
R. Dumke and A. Abran (Eds.): IWSM 2000, LNCS 2006, pp. 94-110, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Generic Model for Assessing Process Quality

Manoranjan Satpathy1, Rachel Harrison1, Colin Snook2, and Michael Butler2

1
School of Computer Science, Cybernetics and Electronic Engineering

University of Reading, Reading RG6 6AY, UK
{M.Satpathy, Rachel.Harrison}@reading.ac.uk

2Department of Electronics and Computer Science
University of Southampton, Highfield, Southampton SO17 1BJ, UK

{cfs98r, mjb}@ecs.soton.ac.uk

Abstract. Process assessment and process improvement are both very difficult
tasks since we are either assessing or improving a concept rather than an object.
A quality process is expected to produce quality products efficiently. Most of
the existing models such as CMM, ISO 9001/9000-3 etc. intend to enhance the
maturity or the quality of an organization with the assumption that a matured
organization will put its processes in place which in turn will produce matured
products. However, matured processes do not necessarily produce quality
products [21, 6]. The primary reasons are: (i) In the process quality models, the
relationship between the process quality and product quality is far from clear,
and (ii) many of the process models take a monolithic view of the whole life-
cycle process, and as a result, the idiosyncrasies of the individual processes do
not receive proper attention.
In this paper, we first define an internal process model in a formal manner.
Next, we define a generic quality model whose scope covers all the
development processes and most of the supporting processes associated with
the development phase. The generic quality model is a parametric template and
could be instantiated in a systematic manner to produce the quality model for
any individual process. We then show such a customization for the formal
specification process and use this customized model to formulate a GQM-based
measurement plan for the same process. We then discuss how the generic model
would be useful in process assessment and process improvement.

1 Introduction

Our aim is to perform process assessment by using techniques from Empirical
Software Engineering including the use of quantifiable metrics. Many methods exist
for the selection of metrics; prominent among them is the Goal-Question-metric
(GQM) method [1]. Under this approach, we define some goals, refine those goals
into a set of questions, and the questions are further refined into metrics. Of course it
is important, in relation to a certain objective, to neither measure too much nor too
little. The measured values are then interpreted to answer the goals that we started
with. The question that then arises is: from where should we choose the goals whose
refinement will give us the metrics? The usual approach is to choose a quality model,
and keeping both the model as well as the application domain of the process in mind,
the goals are derived through extended consultation [17, 6]. Among the models

mailto:mjb}@ecs.soton.ac.uk

A Generic Model for Assessing Process Quality 95

available for process assessment, the most influential ones include: the Capability
Maturity Model (CMM) [12], ISO/IEC 12207 [15], ISO 9001/9000-3 [14], the
BOOTSTRAP model [3], and the SPICE model [7]. These process models are not
specific enough to cater to the needs of each of the individual processes. The reasons
are: (i) the nature of processes vary widely (ii) most of the models are more oriented
towards enhancing the maturity of the organization and take a monolithic view of the
overall development process, and finally (iii) the process models, while emphasizing
on the process activities, often put too little importance on the products which are the
results of the process activities. In this context, there are certain process aspects
(including the duality of process attributes which we discuss later) which are not
addressed by any of the existing models. In order to alleviate these problems, we
define a generic process quality model that incorporates the merits of all the existing
models, and takes care of their deficiencies. The generic model could be instantiated
to be the customized model of any individual process.

The organization of the paper is as follows. Section 2 describes related work.
Section 3 presents an internal process model. Section 4 discusses the generic model
and its instantiation of individual processes. Section 5 discusses a GQM-based
measurement plan. Section 6 discusses the role of the generic model as regards to
process assessment and improvement, and finally, section 7 concludes the paper.

2 Related Work

ISO/IEC 9126 [13] describes a generic model for specifying and evaluating the
quality of software products. The model isolates six factors, called Functionality,
Usability, Reliability, Efficiency, Maintainability and Portability; and the quality of a
product is defined in terms of the quality of the above factors. Each factor may in turn
be defined by a set of subfactors. The FURPS+ model used by HP [10] is quite similar
to ISO/IEC 9126. Focusing on product quality alone may not guarantee that an
organization will deliver products of good quality. Products are created by processes.
So, based on an orthogonal view that improving the quality of a process will deliver
products of good quality [9], many models have been developed. Prominent among
them are the CMM [12] and ISO 90001 [14]. Models like Bootstrap [3] and SPICE
[7] are variants of the CMM. ISO/IEC 12207 [15] does a classification of all
processes associated with the software development and offers general guidelines
which can be used by software practitioners to manage and engineer software. The
scope of most of these standards cover an entire organization.

The CMM deals with the capability of a software organization to consistently and
predictably produce high quality products [12]. The model defines five maturity
levels: from Level 1 to Level 5. A maturity questionnaire assesses the following three
areas of the organization: (i) organization and resource management, (ii) software
engineering process and its management and (iii) the tools and technology; and based
on the assessment the model certifies that the organization is at certain maturity level.
The model also identifies the weak areas and prescribes a set of guidelines; following
those guidelines, an organization can attain the next higher maturity level.
Measurement, quantitative feedback from the processes and continuous process
improvement are some of the highlights of the model. However, it has been suggested
[21] that increasing the maturity level of an organization may not necessarily lead to

96 M. Satpathy et al.

improvements in the quality of processes. Further, there is no evidence of a link
between a high CMM rating and products that are of high quality [6].

ISO 9001/9000-3 is a model for quality assurance in the development, supply, and
maintenance of software. The key strength of ISO 9001 is in its quality system
processes. Most of the basic practices of the 9001 translate to level 2 practices of
CMM and some translate to level 3 practices [5]. The continuous improvement
paradigm has not also been adequately addressed by the standard.

The GQM method [1, 20] proposes a measurement plan for assessing the quality of
entities like products, processes or people. It starts with a set of business goals and the
goals are progressively refined through questions till we obtain some metrics for
measurement. The measured values are then interpreted in order to answer the goals.
Existing approaches choose a quality model from those that exist so as to generate the
business (or the primary) goals of the GQM formulation for any individual product or
process. Application of Metrics in Industry (ami) [Pul 95] combines CMM and the
GQM method, and the result is that it provides a complete framework for process
improvement. The ami approach is: iterative, goal-oriented, quantitative, involves
everyone in the organization and integrates necessary management commitment. It
covers the whole of the process improvement cycle. CMM or other standards like
Bootstrap, SPICE, ISO 9001 etc. is used to identify weak areas in the development
process. This information along with the business and environment specific objectives
is used to define some software process goals. The goals are validated and next, using
the principle of GQM, they are refined into subgoals. The subgoals are further refined
into metrics and a measurement plan is made to collect data. The data are then
analysed and related to the original goal. Based on the data collected an action plan
may be made to improve the development process. New goals are then defined and
the cycle is repeated.

Focusing on either process quality or product quality alone is not sufficient. In a
European-wide awareness survey 65% of the respondents agreed that certification
against ISO 9000 is not enough to guarantee the quality of software products [2]. 40%
of the respondents agreed that a combined certification of products and processes is
necessary, and almost all of the models fail to make the relationship between process
quality models and product quality clear. We will make such a relationship clear by
taking the dual nature of process attributes into account. Also note that the models
cannot compare lateral processes; for example, they cannot address a question like: is
formal specification more suitable than informal specification for a particular
organization? Two development processes following one of the approaches may have
similar ratings under a process model and hence such a model cannot do such a
comparative study.

The PROFES (product-focused) improvement methodology [18] follows an
orthogonal approach to process improvement. It first uses ISO 9126 to identify the
subfactors in relation to product quality which need to be improved. Following a PPD
(Product-Process Dependency) model, it identifies the process attributes which need
to be improved for achieving the desired product quality. Then an action plan is made
following an ISO 15504 compliant method and the plan is executed. So far as
improvement of product quality is concerned, our objective is similar to that of the
PROFES methodology. However, in addition, we also address some process specific
issues like process faults, process understandability and process reliability.

A Generic Model for Assessing Process Quality 97

3 An Internal Process Model

In this paper, unless otherwise stated, by a process we will mean any software activity
associated with the development and maintenance of software: from requirement
analysis through to maintenance. A product is an entity, which a process (e.g. any
software activity) produces as output. Examples are requirement documents,
specifications, end-products etc. Products may also be fed to processes as inputs –
specification is an input to design, implementation is as input to testing and so on.
Each of the products has a type in the sense that it belongs to a set. Table 1
enumerates some of the products and their types. For a uniform treatment, we will
assume that a requirement that exists in a user’s mind is also a product. The set of pre-
elicitation requirements (the requirements in the user’s mind) is well-defined in the
sense that an analyst is capable of extracting it in order to produce a requirements
document. The set of product definitions above are not exhaustive; based on the
application context, a process designer may add or modify the above sets. But once
they are defined, they should be adhered to by the process executers.

We will now define our process model which will elucidate the internal structure
of a process. A process is any software activity which takes product(s) as input and
produces product(s) as output. Formally, it could be defined as a relation from a set of
products to another set of products; the set of relations from m input products to n
output products could be denoted by:

IP1 • IP2 • … • IPm < –– > OP1 • OP2 • … • OPn

where IPi and OPj are the types of the i-th input product and the j-th output
product respectively. Software processes can be classified into two categories:

(i) Constructing processes: These processes take a set of products and apply some
transformations over them to generate a new set of products; e.g. formal
specification, implementation, maintenance etc.

(ii) Verifying processes: Such processes take a set of products and do some
verification or validation over them to determine whether they hold or do not
hold certain properties. They are more like functions. They do not apply any
transformations on the input products. The result is usually a Boolean condition,
and some other information such as defect data, certain inferences from
verification and/or other documentation. Examples of such processes are: formal
verification, validation, code inspection, testing etc.

Our definitions of constructing processes and the verifying processes mostly
correspond to the development processes and some of the supporting processes of
ISO/IEC 12207 [15]. Some examples of processes are shown in Table 2.

The above definitions are not absolute but should be adapted by the designer of a
process who will choose the input product set and the output product set keeping the
application context in mind. For instance, the validation of formal specification may
output a set of features which are found invalid; the code inspection process in
addition to indicating whether code is good, bad or of moderate quality may output a
set of suggestions for code improvement. But a prior definition of a process on the
above lines by its designer establishes a standard, which, if adhered to by the process
executers, will make the process execution more disciplined. Usually the output
product of a process is fed as input to another process. So giving a type to such a

98 M. Satpathy et al.

product helps in better communication between the process executers of both the
processes.

Table 1. Some products with their types
 req: PRE-ELICIT-REQ // Set of pre elicitation requirements
 rd: RD // Set of requirement documents.
 spc: SPEC // Set of Specifications
 fs: FML-SPEC // Set of formal specifications
 des: DESIGN // Set of designs
 mod: MODULES // Set of set of program modules
 fd: FDESIGN // Set of formal designs
 impl: IMPL // Set of implementations
 testdata: TESTDATA // Set of test data
 defectdata: DEF-DATA // Set of defect data
 doc: DOC // Set of documentations
 insp-flag: FLAGSET // Set of flags to indicate quality of code
 form-proof: FML-PROOF // Set of formal proofs
 safety-cases: SAFETY-CASES // Set of safety cases
Table 2. Some processes with their types
 Requirement analysis: PRE-ELICIT-REQ < – > RD
 Formal specification: RD < – > FS
 Formal design: RD • FS < – > FD
 Maintenance: RD • SPEC • DES • IMPL • DOC < – >
 RD • SPEC • DES • IMPL • DOC
 Validation of formal spec.: RD • FS < – > Bool
 Verification of formal design: FS • FD < – > Bool
 Code inspection: IMPL < – > FLAGSET
To show that a process may have many type definitions, let us take the example of the
formal specification process (FS process). Table 2 defines the type of the FS Process
as: RD < – > FS. A process designer may design this process so that the specifier
not only consults the RD, but also interviews the users to complete the specification.
Then the type of the FS process would be:

PRE-ELICIT-REQ • RD < – > FS
Thus a process, depending on its design, may have many types; but an organization,
in relation to a specific project and for a specific set of processes, will usually stick to
one type definition. However, any type definition of a process will uniquely identify a
process. For instance, both the preceding type definitions correspond to the FS
process.

A Generic Model for Assessing Process Quality 99

The proof follows from the construction of process definitions, and we will not
elaborate it here.

The question may arise as to whether our simplistic type definitions given to
processes do really correspond to the complex nature of processes. To illustrate this
point, consider a type definition of the design process as: SPEC < – > DESIGN.
Some requirements may arise quite late, i.e., during the design process. The given
type definition then cannot handle such a situation. As mentioned earlier, the type
definition of a process is not unique, but an organization should follow one type
definition which suits its best. To accommodate the fact that requirements may arise
during the design phase, an organization can have the type definition:

PRE_ELICIT_REQ X SPEC < – > DESIGN

Further, the arrival of such requirements may demand that the specification be
changed accordingly. Such a situation could be handled by the type definition:

PRE_ELICIT_REQ X RD < – > SPEC

A process may be composed of subprocesses. For example, consider the testing
process and let it consist of unit testing and integration testing (we will ignore system
testing and acceptance testing for the time being). Both are subprocesses of the testing
process. A subprocess is also a process in the sense that it takes a product set as input
and gives out a product set as output. Unit testing also consists of subprocesses like
black-box testing and white-box testing. Whether a process should be decomposed
into subprocesses or not is decided by the process designer. For instance, the designer
may decide not to decompose further the processes like the black-box testing and the
white-box testing. We refer to such processes as atomic processes. When considered
from a process point of view, the inputs and outputs of subprocesses are called
intermediate product sets. Usually, the output of a process becomes the input of
another process (see Figure 1). Note that the subprocesses within the scope of a
process need not be homogeneous; for instance, in Figure 1, in between unit testing
and integration testing, there may be an integration subprocess which is not strictly a
part of the testing process. An atomic process is in turn defined as a set of steps, like
the steps of an algorithm. But unlike the case of an algorithm, the steps usually do not
have rigorous definitions: a process executer usually has degrees of flexibility; for
instance, during the code inspection process, an inspector may pass a piece of code as
OK, while another inspector may find it complex and suggest simplification. During
structured design, a designer has flexibility when deciding which group of nodes in a
structured chart would be put inside a module. Thus, process executers often have to
use their artistic skills rather than sticking to some strict and rigorous definitions.

There are three aspects to the steps of an atomic process: what are its process
steps, who will execute those process steps and how they will be done? A process is
defined in terms of process steps and each process step is in turn defined by a set of
flexible guidelines. Further, some resources like supporting tools may be needed to
execute the process steps. All of these contribute to the ‘how’ part of the questions.
Each atomic process, in addition to its input and output product sets, will have its
starting and ending conditions. They correspond to the ‘what’ part of the questions.
The ‘who’ part will be taken care of by a person or some automatic tool. ISO/IEC
12207 follows a similar (though less formal) approach to process modeling.

100 M. Satpathy et al.

Black Box
Testing

White Box
Testing

 UNIT TESTING

Integration
 Testing

 TESTING

Intermediate Products

Integration

Fig. 1. Intermediate products in the testing process

Our process model is useful in many ways. The type structure offers a general view;
depending on specific needs, restrictions can be imposed upon them. Consider an
organization which formally verifies its code; and in order to facilitate this process,
code is written in SPARK [16]. In such a case, a constraint can be imposed upon the
coding process that code must be written in SPARK. Further, our process architecture
takes a modular view of the process in the sense that the type of every process or
subprocess is made clear at the definition level. The well-defined type structure of our
process model makes the larger context of a task or activity or process step clearer.

There are three ways of looking at a process for assessment (i.e. evaluation of a
process through measurable attributes). The first one is the black-box view. Under
this scheme, we do not look at the internals of a process (that it may consist of
subprocesses or process steps), but rather view it as a black box and try to observe its
effects by analysing its input and output product sets. Under the white-box assessment
scheme, we analyse the internal behaviour of the process; this may include analyzing
the subprocesses that the process consists of. By subprocess analysis, we mean that
we observe the intermediate products corresponding to an input product set of the
main process. There are certain product independent attributes such as process cycle
time, process cost, total process effort etc. are also very important observation
entities. Process failures also need to be considered. Examples of process failures are:
a supporting tool (say a testing tool in the testing process) crashing or a verifying tool
failing to verify etc. To summarize, for assessing a process we need to have (i) its
black-box view (ii) white box view and (iii) the study of the product-independent
attributes discussed above.

Unlike product assessment, process assessment is non-trivial for the following
reasons.
� For assessing a process, we in turn look at the input, output and the intermediate

products. So assessment is mostly indirect in nature. (Although, products are
usually assessed in this way as well, it is possible to assess software directly
through code reviews, static analysis, formal verification etc., which is not the
case for processes.) Further, we need to assess a number of input and output
product sets and their intermediate products in order to find out something
concrete about the process. In a sense, the process behaviour is the average of

A Generic Model for Assessing Process Quality 101

the observations of a large number of input and output products and their
intermediate products.

� Most of the process attributes have a dual perspective. Consider, for instance, the
understandability attribute. The two perspectives are (i) the concepts of the
process should itself be understandable to the process executer and further (ii)
the process should make its output product sets understandable. When we
consider the formal specification process, the method of creating the formal
specification and the formal specification language itself must be understandable
to the specifier, and further the specification process must make the formal
specification understandable to its users. In conclusion, any process assessment
must consider a dual perspective. Of course since we are looking at product
attributes from the process quality point of view, we may miss out some
important product factors which are not directly addressed by process quality
factors. In order to alleviate this problem, we use major product quality models
(see Section 4) as references while defining our generic process quality model.

� If a process introduces a defect in its output, then at a later period it may be
discovered and the source of the defect could be traced back to the process. So, it
is not only the case that time span of process assessment is long but also it may
include time periods when the process is not active.

4 Our Generic Quality Model

In the last section, our process model has been described at a much higher level. In
order to make it a generic quality model, its internal details need to be filled in. To do
this, we take as reference the ISO 9001/9000-3 model, the ISO/IEC 12207 model, the
CMM, the ISO/IEC 9126 model and the FURPS+ model. We have included the last
two product quality models because while dealing with process quality we also want
to put emphasis on the product aspects. Table 3 illustrates our generic model in which
each factor is defined by a set of subfactors. Appendix A presents the definitions of
the subfactors of the generic model. This generic model (Gmodel) could be seen as a
template with three parameters:

Gmodel(inp-prod-set-type, out-prod-set-type, application-domain)

where by application domain we mean whether it is a safety-critical application, a
real-time application, a business application etc.

The customization proceeds in two steps: (i) the substitution step and (ii) the
refinement step. In the substitution step, we substitute the parameters with their actual
bindings. Let us take the example of the FS process and let its type be RD < – > FS.
The substitution is illustrated by the expression:

Gmodel [RD / inp-prod-set-type] [FS / out-prod-set-type]

102 M. Satpathy et al.

Table 3. Factors and their Subfactors in the Generic Process Quality Model

Functionality Compliance
Completeness
Consistency
Generality
Suitability
Inter-operability
Security

Usability Understandability
Learnability
Operability

Efficiency Cost/ Effort estimation
 & Cycle Time
Estimation Complexity estimation

Resource Usage
Schedule/ Priority estimation
Process maturity

Visibility and Control Automatic checks and feedback
Progress Monitoring
Improvement Measures

Reliability Failure Frequency
Fault Tolerance
Recoverability

Safety Risk avoidance
Scalability Scalability
Maintainability Analysability

Modifiability
Stability
Testability
Defect Trend
Formal Verifiability
Informal Verifiability
Reusability
Portability

Note that if a particular process has input product set type IP and output product set
type OP, then the process takes a member of IP as input and produces a member of
type OP as output. So the above expression signifies that, all occurrences of the input
product set in the definitions of the factors and the subfactors in the generic model are
substituted by RD (requirement document). Similarly, all occurrences of output
product set are substituted by FS (formal specification). Thus, at the end of the
substitution step, we have a crude definition of each of the subfactors of the process
concerned.

With these assumptions, since we already know the type of the process, we also
know the process name (refer to Section 2). For the application-domain parameter,
assume that it is a safety critical application. Now, with the knowledge that we are

A Generic Model for Assessing Process Quality 103

dealing with a FS process in a safety critical application, the refinement step refines
the crude definitions that we have obtained after the substitution step. The result then
will be the customized quality model for the FS process. As an illustration, the
definitions of some of the subfactors of the FS process are given in Appendix B. For
example, consider the first part of the subfactor ‘completeness’. After the substitution
step, we obtain the following definition: the degree to which the process transforms
all of the functionalities of the RD into the FS. In the refinement step we know that it
is the FS process and the application domain is the ‘safety critical application’.
Further FS process achieves transformation through specification; and at the RD
level, a functionality is understood by a ‘feature’. So the refined definition is: the
degree to which the FS process specifies all of the features (including the safety
critical features) of the RD in the FS.

5 The Measurement Plan through the GQM Paradigm

The GQM-based measurement plan starts with the specification of some goals
concerning the project. Then a set of questions are formulated whose answers would
in turn provide an answer to this main goal. Then one should determine what metrics
should be measured so that each of the questions could be answered. Let us start with
a goal such as: assess the Functionality of the FS process. From the quality model for
FS, the functionality of the FS process is defined in terms a set of subfactors. Now the
definition of these subfactors will give rise to questions in the GQM formulation, and
the questions when considered in the context of formal specification, will help to
formulate the metrics. Table 4 elaborates the measurement plan.

6 Benefits of the Generic Model

� The fact that certain individual processes need special attention is more or less
ignored by the existing process quality models. Our generic model provides an
answer to this. During the course of instantiation, the generic model takes the
application-domain as a parameter. This parameter, in combination with the
other parameters of a process, emphasizes those individual process attributes
which need special attention. Further, we offer a systematic approach to the
instantiation of the customized model.

� The relationship between the process quality model and product quality is never
well-defined in existing process models. ISO 12207 suggests following ISO
9126 to ensure product quality and ISO 9001 for quality assurance [19]. Our
dual perspective of process attributes makes this relationship between process
quality and product quality more visible. So, our model can be used as a
companion to the ISO 12207 standard.

� The Generic Model and Process Assessment/Improvement: the ami method
[Pul 95] classifies primary goals into two categories: knowledge goals and
change goals. Knowledge goals are for assessment purposes and the change
goals are for improvement purposes. Under the ami approach, primary goals are
transformed into a goal tree. Building the goal tree is always an art. For the
refinement of a goal (or a subgoal) we must identify the products, the processes
associated with the goal and also the participants who are responsible for each of

104 M. Satpathy et al.

such products or processes, and further what resource the participants use or can
use [Pul 95]. We claim that our quality model will help in building such a goal
tree in a systematic manner. Because of the duality of the subfactors, their
definitions themselves cover both the process as well as the product aspects of
the goal. The context of the process easily identifies the participants associated
with the subgoal. Further, the definitions of the subfactors provide enough
information for identifying the associated quantitative metrics.

Table 4. A GQM based measurement plan

Goal: Object of Study: FS Process
Purpose: To assess
Focus: Functionality
Points-of-view: Manager/Maintainer/Specifier

Q1. Underlying specification language?
Metric: Note the language

Q2. Specification process complying with the syntax and semantics of the
formal language?
Metric: No. of deviations

Q3. Specification of functions matching the RD/User needs?
Metric: Trend of incorrectly specified features.

Q4. Specification process uncovering all contradictions in RD?
Process introducing contradictions during specification?
Metric: No. of contradictions found in RD

No. of contradictions discovered in FS
Q5. (i) Process specifying all features of a RD?

(ii) Process failing in specifying a RD?
Metric: (i) No. of missing features in a FS

(ii) History of failures in specifying RDs
Q6. Process over-specifying the features of a RD?

Metric: No. of over-specified features in a FS
(subjective assessment by the Specifier)

Q7. Process addressing all security features in FS?
Metric: No. of security lapses in implementation/end-product linked

to FS process.
Q8. Process addressing all inter-operability features in RD?

Metric: No. of inter-operability problems in implementation/
end-product linked to FS process.

A Generic Model for Assessing Process Quality 105

7 Conclusions and Future Work

In this paper we have presented a new process model which assigns types to the pro-
cesses and the products associated with them. We have then defined a generic quality
model which could be instantiated to be the quality model for any particular process,
and shown how such a customization could be done in a systematic manner. One im-
portant highlight of our generic model is that it makes the relationship between pro-
duct quality and process quality much clearer. This relationship is handled in an ad-
hoc manner by existing models.

Like the PROFES improvement methodology, our generic model can be used to
achieve better product quality. However, the PROFES methodology depends on pre-
vious experience to address process-specific issues, which can lead to neglect of is-
sues like process defects, process scalability, process understandability etc. A detailed
comparison between PROFES methodology and our generic model is a part of our fu-
ture work.

The processes that we have handled in our model have the same type structure:
they are relations between an input product set and an output product set. However,
there are processes with complicated type structures. One such example is the quality
improvement process (QIP) which takes a quality model and a process (say a
development process), and returns a process (which should be improved). Part of our
future work will be to extend our model to cover the whole spectrum of processes.
We also intend to validate our generic model using industrial platforms.

Acknowledgements:

The authors wish to acknowledge the support of UK EPSRC, which has funded
EMPAF (ER/L87347) and a Ph.D. studentship for this work.

References

1. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. The
Encyclopedia of Software Engineering, John Wiley (1994)

2. Bazzana, G. et al.: ISO 9000 and ISO 9126: Friends or Foes? Proc. of IEEE Software
Engineering Standards Symposium, Brighton, Sept (1993)

3. Bootstrap Team, Bootstrap: Europes’s Assessment Method. IEEE S/W, Sept (1993)
4. Chaudron, M. et al.: Lessons from the Application of Formal Methods to the Design of a

Storm Surge Barrier Control System. Proc. of FM’99, LNCS No. 1709, Springer (999)
5. Coallier, F.: How ISO 9001 fits into the Software’s World. IEEE S/W, January (1994)
6. Debou, C.: Goal-Based Software Process Improvement Planning in Better Software

Practice and Business Benefit (Eds. R. Messnarz and C. Tully). IEEE Computer Society
(1999)

7. Dorling, A.: SPICE: Software Process Improvement and Capability Determination. Soft-
ware Quality Journal, Vol. (2) (1993)

8. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous & Practical Approach. Inter-
national Thomson Computer Press (1996)

106 M. Satpathy et al.

9. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-wide Program.
Printice Hall, New Jersey (1987)

10. Grady, R.B.: Practical Software Metrics for Project Management and Process Im-
provement. Printice Hall, New Jersey (1992)

11. Haase, V. et al.: Bootstrap: Fine-Tuning Process Assessment. IEEE S/W, July (1994)
12. Humphrey, W.S.: Introduction to Software Process Improvement. SEI Report CMU/SEI-

92-TR-7 (1992)
13. International Standard: ISO/IEC 9126, ISO, Geneva (1991)
14. ISO 9001, Quality Systems – Model for Quality Assurance in Design, Development,

Production, Installation and Servicing. 2nd Ed., ISO (1994)
15. ISO/IEC 12207, Software Life Cycle Processes. 1st Ed., Aug (1995)
16. King, S., Hammond, J., Chapman, R., Pryor, A.: The value of verification: Positive expe-

rience of Industrial Proof. FM’99, LNCS No. 1709, Springer (1999)
17. Pulford, K., Kuntzmann-Combelles, A., Shirlaw, S.: A Quantitative Approach to Software

management: The AMI Handbook. Addison Wesley (1996)
18. The PROFES Methodology. website http://www.profes.org
19. Singh, R.: International Standard ISO/IEC 12207 Software Life Cycle Processes, Software

Process – Improvement and Practice. 2(1996) 35-50
20. Solingen, R.v., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for

Quality Improvement of Software Development. Mc Graw Hill (1999)
21. Voas, J.: Can Clean Pipes Produce Dirty Water. IEEE Software, Jul/ Aug. (1999)

Appendix A: Definitions of the Subfactors of the Generic Model

(a) Subfactors of Functionality
Compliance:

(i) The degree to which the process conforms to prescribed (IEEE, ISO or
company-specific) standards.

(ii) The degree to which the process conforms to its own model (i.e. it consists of a
set of subprocesses and the subprocesses in turn consisting of subprocesses or
sets of steps).

Consistency:
(i) The degree to which the process uncovers contradictions in the input product

set.
(ii) The degree to which the process does not introduce contradictions in the

output product set.
Completeness:

(i) The degree to which the process transforms all of the functionalities of the
input product set into the output product set.

(ii) The degree to which the process handles all inputs with valid types.
Generality (robustness): The ability of the process to address by over-specifying/

over-implementing conditions which are not covered by the input product
specification but are relevant to its context.

Suitability (also known as correctness):
(i) The degree to which the process makes the functionalities of the output

product set match accurately those in the input product set.
(ii) The degree to which the implementation of the process accurately matches its

own specification (any gap between what the process does and what it is
supposed to do?)

http://www.profes.org/

A Generic Model for Assessing Process Quality 107

Security: The degree to which the process addresses the security issues of the final
product against hostile environments (too important for network applications
involving critical activities such as e-commerce)

Inter-operability: The degree to which the process contributes to the inter-
operability (the ability of the product to interact with specified systems) of the
final product.

(b) Subfactors of Usability
Understandability:

(i) The effort with which a typical process executer (any of Analyst/ Specifier/
Developer/ Programmer/ Maintainer) understands the logical concepts of the
process.

(ii) The degree to which the process contributes to the understandability of its
output product set and that of the end-product.

Learnability:
(i) The effort required for a typical process executer to learn to use the process.
(ii) The degree to which the process makes the output product set/ the end-product

easy to use (through informative help messages, good user interface etc.)
Operability:

(i) The effort required for a typical process executer to execute the process with a
level of confidence (this could be inferred from the learning curve of the
process executer).

(ii) The degree to which a process contributes to the operability of the output
product set and the end-product (through informative help messages,
guidelines).

(c) Subfactors of Efficiency & Estimation
Cost/ Effort Estimation: The degree to which the cost/ effort of process execution

remain within a specified range and the ability of the process to support their
estimations.

Cycle Time estimation: The degree to which a process meets its expected cycle time
and the ability of the process to support its estimation.

Complexity estimation: The ability of the process to support the prior estimation of
various forms of complexity (Computational Complexity, Communication
Complexity, Structural Complexity, Cognitive Complexity etc [8, 9]), and the
degree to which the estimates are accurate.

Schedule/ Priority estimation: The priority of various stages in the process and the
ability of the process to support their estimations and scheduling.

Resource Estimation: The degree to which a process keeps its resource usage in a
specified range, and its ability to support their estimations.

Process Maturity: The CMM maturity level and/or any ISO certification of the
organization.

(d) Subfactors of Visibility & Control
Progress Monitoring: The ability of the process to facilitate monitoring of its

progress at any point of time during the process execution to show that progress so
far has been correct and effective. (e.g. work product analysis [10], PERT charts
etc.)

Automatic Feedback: The ability of the process to provide (or support in providing)
feedback data and to support corrective actions if necessary (e.g. Automatic work
product analysis tools [10]).

108 M. Satpathy et al.

Improvement Measures: The ability of the process to support the analysis of the
feedback data in combination with the data of previous runs and improve itself, or
result in the improvement of a sibling process, continuously (e.g. FS process
improving the testing process [4]).

(e) Subfactors of Reliability
(i)The degree to which the process prevents failures in the final product (a process

relying on unsafe unsafe features of C may lead to failures).
(ii)The degree to which the process is reliable itself. In that case, we will have the

sub-factors:
� Failure Frequency: The number of (and the interval between) failures

encountered during the execution of the process. The failures are due to
defects in the design/ implementation of the process itself. (e.g. an
automatic tool crashing or taking too much time)

� Fault Tolerance: Whether the process can still continue in presence of
faults/ failures in the process itself (e.g. use of redundant tools).

� Recoverability: Whether the process can attain its level of operation
after a process failure has been addressed.

(f) Subfactors of Scalability
(i) The degree to which a process makes its output or the end-product perform in

an expected way (in terms of time and resource usage) in face of a large
problem context (e.g. A robust and complete design of a database system can
make it handle a large problem).

(ii) The degree to which the process maintains its efficiency level in terms of time,
cost and resource usage in handling a problem of larger dimension.

(f) Subfactors of Safety
(i) Depending on the underlying application, the input product set may define

safety conditions which could take the form of (a) liveness (b) degraded
performance and (c) limiting damage from failures. The degree to which the
process addresses them (say, through introduction of fault-tolerance).

(ii) The process must not introduce unsafe features that may result in hazards
occurring (a compiler, for optimization purposes converting static memory to
dynamic memory [16]).

(g) Subfactors of Maintainability
Analysability: The effort with which a typical process maintainer can analyse the

cause of a fault, process failure or unexpected feedback data. A fault could be one
of the following categories.
(i) the fault is discovered during the process execution and the fault may be with

the process itself, or it may be with the input product set.
(ii) the fault is discovered at a later point in time, and the cause of the fault is

linked to the process.
Modifiability: The effort with which a Maintainer addresses failures, detection of

faults and unexpected feedback data during the process execution; or faults
discovered at a later time but linked to the process.

Stability:
(i) The degree to which addressing a process fault adversely affects the process

itself (say, process efficiency or properties like process consistency).
(ii) The frequency of changes done to the process (less the number of changes,

more is the stability).

A Generic Model for Assessing Process Quality 109

Formal Verifiability: Effort with which properties like consistency, correctness and
invariant conditions of the transformed product could be formally verified during
process execution.

Informal Verifiability: Effort with which properties like completeness, generality
etc. of the product under transformation could be informally verified during
process execution.

Testability:
(i) The degree to which the process could be validated itself (success history of its

output products).
(ii) The degree to which the process contributes to the testability of its output or

the final product (say, for generating an adequate test suite).
Defect Trend:

(i) The trend of defects that are observed in the process itself (defects linked to
the process – during or after process execution).

(ii) The degree to which the process detects the defects or deficiencies in the
product set under transformation so that defects in the output product set and
the final product are minimal.

Reusability:
(i) The degree to which the process contributes to the reusability of its output

product .
(ii) The degree to which components of the process could be reused in a different

context (testing process of one organization could be reused in another
organization).

Portability: The degree to which the process contributes to the portability of the end-
product; i.e., the process should facilitate the migration of the product to a
different environment.

Appendix B: Some Sufactors of the FS Process

Completeness:
(i) The degree to which the FS process specifies all of the features (including

safety critical) of the RD.
(ii) To what extent the specification process can handle all RDs with valid types.

Consistency:
(i) The degree to which the FS process uncovers contradictions in the RD.
(ii) The degree to which the FS process does not introduce contradictions in the

FS.
Security: The degree to which the FS process specifies the security issues

(unauthorized access to program and data) of the final product against hostile
environments (too important for network applications involving critical activities
such as e-commerce, e-banking etc.)

Understandability:
(i) The degree to which the syntax and the semantics of the specification language,

and the logical concepts of Specifying are understandable to the Analyst,
Specifier, Developer, and the Maintainer.

110 M. Satpathy et al.

(ii) The degree to which the FS process contributes to the understandability of the
FS (say, through comments).

Cost/ Effort Estimation: The degree to which the cost/ effort of the FS process are
kept within allowable limits, and the ability of the FS process to support their
estimations.

	1 Introduction
	2 Related Work
	3 Internal Process Model
	4 Our Generic Quality Model
	5 The Measurement Plan through the GQM Paradigm
	6 Benefits of the Generic Model
	7 Conclusions and Future Work
	References

