matrix Sim

ABG-Frectal: L2 ni1aa1
0.012.....--...---..,---,---.----.----.----,..--..,.----,

I
..

O.o1 '

€ I 0.008

0.004

0.002

\
'-~-···it

·~-- -·-·+··"'

500 600 700 900
MatrixSlze

CAB-Fractal: L2 mues
0.012....--.,...--.---,----,----.----.----r--..,.----,

0.01 \

\
\
\

0.009 \+' ·,,
'·

''f- -· ·+·"'·,,,..

0.004

0.002

~ _..._ ---1
Voo 500 600 800 1000

Matrix Sim

Fig.10. Alpha 21164, (+)normalized number of data miss, µ(n), and(*) code miss.
The algorithms DGEMM ATLAS, ABC-Fractal and CAB fractal have been simulated
with matrixes in double precision. The Fractal algorithms have a better data locality
at every level of the memory hierarchy but they have a poor code locality at the first
level of cache.

ATLAS vs FRACTAL for leaves of size up to <32,32,32>
450~~~~~~~~-.-~--.~~--.-~~-.-~~.--~--.~~-,

350

300

250

200'-~--1~~-l..~~-'--~~'--~-..l.~~-'-~~-'-~---''--~-'

200 400 600 BOO 1000 1200 1400 1600 1 BOO 2000
matrix size

Fig. 11. Ultra 5 ATLAS has slightly better performance (i10%) than any Fractal.

1.05
200 400

1.oa" 10'

600 BOO 1000 1200 1400 1600 1800 2000
Matrix Size

ATLAS

..-v- - """+'

~ = ~ ~ ~ ~ ~ ~ -
MalrixSlza

2200

Fig.12. R5000 IP _32. We report DGEMM ATLAS performance according to its
authors [36]. CAB-Fractal achieves a somewhat better performance.

