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Abstract
This paper describes a system which acquires 3D data and uses the data to track an eleven degree

of freedom human model in real-time. Using four cameras we create a time-varying volumetric image (a
visual hull) of whatever object is moving in the space observed by all four cameras. We are currently
operating the sensor in a volume of approximately 500,000 voxels (1.5 inch cubes) at a rate of 25 Hz. We
are able to track the upper body dynamics of a human within the workspace. The system is able to track the
x, y position of the body, a torso rotation about the z axis, along with four rotations in each arm. Tracking
occurs using a method we developed to be extremely fas~ which allows both data acquisition and tracking
to occur on one computer at a rate of 16 Hz. We also developed a calibration procedure, which allows the
system to be reconfigured or even moved and to quickly be recalibrated. Furthermore the system utilizes
another computer to visualize either the voxel data overlaid with the joint locations or to view a human
avatar, both of which are driven in real-time. Lastly our system has been implemented to perform crane
gesture recognition, and has been linked with a large robotic arm to simulate crane movements.
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I Introduction
Due to the enormous number of applications involving human-computer interaction, real-time 3D

human motion-tracking has become a highly valued goal. Applications such as virtual reality, telepresence,
smart rooms, human robot interaction, surveillance, gesture analysis, movement analysis for sports, and
many others all have a need for real-time human motion-tracking. Accordingly there has been a lot of work
done in this field. Most of the work has been done off-line, where images are acquired in real-time and
analyzed at a later time [1,2]. However, this does not allow for any human-computer interaction. Therefore
we must move to a real-time system. The approaches that work in real-time can be divided into two
categories. The f~st category works in the 2D domain and attempts to get 3D information either from a
single view or through combining 2D information from multiple cameras [3,4,5,6]. The problem with this
type of approach is that modeling 3D articulated objects from 2D data is often an ill-posed problem due to
occlusionhelf-occlusion. The second catego~ works directly in the 3D domain. At the time of this paper
only one other team has attempted to work directly in the 3D domain [7]. In their work ellipsoids are fit to
body segments that provide a coarse model of the body. Our system uses a similar data acquisition
approach, but instead fits a stick model of the human so that joint angles can be recovered. In this way a
detailed analysis of the human motion can be performed for a wide variety of applications. Specifically, our
system is recovering the shoulder and elbow joint angles, which allows us to use a much richer set of pose-
analysis functions.

The system developed in this paper acquires data of an area composed of 500,000 3D volume
elements (voxels) with dimensions of 1.5 inches on a side at a rate of 25 Hz. The system then uses the data
to track the upper body dynamics of a eleven degree-of-freedom (DOF) humanoid stick figure model at 16
Hz, which is fast enough to track very rapid movements. Currently our model incorporates the (x, y)
horizontal location of the torso, a rotation of the torso about the vertical (z) axis, and 4 rotations for each
arm (3 in the shoulder and 1 at the elbow). However, testing to expand this model to allow 6 DOF in the
torso and include leg dynamics has already begun. When the user is in the workspace real-time visual
feedback is provided to the user in terms of viewing the voxels overlaid with the joint locations or viewing
a human avatar driven from the tracking results. Our system has also been implemented for a crane gesture
analysis system and achieved excellent results.

This paper will f~st provide an overview of our approach and system architecture in section 2.
Given that in section 3 the paper will explain our data acquisition system and present our new calibration
algorithm, which allows for rapid setup of our system. Following that our new tracking algorithms are
explained in section 4. Next the results of our system are discussed in section 5. A brief overview of an
application follows in section 6. Lastly, conclusions and future work are discussed in section 7.

2 The System
Our system can be divided into three main components. The first acquires our 3D data using 4

cameras and a technique called shape-from-silhouette. The second component uses the data to fit an eleven
DOF stick figure model to the data. The algorithm has to perform quickly in order to ensure real-time
tracking. Therefore, we require the user to initialize the system by standing in a particular pose in which
body parameters are measured. Once the system detects the initialization has been completed, it switches
into a tracking algorithm. The tracking algorithm uses an approach where the voxels create forces to pull
the model into alignment with the data. The last component uses the tracked model to provide feedback to
the user and to perform analysis of the motion. First a real-time visualization system can either display the
current voxels and the computed joint locations, or it can dkplay a human avatar with the joint angles
computed from the tracking algorithm. A second system reads in the joint positions from the tracking
algorithm computes human-joint angles and performs gesture recognition to control a crane.

The hardware and sofhvare architecture of the system is robust and straightforward to implement.
Figure 1 is a diagram of the hardware that is used. The f~st system is a 866 MHz Pentium3 computer with
4 image nation video cards connected to 4 cameras. This system is used for the image processing and
volumetric calculations as well as tracking the humanoid model. The second system is a 450 MHz
Pentium2 with a 3D accelerator and is used for visualization of the data. The systems are connected by a
100-megabit ethernet switch that allows for a dwec4 uninterrupted connection between the two computers.
The software architecture is based around a client/server framework. It makes use of the Common Object
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Request Broker Architecture (CORBA) for clientherver communications, and multithreaded process
partitioning.

3 The 3D Video Motion Detector
The system we are using to acquire 3D data is a real-time shape-from-silhouette sensor that we call

the 3D Video Motion Detector, or 3DVMD. This sensor uses a combination of industry standard
components including a high-end PC, four RS170 monochrome video cameras, and four PCI-bus fizune
grabber cards. Using this hardware we create a time-varying volumetric image of the visual hull of
whatever object is moving in the space observed by all four cameras. We are currently operating the sensor
in a volume of approximately 500,000 voxels (1.5 inches cubed) at a rate of 25 Hz.

3.1 Algorithm Description
The algorithm for performing the shape from silhouette involves extracting silhouettes from the

four images using an adaptive background subtraction and thresholding technique. This algorithm indicates
which pixels have changed from the background in each of the cameras, as seen in figure 1.

Figure 1 The 3 difference images used by the 3DVMD. The blue pixels represent new motion.

The calibration procedure creates look up tables that store voxel-pixel associations, which relate each voxel
to a pixel in each camera. By traversing the voxels and examining the appropriate image-pixels we can tell
which voxels are occupied. Voxels that are occupied will have the appropriate pixel in all of the cameras
active. To speed the process of traversing through the voxels we are defining a subvohune around the
region in which the person is moving, thereby minimizing the search. This results in a very fas; low-
latency system that is appropriate for our tracking work, as well as for development of uninstrumented 3D
user interfaces. Figure 2 shows an example of our data.
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Figure 2 Example of 3DVMD data



3.2 Calibration of the 3DVMD Sensor:
The 3DVMD system relies on an accurate calibration of each camera’s intrinsic aud extrinsic

parameters. We estimate parameters for each camera’s intrinsic characteristics by holding an 8 by 10 inch
checkerboard pattern by hand at a distance that fills most of tie camera field of view. The paper target
pattern is glued to a glass plate. A series of six images of this target are recorded from each camera, with
the angles between the target plane and the camera at a variety of values. From this information we can
determine the focal length, center pixel location, and the coefficients of radial distortion. [8] The next step is
to estimate the camera’s world-fiwne position. We place targets on the floor of the space we are observing
and determine their image-plane locations with subpixel accuracy, as seen in Il@re 3. We then use the
same planar calibration methods, but instead of solving for the intrinsic parameters, we now solve for the
extrinsic parameters. Because all of the cameras observe the targets in the same positions, we are able to
obtain the relative positions of each camera in a global coordinate frame. By using this analytical
calibration method, we can now set these systems up much more rapidly than previous manual calibration
methods.

Figure 3 The image shows the workspace and the targets on the floor that are used to derive the
extrinsic calibration of the cameras. From this camera calibration data, the volumetric points can be
easily computed and projected back into the image plane.

4 Tracking the humanoid model

4. f Initialization
To simpli~ tracking we require that the user performs an initialization pose upon entering the

workspace. The pose is a simple cross formation with the user facing along they axis with his arms
extending parallel to the floor and straight out to the sides of the body (along the x axis). Once in this pose,
the system measures the body parameters required for tracking: body radius, shoulder heigh~ and arm
length. Body radius is measured by gradually increasing the radius of a infinite cylinder (along z) placed at
the center (median) of the voxels, until the number of new voxels within the cylinder drops off
significantly. Arms are found by starting at the expected shoulder location (calculated from the height of
the user, the direction the user is facing, and his body radius) and repeatedly growing to neighboring voxels
outside of the body radius until no new voxels are found. We then check to ensure that the vectors from the
last voxel found on each arm (the fingertip) to the shoulder locations are pointed in the correct direction for
the initialization pose. Once in the initialization pose, the height of the shoulders and the lengths of the
arms are recorded. The system then indicates that the initialization phase has ended and tracking can begin.

Currently the user must always begin by initializing the system. However, the model parameters
can easily be saved to a file and read in before the user enters the workspace. In this way the user would
only have to tell the system who he or she is and tracking can commence immediately. Our system already
uses voice communication, therefore it would be easy to incorporate an option to simply tell the system
your name while entering the workspace and skip the initialization phase.
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4.2 Tracking
In order to speed tracking, the tracking procedure it broken into two phases. The current algorithm

frostfinds the (x,y) location and heading (the direction the person is pointed) of the torso. We can then
predict the location of the joints (currently just the shoulders), and assume that the locations remain
constant for a particular torso orientation. These locations are then used to anchor models extending from
the torso (currently just the arms). In this way we only need to solve for the angles at which the upper arms
extend from the shoulders, and then for which the lower arms extend from the elbows.

Currently we only compute the x, y location of the torso and a rotation about G accordingly we are
assuming the user is standing straight up. The x, y location can easily be computed using the median value
of all the voxels. The heading is computed by fitting an ellipsoid to all the data within the body radius of
the x, y location. This is done by performing an eigen-decomposition on the moment matrix M. The
eigenvectors of this matrix correspond to the principal axes of the ellipsoid. The principal axis closest in
orientation to the last known heading is taken as the new heading of the person.

‘“’k%dwhere’M”b=’2
To compute the angles for a particular arm segmen~ we simply compute the angles from each

voxel that is not within the body radius to the anchor point. The result is a pulling force from the current
orientation to anew orientation that passes through this voxel, as shown in figure 4. In this way each voxel
can have an effect on all of the arm segments, which overcomes the problem of having to decide which arm
segment a voxel belongs to.

However, we weight each pull by the distance, d, to each arm segmenL so that a voxel exerts a
stronger pull on closer arm segments than on those further away. For each voxel, let the minimum distance
to any arm segment be denoted as dmin.The weight for each segment is given by (dmlnI d)3. Accordingly as
the model is pulled into the correct orientation, the forces exerted from a particular voxel should be ahnost
entirely on the segment closest to the voxel. This weighting strategy works extremely well for small
adjustments, which is all it should have to make since our tracking rate is extremely high.

In addition we employ zero weighting to any arm segment further than a certain distance from the
voxel (dma ,computed from a maxirmuh arm velocity divided by our tracking rate). Also, if a voxel is
within a very small distance of an arm segment (less than d$eg), then we assume that it belongs to only that
segmen$ and assign a zero weight to all other segments. The weighting assignment is shown below.

(lif

I(dti /d)3 if dti<d<dmm
Weight = ~

If d> dmm
I

In addition, for those points very close to the body radius we lessen the weights, because they could be
noise or body voxels. Also, the weights of points are scaled by their distance to the anchor so that close
points have a small weight. This is done because the calculated adjustment angle is larger for points with
the same offset from the segment but closer to the anchor.

Once the adjustment is computed for all voxels outside of the body radius, an adjustment is made
to each of the arm segment angles and the loop repeats. The process stops for each arm segment when
either the adjustment is too small or the move was bad (fewer points are close to new orientation of the
segment).
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Figure 4 Example of alignment fo;ces. Voxels closer to an arm segment exert a larger force on that
segment than to arm segments further away (the weight to the upper arm is 1 while the weight to the
lower arm, which is further away, is scaled down).

Currently our system stops tracking an arm when the arm lies along the body. If we hope to track the
arms when they are extremely close to the body we must move to a much more precise torso model (work
is in progress). In addition we will need data which has far less noise from shadows. Employing color
cameras and using hue to distinguish shadows as done by Cheung and Kanade [7] might solve this
problem.

The process also has a recovery algorithm in case it “loses” an arm. If too few voxels are close to one
of the arm segments, the process assumes that the optimization has failed and attempts to grow the arm
instead. Since we know the shoulder position, we start a growing algorithm from this point. Growing can
include any neighboring point outside of the body radius, and continues until no new points are found. In
this way the last point found should again be the hand and the elbow should be somewhere in the middle.
Accordingly we compute the elbow to be at the voxel that was 2/3 of the way down the arm. Angles are
calculated using these locations. The growing algorithm may not be able to fmd the arm if we have missing
data (data acquisition has failed to find the arm voxels) or if the arm lies within the body radius. In this case
our algorithm will leave the arm where it was last located and wait for the next set of data.

5 Results
The current system is able to collect data and track our model at 16 fkunes per second. Both data

collection and model tracking occur on the same computer. Currently we are not able to indicate precisely
how accurate our tracking is because we do not know the ground truth for the users movement within the
workspace (see future work). However, the fit looks good when comparing the movement of the user and
the avatar side by side (a movie will be available on the web soon). In addition we were able to use the joint
angles to distinguish several gestures to control a crane as will be discussed in the application section.
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There are two options for visual feedback while the user is within the workspace. He or she can
either see the voxel data set with colored spheres to indicate the current joint estimations, or a human avatar
that uses the joint angles computed from the current joint estimations. Both output displays shown in Figure
5 run in real-time.

ptions. On the left is our human 3D avatar (inset
lace). On the right is a display of the voxels with large
body voxels have been removed).

6 Application
We incorporated our tracking algorithm into a system for crane gesture analysis. The system

utilizes four cameras to form a workspace in fkont of a large robotic arm, which siinulates a crane. A
separate computer, reads in the same data as the visualization computer (the joint locations) and uses it to
interpret gestures and control the crane. Also implemented on this computer is a voice recognition routine
that allows verbal communication between the system and the user.

The process follows this pattern. When enough voxels appear to indicate a user within the
workspace the computer says “Hello” and asks the user to verbally identify himself (eventually this will be
used to skip the idealization step). The user is then asked to stand in the initialization pose and the system
verbally communicates when initialization is done. Once initialization is complete, the user lowers his arms
and the system indicates that gesturing can now begin. Once in this state, the system continuously inspects
the joint angles to see if a gesture is occhg. Because joint angles are being used for gesture
interpretation the user can perform a gesture facing any d~ection and even while moving. Additionally, the
size of the user has no effect on the joint angles, and thereby no effect on gesture recognition. Currently the
system is able to reliably interpret all of the gestures shown in Figure 6. (Again a movie will be available on
the web soon).

3d”&dSI..4ad*%LowerLoad Slow RaiseBoom Lower Boom

-h(fK-’vY-lI-’
Swing Left Swing Right stop Emergency Stop Initialization Pose

Figure 6 Recognized crane gestures. The 11 gestures depicted above were successfully recognized by
our system using human joint angles. We also allowed the gestures on the top row to be performed
with the arms switched.
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7 Conclusions and Future Work
The system we have developed is able to collect high-resolution 3D voxel data at 25 Hz. We have

also developed a calibration procedure that allows the system to be rearranged or even moved and to be
quickly recalibrated. We are currently able to use the hardware and software that we have developed to
track a low-dimensional human avatar figure at 16 Hz. The avatar we are using has a total of eleven
degrees of freedom: four in each arm, and XY-theta for the position of the body. The system provides
visual feedback in real-time with either human avatar display or through displaying the voxels overlaid
with the joint positions. Lastly we were able to employ our system to perform crane gesture interpretation
and successfully interacted with a system using a robotic arm to simulate crane movement.

By working directly in the 3D domain we eliminate problems caused by occhtsion/self-occlusion,
thereby allowing complicated motions to be accurately captured and tracked. By tracking a human stick
figure model we are able to dwectly calculate human joint angles, which greatly simplifies motion analysis.
In addition, because our system works at a high cycle rate, we are able to track extremely fast motions.

This project is currently undergoing many improvements. First we plan to implement a tracking
algorithm that will fit an exact torso model to our da@ which incorporates x, y, and z translation and
accounts for not only rotation about its main axis but for tilting to the side and forward. Within this new
torso model it will be easy to obtain both shoulder and hip locations. Hence our current tracking algorithm
can still be used for tracking the arms and can also be implemented to track the legs. We are currently in
the testing phase for this algorithm. Once this is complete we plan to tier extend our algorithm to track
the head and possibly even some hand orientations. We also plan to test the accuracy of our system by
obtainiig a ground truth to compare to the joint angles obtained through tracking. This will be
accomplished by using a traditional electromagnetic tracking system (Ascension’s Flock-of-Birds). The
markers can be used to calculate aground truth while the results of our tracking are written to a file for
comparison. In addition, we plan to implement our system in several applications. We believe the system
will allow us to interact in real-time with another human avatar driven at a remote location. This will enable
a “3D conference-call” between users. Lastly would like to extend our algorithms to allow for multiple
people to interact within the workspace of a single sensor. Currently, we are limited to one user for one
sensor.
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