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Abstract. We derive a branch-and-bound algorithm to find an optimal inversion
median of three signed permutations. The algorithm prunes to manageable size
an extremely large search tree using simple geometric properties of the problem
and a newly available linear-time routine for inversion distance. Our experiments
on simulated data sets indicate that the algorithm finds optimal medians in rea-
sonable time for genomes of medium size when distances are not too large, as
commonly occurs in phylogeny reconstruction. In addition, we have compared
inversion and breakpoint medians, and found that inversion medians generally
score significantly better and tend to be far more unique, which should make
them valuable in median-based tree-building algorithms.

1 Introduction

Dobzhansky and Sturtevant [7] first proposed using the degree to which gene orders
differ between species as an indicator of evolutionary distance that could be useful for
phylogenetic inference, and Watterson et al. [23] first proposed the minimum number
of chromosomal inversions necessary to transform one ordering into another as an ap-
propriate distance metric. The 1992 study by Sankoff et al. [ 21] included a heuristic
algorithm for finding rearrangement distance (which considered transpositions, inser-
tions, and deletions, as well as inversions); it was the first large-scale application and
experimental validation of rearrangement-based techniques for phylogenetic purposes
and initiated what is now nearly a decade of intense interest in computational problems
relating to genome rearrangement (see summaries in [16,19,22]).

While much of the attention given to rearrangement problems may be due to their in-
triguing combinatorial properties, rearrangement-based approaches to phylogenetic in-
ference are of genuine biological interest in cases in which sequence-based approaches
perform poorly, such as when species diverged early or are rapidly evolving [ 16]. In ad-
dition, rearrangement-based phylogenetic methods can suggest probable gene orderings
of ancestral species [17,18], while other methods cannot. Furthermore, mathematical
models of genome rearrangement have applications beyond phylogeny (see [ 8,20]).
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Recent work on rearrangement distance and sorting by inversions (or reversals,
as they are often called in computer science) has produced a duality theorem and
polynomial-time algorithm for inversion distance between two signed permutations
[10], a duality theorem and polynomial-time algorithm for distance in terms of equally
weighted translocations and inversions for signed permutations [ 11], polynomial-time
algorithms for sorting by reversals [2,12], and a linear-time algorithm for computing in-
version distances [1]. Note that “signed permutations” correspond to genomes for which
the direction of transcription of each gene is known as well as the ordering of the genes.

Much recent work on rearrangement-based phylogeny [ 5,6,14,15,18] stems from
an algorithm by Sankoff and Blanchette [17] that iterates over a prospective tree, re-
peatedly finds medians of the three permutations adjacent to each internal vertex, and
uses them to improve the tree until convergence occurs. This method finds locally op-
timal trees and simultaneously allows an estimation of the configurations of ancestral
genomes. These studies have generally used breakpoint distance as the basis for finding
medians, because it is more easily computable than inversion distance, it assumes no
particular mechanism of rearrangement, and the problem of finding a breakpoint me-
dian has a straightforward reduction to the well known Travelling Salesman Problem
(TSP) [17]. The number of breakpoints between two genomes is the number of genes
that are adjacent in one but not the other genome; the breakpoint median of a set of
genomes is the ordering of genes that minimizes the sum of the number of breakpoints
with respect to each genome in the set.

Breakpoint distance is related to inversion distance (an inversion can remove at most
two breakpoints) but the relationship is a loose one. Because it is believed that inver-
sions are the primary mechanism of genome rearrangement for many taxa [ 13,3], we
seek a solution to the median problem based directly on inversion distance. Finding an
inversion median is known to be NP-hard [4], and to date, no one has reported a rea-
sonably efficient algorithm (approximate or exact) for this problem. (Although in one
study [9], inversion medians were obtained for a particular data set using a bounded
exhaustive search.)

In this paper, we present a simple yet effective branch-and-bound algorithm to solve
the median of three problem exactly. Our approach does not depend on properties spe-
cific to inversions, but can be used with any rapidly computable metric. We have evalu-
ated its effectiveness for the case of inversion medians, and found that it obtains optimal
medians with reasonable computational effort for a range of parameters that include
most realistic instances encountered in phylogenetic analysis. In addition, we have per-
formed a comparison of inversion and breakpoint medians, and found that inversion
medians score significantly better in terms of total induced edge length, and tend to be
far more unique. These findings suggest that inversion medians, when used within the
algorithm of Sankoff and Blanchette, will allow better trees to be computed in fewer
iterations.

2 Notation and Definitions

We consider the case where all genomes have identical sets of n genes and inver-
sion is the single mechanism of rearrangement. We represent each genome G i as a
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permutation πi of size n, and we let all pairs of genomes Gi = (gi,1 . . . gi,n) and
Gj = (gj,1 . . . gj,n), in a set of genomes G, be represented by π i = (πi,1 . . . πi,n) and
πj = (πj,1 . . . πj,n) such that πi,k = πj,l iff Gi,k = Gj,l, and πi,k = −1 · πj,l iff Gi,k

is the reverse complement of Gj,l.
We define an inversion acting on permutation π from i to j, for i ≤ j, as that opera-

tion which transforms π into φ = (π1, π2, . . . , πi−1,−πj ,−πj−1, . . . ,−πi, πj+1, . . . ,
πn). The minimal number of inversions required to change one permutation π i into
another permutation πj is the inversion distance, which we denote by d(πi, πj) (some-
times abbreviated as di,j).

Let the inversion median M of a set of N permutations Π = {π1, π2, . . . , πN} be
the signed permutation that minimizes the sum S(M,Π) =

∑N
i=1 d(M,πi)). Let this

sum S(M,Π) = S(Π) be called the median score of M with respect to Π .
For a given number of genes n, we can construct an undirected graphG n = (V,E)

such that each vertex in V corresponds to a signed permutation of size n and two ver-
tices are connected by an edge if and only if one of the corresponding permutations
can be obtained from the other through a single inversion; formally, E = {{v i, vj} |
vi, vj ∈ V and d(πi, πj) = 1}. We will call Gn the inversion graph of size n. In
this graph, the distance between any two vertices, v i and vj , is the same as the inver-
sion distance between the corresponding permutations, π i and πj . Furthermore, find-
ing the median of a set of permutations Π is equivalent to finding the minimum un-
weighted Steiner tree of the corresponding vertices in Gn. Note that Gn is very large
(|V | = n! · 2n), so this representation does not immediately suggest a feasible graph-
search algorithm, even for small n.

Definition 1. A shortest path between two permutations of size n, π1 and π2, is a con-
nected subgraph of the inversion graph Gn containing only the vertices v1 and v2 cor-
responding to π1 and π2, and the vertices and edges on a single shortest path between
v1 and v2.

Definition 2. A median path of a set of permutations Π each of size n is a connected
subgraph in the inversion graph of Gn containing only the vertices corresponding to
permutations in Π , the vertex corresponding to a median M of Π , and a shortest path
between M and each π ∈ Π .

Definition 3. A trivial median of a set of permutations Π is a median M that is a
member of that set, M ∈ Π .

Definition 4. A trivial median path of a set of permutations Π is a median path that
includes only the elements of Π and shortest paths between elements of Π .

3 General Median Bounds

Because phylogenetic reconstruction algorithms generally work with binary trees in
which each internal node has three neighbors, the special case of the median of three
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genomes is of particular interest. In this section we develop a general bound for the
median-of-three problem, one that relies only on the metric property of the distance
measure used.

Lemma 1. The median score S(Π) of a set of equally sized permutations Π = {π1,
π2, π3}, separated by pairwise distances d1,2, d1,3, and d2,3, obeys these bounds:

⌈
d1,2 + d1,3 + d2,3

2

⌉
≤ S(Π) ≤ min

{
(d1,2 + d2,3), (d1,2 + d1,3), (d2,3 + d1,3)

}

Proof. The upper bound follows directly from the possibility of a trivial median, and
the lower bound from properties of metric spaces (a median of lower score would neces-
sarily violate the triangle inequality with respect to two of π1, π2, and π3; see Figure 1).

v3

vM

d3,M

v1

d1,3

v2

d2,M

d1,2 d1,M

d2,3

Fig. 1. Let vertices v1, v2, and v3 correspond to permutations π1, π2, and π3, and let
vertex vM correspond to a median M .

Lemma 2. If three permutations π1, π2, and π3 have a median M that is part of a
trivial median path, then M must be a trivial median.

Proof. Assume to the contrary that π1, π2, and π3 have a trivial median path and have a
medianM that is not trivial. By Definition 4,M must be on a shortest path between two
of π1, π2, and π3. Without loss of generality, assume that the median path runs from π 1

to M to π2 to π3. Let d1,2, d1,3, and d2,3 be the pairwise distances between {π1, π2},
{π1, π3}, and {π2, π3}, respectively, and let dM,2 > 0 be the distance of M from π2.
Then the median score ofM is (d1,2−dM,2)+dM,2+(dM,2+d2,3) = d1,2+dM,2+d2,3.
But this score is greater by dM,2 than the score of a trivial median at π2, so M cannot
be a median.

Theorem 1. Let π1, π2, and π3 be permutations such that π2 and π3 are separated
by distance d2,3, and let φ be another permutation separated from π1, π2, and π3 by
distances d1,φ, d2,φ, and d3,φ, respectively. Suppose that φ is on a median path PM of
π1, π2, and π3 such that φ is on a shortest path between π1 and a median M . Then the
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score S(M) of M obeys these bounds:

d1,φ +
⌈
d2,φ + d3,φ + d2,3

2

⌉
≤ S(M)

≤ d1,φ + min
{
(d2,φ + d2,3), (d2,φ + d3,φ), (d2,3 + d3,φ)

}

Proof. Let v1, v2, and v3 be vertices corresponding to π1, π2, and π3, in the inversion
graph of the appropriate size. In addition, let there be a vertex v φ corresponding to φ, as
illustrated in Figure 2. We claim that a median path PM including vφ and M , such that

v1

d2,3
v3

vφ

v2

d3,φd2,φ
M

d1,φ

Fig. 2. A median path including vφ can be constructed using a shortest path from v1 to
vφ and any median path of vφ, v2, and v3.

vφ is on a shortest path from v1 to M , can be constructed by combining a shortest path
between v1 and vφ and a median path of vφ, v2, and v3. Assume to the contrary that
there exists a shorter median path Pshort, which also includes vφ and M , but does not
include the shortest path between v1 and vφ or does not include a median path of vφ, v2,
and v3. Pshort has to include v1 via a vertex other than vφ and consequently other than
M (because vφ is on a shortest path between v1 and M ). By Definition 2, Pshort must
consist only of v1, v2, v3,M , and vertices between them (including vφ), so v1 must be
connected to Pshort via v2 or v3. Consequently,M must be on a shortest path between
v2 and v3; otherwise including M in Pshort would result in a score greater than that
of a trivial median. Therefore, M is part of a trivial median path, which means that by
Lemma 2, M is a trivial median. In particular, M must be the vertex v i ∈ {v2, v3} to
which v1 is connected. Furthermore, our assumptions about φ require that vφ be on the
shortest path between v1 and vi. Then Pshort includes both the shortest path between v1

and vφ and the median path of vφ, v2, and v3, and we obtain the desired contradiction.

Because PM can be constructed by combining a shortest path between v 1 and vφ,
and a median path of vφ, v2, and v3, its score is equivalent to the sum of the distance
between v1 and vφ (d1,φ), and the score of the median of vφ, v2, and v3. By applying
Lemma 1 to the latter, we obtain the desired bound.
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4 The Algorithm

Algorithm find inversion median is presented below. It is essentially a branch-
and-bound search for an optimal inversion median that uses Theorem 1 to prune a search
tree based on the inversion graph and to prioritize among search branches.

Prioritization is managed using a priority stack—which always returns an item of
highest priority, but returns items of equal priority in last-in-first-out order. Because
the range of possible priorities is small, we use a fixed array of priority values, each
pointing to a stack and so can execute push and pop operations in fast constant time.
Using stacks rather than the more conventional queues in this application is not required
for correctness, but, by inducing depth-first searching among alternatives of equal cost,
rapidly produces a good upper bound for the search.

The algorithm begins by establishing upper and lower bounds for the solution using
Lemma 1 (steps 1 and 2) and priming the priority stack with a best-scoring vertex (steps
3 and 4). Then it enters a main loop (step 6) in which it repeatedly pops the “most
promising” vertex from the priority stack, finds all of its as-yet-unvisited neighbors
(step 8), and evaluates each one for feasibility. Neighbors are obtained by generating
all

(
n
2

)
possible permutations that can be produced from a vertex by a single inversion.

Neighbors of a vertex v can be ignored if they are not farther from the origin than
is v (step 9); such vertices will be examined as neighbors of another vertex if they can
feasibly belong to a median path. The best possible score (i.e., lower bound) for a vertex
w is is used as the basis for prioritization. Best and worst possible scores are calculated
using the bounds of Theorem 1 (steps 10 and 11) and maintained for all vertices present
in the priority stack. Vertices can be pruned when their best possible scores exceed the
current global upper bound. The global upper bound can be lowered when a vertex is
found that has a lesser upper bound (step 13). The search ends when no vertex in the
queue has a best-possible score lower than the upper bound (step 7) or a score equal to
the global lower bound is found (step 12).

The algorithm will return a permutationM only if M is a true median of the inputs
π1, π2, and π3. Assume to the contrary that a permutationM ′ returned by the algorithm
is not a true median. Because the algorithm returns the permutation having the lowest
median score of all of the permutations (vertices) it visits (steps 5 and 13), it must not
have visited some median. If the algorithm did not visit some median, then either it
pruned all paths to medians or it exited before reaching any median.

Suppose the algorithm pruned all paths to medians. It only prunes vertices when
their best possible scores are lower than the current global upper bound, Mmax. Note
that the global upper bound always corresponds to the actual median score of a vertex
that has been visited (steps 2 and 13), so it cannot be wrong. Consider a median M
with at least one median path PM . By Definition 2, PM must include at least one path
between M and each of the vertices v1, v2, and v3 corresponding to π1, π2, and π3.
The algorithm proceeds by examining neighbors of an origin ψ orig ∈ {π1, π2, π3}.
Therefore, if the algorithm pruned all paths to M , then it must have pruned a vertex on
the path between ψorig andM . But the best scores of such vertices are calculated using
the lower bound of Theorem 1 (step 10), which we have shown to be correct. Therefore,
the algorithm cannot have pruned the shortest paths to medians.
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Algorithm 1: find inversion median

Input: Three signed permutations of size n: π1, π2, and π3. Assume a function dis-
tance(πi, πj) that returns the inversion distance between πi and πj in linear
time.

Output: An optimal inversion median M .
begin

d1,2 ← distance(π1, π2);
d1,3 ← distance(π1, π3);
d2,3 ← distance(π2, π3);

1 Mmin ← � d1,2+d1,3+d2,3
2

�;
2 Mmax ← min{(d1,2 + d2,3), (d1,2 + d1,3), (d2,3 + d1,3)};

Initialize priority stack s for range Mmin to Mmax;
(ψorig, ψ1, ψ2)← (πi, πj , πk) such that {πi, πj , πk} = {π1, π2, π3} and
di,j + di,k = Mmin;

3 create vertex v with vlabel = ψorig, vdist = 0, vbest = Mmin, vworst = Mmax;
4 push(s, v);
5 M ← ψorig;

dsep ← dψ1,ψ2 ;
stop← false ;

6 while s is not empty and stop = false do
pop(s, v);

7 if vbest ≥Mmax then stop← true ;
else

8 foreach {w | w is an unmarked neighbor of v} do
wdist ← distance(wlabel, ψorig);

9 if wdist ≤ vdist then continue;
mark w;
dψ1 ← distance(wlabel, ψ1);
dψ2 ← distance(wlabel, ψ2);

10 wbest ← wdist + � dψ1+dψ2+dsep

2
�;

11 wworst ← wdist + min{(dψ1 + dsep), (dψ1 + dψ2), (dsep + dψ2)};
12 if wworst = Mmin then M ← wlabel; stop← true ;

else
if wbest < Mmax then push(s,w,wbest);

13 if wworst < Mmax then
M ← wlabel; Mmax ← wworst;

end
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Suppose instead that the algorithm exited before reaching a median. The algorithm
can exit for one of three reasons:

1. The priority stack s becomes empty (step 6);
2. The next item returned from s has a best possible score greater than or equal to the

current global upper bound (step 7);
3. A vertex w is found with a worst possible score equal to the global lower bound

(step 12);

Case 1 can occur only if all vertices have been visited, or if all remaining neighbors
have been pruned (because except when the algorithm stops for another reason, each
new neighbor is either pruned or pushed onto s). If all vertices have been visited, then
a median must have been visited. We have shown above that all neighbors on paths to
a median cannot have been pruned. Because s always returns a vertex v such that no
other vertex in s has a lower best-possible score than v, and because all neighbors that
are not pruned are added to s, case 2 can only occur if a median has been visited or if
all paths to medians have been pruned. We have shown that all paths to medians cannot
have been pruned. Therefore, if case 2 occurs, a median must have been visited. In case
3, w must be a median, since the global lower bound is set directly according to Lemma
1 (step 1), which we have shown to be correct.

Thus, none of these three cases can arise before a median has been found, and
the algorithm must return a median. The worst-case running time of the algorithm is
O(n3d), with d = min{d1,2, d2,3, d1,3}, but as would be expected with a branch-and-
bound algorithm, the average running time appears to be much better.

5 Experimental Method

We implemented find inversion median in C, reusing the linear-time distance
routine (as well as some auxiliary code) from GRAPPA [1], and we evaluated its perfor-
mance on simulated data. All test data was generated by a simple program that creates
multiple sets of three permutations by applying random inversions to the identity per-
mutation, such that each set of three permutations represents three taxa derived from a
common ancestor under an inversions-only model of evolution. In addition to the num-
ber of genes n to model and the number of sets s to create, this program accepts a
parameter i that determines how many random inversions to apply in obtaining the per-
mutation for each taxon. Thus, if n = 100, i = 10, and s = 10, the program generates
10 sets of 3 signed permutations, each of size 100, and obtains each permutation by ap-
plying 10 random inversions to the permutation +1,+2, . . . ,+100. A random inversion
is defined as an inversion between two random positions i and j such that 1 ≤ i, j ≤ n
(if i = j, a single gene simply changes its sign). When i is small compared to n, each
permutation in a set tends to be a distance of 2i from each other.

We used several algorithmic engineering techniques to improve the efficiency of
find inversion median. For example, we avoided dynamic memory allocation
and reused records representing graph vertices. We were able to gain a significant
speedup by optimizing the hash table used for marking vertices: a custom hash table of-
fered a fourfold increase in the overall speed of the program, as compared with UNIX’s
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db implementation. With circular genomes, we achieved a further improvement in per-
formance by hashing on the circular identity of each permutation rather than on the
permutation itself. We define the circular identity of a permutation as that equivalent
permutation that begins with the gene labeled +1. By hashing on circular identities,
we reduced the number of vertices to visit and the number of permutations to mark by
approximately a factor of 2n.

To improve performance further, we adapted our sequential implementation to run
in parallel on shared-memory architectures. Two steps in the algorithm are readily paral-
lelizable: the major loop (step 6), during each iteration of which a new vertex is popped
from the priority stack, and the minor loop (step 8), in which the neighbors of a ver-
tex v are generated, examined for marks, and evaluated for feasibility as medians. We
enabled parallel processing at both levels, using pthreads for maximum portability
across shared-memory architectures. With careful use of semaphores and pthreads
mutex functions, we were able to reduce the cost of synchronization among threads to
an acceptable level.

6 Experimental Results

6.1 Performance of Bounds

Being especially concerned with the effectiveness of the pruning strategy, we have cho-
sen as a measure of performance the number of vertices V of the inversion graph that
the algorithm visited. In particular, we have taken V to be the number of times the
program executed the loop at step 8 of the algorithm. Note that the number of calls to
distance is approximately 3V . We recorded the distribution of V over many exper-
iments, in which we used various values for the number of genes n and the number of
inversions per tree edge i. Figure 3 is typical of our results. It summarizes 500 experi-
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Fig. 3. Distribution of the number of vertices visited in the course of 500 experiments
with n = 50 and i = 7.
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ments with n = 50 and i = 7 and shows a roughly exponential distribution, with high
relative frequencies in a few intervals having small V : in 87% of the experiments, fewer
than 10,000 vertices were visited, and in 95%, fewer than 20,000 were visited. This fig-
ure demonstrates that the algorithm generally finds a median rapidly, but occasionally
becomes mired in an unprofitable region of the search space. We have observed that
the tail of the exponential distribution becomes more substantial as i grows larger with
respect to n.

In order to characterize typical performance, we recorded the statistical medians
of V as n and i varied independently. The results are shown in Figures 4 and 5. For
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Fig. 4. Statistical median of the number of vertices visited V for i = 5 and 10 ≤ n ≤
100, over 50 experiments for each value of n.

comparison, we have also plotted the mean values of V . Note that, at least for i = 5,
the median and mean of V appear to grow quadratically over a significant range of
values for n; a simple fit yields f(n) = 2.1n2 for the median values. Note also that,
for n = 50, the median of V grows approximately linearly with i, at least as long as i
remains small (mean V grows somewhat faster than medianV ). To put the observed rate
of growth into perspective, note that in the theoretical worst-case of O(n 3d), because

d ≈ 2i and V = O(n3d

n ) = O(n(6i−1)), one would see (given i = 5 and n = 50)
growth of V with n29 and 506i−1.

6.2 Running Time and Parallel Speedup

We have tested programfind inversion median sequentially on a 700 MHz Intel
Pentium III with 128MB of memory, and using various levels of parallelism on a Sun
E10000 with 64 333 MHz UltraSPARC processors and 64GB of memory. Figure 6
shows average running times for i = 5 and n between 50 and 125. Sequential running
times are shown for the Sun and Intel processors and parallel running times for the Sun
with the number of processors p ∈ {1, 2, 4, 6}. In all cases, the average time to find
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Fig. 5. Statistical median of the number of vertices visited V for n = 50 and 1 ≤ i ≤ 8,
plotted with mean of V . The number of experiments for each value of i is 50.
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Fig. 6. Sequential and parallel running times for i = 5 and n ∈ {50, 75, 100, 125}. Each
data point represents an average taken over 10 experiments. Parallel configurations used
parallelism only in the minor loop of the algorithm.

a median is about 12 seconds or less. Observe that for n = 100 (a realistic size for
chloroplast or mitochondrial genomes) medians can generally be found in an average
of about 2 seconds using a reasonably fast computer. We should note that the memory
requirements for the program are considerable, and that the level of performance shown
here is partly a consequence of the large amount of RAM available on the Sun.

It is evident from Figure 6 that we achieve a good parallel speedup for small p, but
that the benefits of parallelization begin to erode between p = 4 and p = 6 (this ten-
dency becomes more pronounced at p = 8, which we have not plotted here for clarity of
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presentation). Anecdotal evidence suggests that the cause of this trend is a combination
of the overhead of synchronization and uneven load balancing among the computing
threads. We also observed that parallelism in the minor loop of the algorithm was far
more effective than parallelism in the major loop, presumably because the heuristic for
prioritization is sufficiently effective that the latter strategy results in a large amount of
unnecessary work.

6.3 Inversion Medians vs. Breakpoint Medians

Using program find inversion median, we evaluated the significance of inver-
sion medians, by comparing them with breakpoint medians, trivial medians, and “ac-
tual” medians (i.e., the ancestral permutations from which observed taxa actually arose
- in this case, always equal to the identity permutation). Figure 7, which shows results
over 1 ≤ i ≤ 5 for n = 25, is typical of what we observed. It demonstrates that
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Fig. 7. Comparison of inversion medians with breakpoint medians, trivial medians, and
actual medians, for n = 25. Averages were taken over 50 experiments.

inversion medians achieve comparable scores to actual medians 1 and that breakpoint
medians, when scored in terms of inversion distance, perform significantly worse. A
comparison in terms of inversion median scores is clearly biased in favor of inversion
medians; however, if it is true that inversion distances are (in at least some cases) more
meaningful than breakpoint distances, then these results suggest that inversion medians
are worth obtaining.

We used a slight modeification of program find inversion median to find
all optimal medians and thus to characterize the extent to which inversion medians are
unique. An example of our results is shown in Figure 8, which describes the number

1 Inversion medians are slightly better than actual medians when i becomes large with respect
to n, because saturation begins to cause convergence between taxa.
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Fig. 8. Distribution of number of optimal medians in the course of 50 experiments for
n = 15 and 1 ≤ i ≤ 5.

of optimal inversion medians for n = 15 and 1 ≤ i ≤ 5, over 50 experiments for
each value of i. Observe that, when i is small compared to n (roughly i ≤ 0.15n), the
inversion median is virtually always unique; and even when i is moderately large with
respect to n (roughly 0.15n < i ≤ 0.3n)2, the inversion median is unique or nearly
unique most of the time. This finding stands in stark contrast with breakpoint medians,
which are only very rarely unique.

In addition, we observed a strong relationship between unique inversion medians
and actual medians. For example, with n = 15 and i = 1, for which all inversion
medians were unique, 49 out of 50 inversion medians were identical to actual medians;
similarly, for n = 15 and i = 2, 48 out of 50 were identical to actual medians (in
both cases the exceptional inversion medians differed from actual medians by a single
inversion). As i becomes greater compared to n, this relationship weakens but remains
significant. For example, with n = 15 and i = 4, 38 out of 50 inversion medians
were unique, and 22 of those 38 were identical to actual medians (an additional 10
non-unique inversion medians equaled actual medians).

7 Future Work

The strength and weakness of the current algorithm both lie in its generality. On the one
hand, our approach depends only on elementary properties of metric spaces and thus

2 Recall that the distance between permutations is approximately 2i and that random permu-
tations tend to be separated by a distance of approximately n. The effects of saturation are
evident at i = 0.2n and are pronounced at i = 0.3n.
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extends easily to the case of equally weighted inversions, translocations, fissions, and
fusions; furthermore, it could also be used with weighted rearrangement distances. (One
should note, however, that the running time is a direct function of the cost of evaluating
distances; we can compute exact breakpoint and inversion distances, but no efficient
algorithm is yet known for more complex distance computations.) On the other hand,
our approach does not exploit the unique structure of the inversion problem; as shown
elsewhere in this volume by A. Caprara, restricting the algorithm to inversion distances
only and using aspects of the Hannenhalli-Pevzner theory enables the derivation of
tighter bounds and thus also the solution of larger instances of the inversion median
problem.

Many simple changes to our current implementation will considerably reduce the
running time. For example, the current implementation does not “condense” genomes
before processing them—i.e., it does not convert subsequences of genes shared among
all three genomes to single “supergenes”. Preliminary experiments indicate that con-
densing genomes yields very significant improvements in performance when i is small
relative to n. Distance computations themselves, while already fast, can be further im-
proved by reusing previous computations, since a move by the algorithm makes only
minimal changes to the candidate permutation. Finally, we can use the Kaplan-Shamir-
Tarjan algorithm, in combination with metric properties, to prepare better initial solu-
tions (by walking halfway through shortest paths between chosen permutations), thus
considerably decreasing the search space to be explored.
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