
Bitslice Ciphers and Power Analysis Attacks

Joan Daemen, Michael Peeters, and Gilles Van Assche

Proton World Intl.
Rue Du Planeur 10, B-1130 Brussel, Belgium

Email: {daemen.j, peeters.m, vanassche.g}@protonworld.com
http://www.protonworld.com/research

Abstract. In this paper, we present techniques to protect bitslice block
ciphers against power analysis attacks. We analyze and extend a techni-
que proposed in [12]. We apply the technique to BaseKing, a variant of
3-Way[9] that was published in [7]. We introduce an alternative method
to protect against power analysis specific for BaseKing. Finally, we dis-
cuss the applicability of the methods to the other known bitslice ciphers
3-Way and Serpent [1].

1 Introduction

The inherent security offered by a block cipher is best evaluated by investigating
the cipher’s resistance against the set of known cryptanalytic attacks. It is gene-
rally agreed that a cipher for which there are attacks that are more efficient than
exhaustive key search have an inherent weakness. In our opinion, the absence of
this kind of attacks is rightfully the primary criterion for comparison of ciphers.

Although interesting, in many cases the relevance of these cryptanalytic
attacks is mostly academic: in practical applications of the cipher they turn
out to be irrelevant for several reasons. The attacks might require an unreali-
stic amount of plaintext/ciphertext pairs, such as differential cryptanalysis and
linear cryptanalysis of DES [2,15]. In other cases, the theoretical weakness only
manifests itself in very rare cases. This is the case for weak keys such as in IDEA
[10]. In still other cases there is an easy way to protect against the weaknesses.
Weak keys of DES and related-key attacks [11] can be avoided by generating
keys independently or by deriving them using one-way functions.

In the model for theoretical cryptanalysis, the key is considered to be un-
known and an attacker has access only to plaintext and ciphertext, and can
possibly manipulate the key in certain ways. He has no access to intermediate
computation results. In practical implementations the secrecy of the key, that
is considered to be a given in cryptanalysis, must be accomplished by effec-
tive physical and logical protection. This is invariably the most expensive and
problematic aspect of any serious application using cryptography. Particularly
challenging are distributed applications, where smart cards used by consumers,
and terminals used by merchants and service providers, use cryptography to se-
cure fund transfers or the conditional access to services (e.g., GSM). As has been

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 134–149, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Bitslice Ciphers and Power Analysis Attacks 135

shown recently in several publications [14,5], implementing cryptographic algo-
rithms on these platforms is not trivial. One of the reasons for these problems
is that a combination of hardware characteristics and algorithm coding or the
presence of (induced) errors might give away information on intermediate com-
putation results. By using statistical techniques, this information is then used
to find the key.

In the long term, this problem can best be dealt with by incorporating on
the smartcards and terminal security modules dedicated cryptographic hardware
that performs integrity checks and minimises the leakage of information. Such
components are not available yet and use must be made from existing compo-
nents. In this paper, we discuss techniques to protect implementations of bitslice
ciphers on state-of-the-art smartcards against power analysis attacks.

2 Implementation Attacks

2.1 Timing Attacks and Simple Power Analysis

In timing attacks, the dependence of the execution time of the cipher on plain-
text or key bits is exploited to derive key or plaintext information. An effective
protection against timing attacks is writing the code in such a way that the
number of cycles taken by an execution is independent of the value of key or
plaintext bits (preferably a constant).

In so-called simple power analysis attacks, the attacker makes use of some
quantity, measurable at the outside of a cryptographic device, to detect instruc-
tions being executed inside it. Typically, this measurable quantity is the power
consumption or radiation. This may leak information on key or plaintext bits if
the instructions that are executed depend on the values of data that are being
processed. An effective way to protect against this type of information leak is
to program the cipher as a fixed sequence of instructions. This also implies a
constant execution time, effectively sealing up the timing leak.

2.2 Differential Power Analysis

In more advanced power analysis attacks, e.g., differential power analysis (DPA)
[14] the correlation between the power consumption (or radiation, . . .) and the
values of the operands of the instructions is exploited. Usually, this correlation
is weak with respect to the noise on the power consumption. Even if no special
measures are taken, several (tens to thousands, depending on the type of in-
struction and quality of the processor) cipher executions are required to exploit
these correlations in an attack.

The basic principle of differential power analysis is that the probability dis-
tribution of the power consumption, given that a certain event occurs, can be
distinguished from the average probability distribution. The attack is mounted
as follows:

136 J. Daemen, M. Peeters, and G. Van Assche

– The first step of the attack is to instruct the cryptographic device to per-
form a number of cipher computations. For each of these computations
the power consumption pattern Pi is measured and stored together with
the known parameters of the computation, that is, ai the plaintext or the
ciphertext. This is the data acquisition phase which produces a data set
D = {(ai, Pi) | i = 1 . . . z}.

– Then, an event is specified whose occurrence depends on the value of a
number of plaintext (or ciphertext) bits and key bits we wish to determine.
Such an event can be, for instance, that the result of an intermediate cipher
calculation gives a certain result (which must be at some time present in a
CPU register, ALU, bus, or memory cell). We call the target subkey the key
bits the specified event depends on.

– For each of the possible values of the target subkey, the following check is
performed. In the hypothesis that the target subkey s∗ is correct, the set
of power consumption patterns are divided into two groups: those for which
the event occurs D1 = {(ai, Pi) | f(s∗, ai) = 1} and the complementary set
D0 = {(ai, Pi) | f(s∗, ai) = 0}. (As suggested by these formulas, f indicates
whether the event occurs given the known and hypothesis values.)
It is assumed that the two subsets D1 and D0 can be statistically distinguis-
hed for the correct hypothesis. We therefore define some distance between
the two distributions. The subkey value for which this distance is maximized,
is taken as the correct value. In general, a wrong target subkey value will
divide the power consumption patterns in two sets in which the event occurs
an average number of times. (However, if the round function has certain al-
gebraic properties, several subkey values, among which the correct one, may
be suggested.)

2.3 Higher-Order DPA

Depending on the usage of the power consumption pattern we can distinguish
differential power attacks of different orders. Generally speaking, N -th order
DPA makes use of N different intermediate values calculated at N different
times during the execution of the cipher algorithm.

– In first-order DPA as described by Kocher [14], the event mentioned above
is typically the fact that a particular bit (or set of bits) in a CPU register,
bus, or memory has the value 1 (or 0). It is usually sufficient to distinguish
the two data sets D0 and D1 by their average.

– In second-order DPA, the event is typically the fact that two bits of operands
occurring at different times during the computation, are equal (or different).
This situation occurs when one can group a set of samples according to the
value of the exor of two operand bits rather than an absolute value of an
operand bit.

Bitslice Ciphers and Power Analysis Attacks 137

Protection against DPA can take different forms. Here are two examples:

– The alignment of the power consumption patterns can be made harder by
building in random time differences in the cipher execution. This reduces
the effectiveness of the attack described above by requiring more power con-
sumption patterns.

– Theoretically, first-order DPA can be made impossible by programming the
cipher in such a way that the operands bear no correlation with interme-
diate block cipher states or key bits. The techniques proposed in this paper
attempt to do exactly that, through the introduction of random biases and
state/key splitting. This can be generalized to resistance against N -th order
DPA, where it is required that no set of N operands has a correlation with
state or key. These techniques were already proposed in [4].

In practice, a second-order attack is more difficult to mount than a first-order
one. The reasons for this are:

– A more complex layout. In first-order DPA, the probability distributi-
ons are one-dimensional, e.g., they represent the power consumption at a
given stage in the cipher computation. Usually, for any given stage a sub-
key hypothesis can be tested by taking the average for the two subsets and
use the difference between them as distance. In the second order DPA, the
equality (or inequality) of two bits is of interest. Here, a subkey hypothesis
has to be tested by determining whether it divides the power samples in
two groups with the following properties: in one group, the two power con-
sumption samples have a tendency to increase or decrease together, in the
other group they fluctuate in opposite directions. Computing the distance
between the two distributions takes more computations than just taking the
difference between the averages. More complex processing is thus required.

– Increased memory and processing requirements. Especially when a
cipher implementation uses random delays, the exact location of the cycles
where a certain operand is processed in the power consumption samples is
unknown a priori. Hypothesis testing has to be performed for all possible
locations. If n samples are of interest for a first order attack, one gets n2

pairs of samples for a second order attack, thus greatly increasing the demand
of data storage and processing.

– Increased number of power consumption patterns. To distinguish two
distributions from each other, one needs enough samples before a statistically
significant result appears. For the same amount of noise, bi-dimensional dis-
tributions are harder to distinguish than their equivalent 1D distributions.
This is detailed in appendix A. Typically, if z power consumption patterns
are needed in the 1D case, about 2z2 patterns are necessary in the 2D case.
Furthermore, the use of random delay spreads the effect of the event in a
single dimension, decreasing the signal-to-noise ratio linearly. In second-order
DPA, this effect is spread in two dimensions, decreasing the signal-to-noise
ratio quadratically.

138 J. Daemen, M. Peeters, and G. Van Assche

Before discussing the different protection methods, we discuss correlation and
decorrelation. For the sake of brievety, no proofs are given in this version of the
paper.

2.4 On Correlation and Decorrelation

The correlation between two binary variables (bits) f and g is given by C(f, g) =
2 Pr(f = g) − 1. If f and g can be expressed in terms of a word a of n bits
(a1, a2, . . . , an), i.e., f(a), g(a), this can be computed as [7,8]:

C(x, y) = 2−n
∑

a

(−1)f(a)⊕g(a).

Consider a bit f that can be expressed as a function of two words a and b, i.e.,
f(a, b). This bit is said to be decorrelated from a if for any linear combination of
bits of a, denoted by uta (with u a selection vector [8]), we have C(f, uta) = 0.

A word d that is a function of two words a and b is said to be decorrelated
from a if for all linear combinations of bits of d, denoted by wtd, and all linear
combinations of bits of a, denoted by uta, we have C(wtd, uta) = 0. Clearly, this
implies that all bits of d are also decorrelated from a.

In words, knowledge of a bit f (or word d) gives no information whatsoever
on the word a if the word b is unknown.

Consider an operand a′(a, δ) that is defined by a′ = a if δ = 0 and a′ = ā
otherwise. Using techniques introduced in [8] it can easily be verified that all bits
of a′ are decorrelated from a. The complete word a′ is however not decorrelated
from a. δ is called the masking bit.

For an operand a′(a, a′′) that is defined by a′ = a ⊕ a′′ it can easily be
shown that it is decorrelated from a. Obviously, thanks to symmetry, the operand
a′′ = a⊕ a′ is also decorrelated from a. a′′ is called the masking word.

It can be shown that a word b that is the result of the computation of two
operands a′

1(a1, a
′′
1) and a′

2(a2, a
′′
2) is decorrelated from both a1 and a2 if a′′

1 and
a′′
2 are mutually decorrelated (or equivalently, independent).

Moreover, all bits of a word b that is the result of a bitwise logical computation
of two operands a′

1 = a1 ⊕ a′′
1 and a′

2 = a2 ⊕ a′′
2 are decorrelated from both a1

and a2 if the bits at corresponding positions of masking variables a′′
1 and a′′

2 are
mutually decorrelated (or equivalently, independent).

Finally, for a state a = a′ ⊕ a′′, any computation involving only terms of a′

(or only a′′), will have only operands that are decorrelated from a.

3 The Duplication Method

Louis Goubin and Jacques Patarin [12] propose the Duplication Method: a me-
thod for increasing DPA-resistance based on secret sharing. It aims to remove all
correlation between operands and intermediate state or key, thus making first-
order DPA impossible. In this section, we discuss the limitations of the methods
as proposed in [12].

Bitslice Ciphers and Power Analysis Attacks 139

The basic principle of the Duplication Method is to split any variable V of
a given cipher computation into a set of k other variables V1, V2, . . . Vk such
that the variable can be reconstructed through the use of a function f : V =
f(V1, . . . Vk). The cipher computations are performed on the variables Vi such
that the relation V = f(V1, . . . Vk) holds at all times and without having to
calculate V explicitly. Furthermore, the knowledge of k − 1 of the variables Vi

does not give any information on V itself.
In the practical methods they propose, the Duplication Method is applied to

DES and the variables V are split in two parts V1 and V2 with V = V1 ⊕ V2.
For the linear operations in DES (expansion, bit permutation, exor of output of
f-function), the computation can be done on V1 and V2 separately and indepen-
dently (for a linear function L, we have L(V1) ⊕ L(V2) = L(V1 ⊕ V2) = L(V)).
For the key addition it is sufficient to add it to one of the two variables.

For the S-box evaluation however, the computations involving V1 and V2
cannot be kept separated due to the nonlinearity of the S-boxes. Goubin and
Patarin [12] propose the use of 12-bit to 8-bit lookup tables Ti(v1, v2) satisfying

(v′
1, v

′
2) = T (v1, v2) = (A(v1, v2), S(v1 ⊕ v2)⊕A(v1, v2)) (1)

where A is a randomly-chosen secret transformation and S is the original 6-bit
or 4-bit S-box. Clearly, v′

1 ⊕ v′
2 = S(v1 ⊕ v2), so that the table-lookup preserves

the condition v = v1⊕ v2. The computation of v′
1, v

′
2 is performed as a lookup in

a table of 4096 bytes. Unfortunately, the size of these tables that replace the S-
boxes makes this method prohibitively expensive for current smartcards, where
memory is a scarce resource.

For this reason, they propose a variant of their method that uses more com-
pact lookup tables. The S-box computation is performed in the following two
steps:

v0 = ϕ(v1 ⊕ v2), (2)

and

(v′
1, v

′
2) = S′(v1, v2) = (A(v0), S(ϕ−1(v0))⊕A(v0)) (3)

with ϕ a secret bijective function.
Although ϕ can be chosen such that v0 can be calculated by combining in-

dividual computations (e.g., if ϕ is linear, it reads v0 = ϕ(v1) ⊕ ϕ(v2)), the
intermediate state value v is fully determined by a single operand: v0. The ina-
bility to exploit v0 for hypothesis testing is only based on on the secrecy of ϕ.
Apart from disclosure by a manufacturer, an attacker can learn more about ϕ if
he or she has access to a sample card where the cipher can be run with a known
key. The problem can thus be factored in two sub-problems, namely, learning
more about ϕ and mounting a first-order DPA attack focusing on the v0 values
rather than v. Moreover, the linearity of ϕ (or the fact that it is quadratic) may
really help a lot in determining it.

140 J. Daemen, M. Peeters, and G. Van Assche

From an academic point of view, both variants of the method face the problem
that they do not guarantee decorrelation between operands and intermediate
state values.

For the first variant of the Duplication Method, the lookup-table output
(v′

1, v
′
2) can be expressed in terms of (v1, v) using an equivalent table T ′ by

including the linear transformation (v1, v2) = (v1, v⊕ v1). To have decorrelation
of the bits of v′

1, v
′
2 from v, it is a requirement that C(b, utv) = 0 for all 8 bits b

of v′
1 or v′

2 and for all 64 possible selections u. If A is chosen randomly it is very
unlikely that this is the case.

For the second variant of the Duplication Method, bits of operand v0 are
correlated to linear combinations of bits of v. As a matter of fact, we have:∑

u

C2(b, utv) = 1

for any of the output bits. In the case that ϕ is linear (as proposed in [12]), every
bit of v0 is correlated to a linear combination of bits of v with correlation 1.

4 Bitslice Ciphers

Bitslice ciphers can be implemented using only bitwise logical instructions and
(cyclic) shifts. The term bitslice cipher was introduced by Eli Biham referring
to the AES candidate Serpent [1] designed by Eli Biham, Ross Anderson and
Lars Knudsen. Older examples of bitslice ciphers are 3-Way[9] published in 1993
and BaseKing. BaseKing is a variant of 3-Way that was described in [7] but
never presented at a conference.

4.1 BaseKing

BaseKing has a block and key length of 192 bits (24 bytes). It is an iterated
block cipher with a round transformation composed of a number of steps, each
with its own function. These steps treat the intermediate encryption result, called
the state, in a uniform way. The state, denoted by a consists of 12 16-bit words
denoted by a0 to a11. The round transformation has 5 steps:

– key addition: the cipher key and a round constant is added to the state.

a← a⊕ k ⊕ Crj

– diffusion: the words are transformed with a linear transformation with high
diffusion (branch number 8):

ai ← ai ⊕ ai+2 ⊕ ai+6 ⊕ ai+7 ⊕ ai+9 ⊕ ai+10 ⊕ ai+11

– early shift: the words are cyclically shifted over 12 different offsets:

ai ← ai � ri

Bitslice Ciphers and Power Analysis Attacks 141

– S-box: the words are transformed with a nonlinear transformation operating
in parallel on sets of 3 bits:

ai ← ai ⊕ (ai+4 ∨ ai+8)

– late shift: the words are cyclically shifted over 12 different offsets:

ai ← ai � r11−i

The vector of rotation constants used in the shift operations is

r = (0, 8, 1, 15, 5, 10, 7, 6, 13, 14, 2, 3).

The round constants are given by:

Crj = (0, 0, qj , qj , 0, 0, 0, 0, qj , qj , 0, 0)

with qj given by the following pseudo-c program:
q[0] = 0x000B;
if ((q[j+1] = q[j]<<1) & 0x0100) q[j+1]ˆ= 0x0111;

BaseKing has 11 rounds and a final output transformation. The final out-
put transformation consists of a key addition and a diffusion step (as described
above) followed by a transformation that inverts the order of the words:

ai ← a11−i

Thanks to the arrangement of the steps and the algebraic properties of the
operations, the inverse cipher is exactly the same as the cipher itself, with the
exception of the round constants. For a detailed treatment of these aspects, we
refer to [7].

4.2 Cryptanalysis

The design of BaseKing aims at providing strong resistance against differential
and linear cryptanalysis and the absence of symmetry properties. We refer to [7]
for a development of this point.

For 3-Way, it has been shown that the lack of a real key schedule allows
mounting of a related-key attack [13]. This attack is also applicable to the cipher
BaseKing. However, in applications requiring only encryption, MACing and
key derivation, related-key attacks can be easily prevented by the application of
sound key management principles, i.e., by avoiding key variants.

5 Protecting Bitslice Ciphers against DPA

This section describes our methods of protecting bitslice ciphers against first
order DPA attacks.

142 J. Daemen, M. Peeters, and G. Van Assche

Before executing the cipher, the initial value of the state a, i.e., the plaintext,
is split into two state shares a′ and a′′ with a = a′⊕a′′. All computations will be
performed on the state shares in such a way that the relation a = a′ ⊕ a′′ holds
at all times. The linear steps (early shift, diffusion, late shift) can be applied
to the state shares a′ and a′′ independently and therefore provide decorrelation
from state words.

5.1 Key Addition

The key addition can be applied by adding the round key to one of the two split
states: a′ ← a′ ⊕ k. In the assumption that the attacker has no information on
a′, a first-order DPA cannot be used to gain information on the key k.

However, in [3], Eli Biham and Adi Shamir describe an attack that uses Ham-
ming weight information on round key words to retrieve the key. The Hamming
weight information is obtained by taking the average consumption over multiple
cipher computations with the same key. The ability to use this Hamming weight
information to derive the key strongly depends on the key schedule. For DES
(or Triple-DES) the complete key can be found using ”standard techniques from
error correcting codes”.

Ironically, its lack of a key schedule gives BaseKing an excellent protection
against this attack. The cipher key is applied at the end of every round by just
exoring it with the state. The subkey words are the same for every round. In the
case of 8-bit words, this attack gives on the average 2.54 bits of information per
byte, leaving still 24 ∗ (8− 2.54) = 131 bits to guess. In the case of 32-bit words,
this becomes 3.55 bits per word, leaving still 6 ∗ (32− 3.55) = 171 bits to guess.

Anyway, the knowledge of key information might be exploited to further
attack the cipher. A simple way to protect against the key schedule attack is
to apply secret sharing on the key. The key k is split into two parts k′ and
k′′. The exor with k is then executed by a word-by-word exor of the state with
k′ followed by a word-by-word exor of the state with k′′. The addition of two
subkeys per round can even be done with some linear steps in between, if one of
the two subkeys undergoes a linear transformation: L(a + k) = L(a) + k1 with
k1 = L(k).

In combination with the state secret sharing method, the key secret sharing
method can make key addition really symmetric: a′ ← a′⊕k′ and a′′ ← a′′⊕k′′.

5.2 Full State Splitting

Similar to the duplication method of Goubin and Patarin, the state a is split in a′

and a′′ with a′ generated randomly before the computation and only recombined
at the end of the cipher computation.

The BaseKing S-box operates on sets of three words of the state (e.g., a0,
a4 and a8), and transforms them by

ai ← ai ⊕ (ai+4 ⊕ 1)ai+8 ⊕ 1, (4)

Bitslice Ciphers and Power Analysis Attacks 143

with index additions modulo 12. Applying secret sharing gives rise to ai = a′
i⊕a′′

i ,
i = 0, 1, . . . 11. We must determine functions f ′ and f ′′:

a′
i ← f ′(a′

i, a
′
i+4, a

′
i+8, a

′′
i , a′′

i+4, a
′′
i+8) and (5)

a′′
i ← f ′′(a′

i, a
′
i+4, a

′
i+8, a

′′
i , a′′

i+4, a
′′
i+8) (6)

that preserve the relation a = a′ ⊕ a′′:

f ′ ⊕ f ′′ = a′
i ⊕ a′′

i ⊕ (a′
i+4 ⊕ a′′

i+4 ⊕ 1)(a′
i+8 ⊕ a′′

i+8)⊕ 1, i = 0, 1, . . . 11. (7)

The restriction on f ′ and f ′′ is that during their computation there are no
operands that bear correlation with a. Using the distribution rule of F2, we get:

f ′ ⊕ f ′′ = a′
i ⊕ a′′

i ⊕ a′
i+8 ⊕ a′′

i+8

⊕ a′
i+4a

′
i+8 ⊕ a′

i+4a
′′
i+8 ⊕ a′′

i+4a
′
i+8 ⊕ a′′

i+4a
′′
i+8 ⊕ 1. (8)

A computation involving only components of a′ or a′′ cannot involve operands
that have a correlation with a. However, due to the presence of the mixed terms,
i.e., with components of a′ and a′′, the computation of f ′ will necessarily involve
terms of a′′ or vice versa. For instance, one gets:

f ′ = a′
i ⊕ a′

i+8 ⊕ a′
i+4a

′
i+8 ⊕ a′

i+4a
′′
i+8

f ′′ = a′′
i ⊕ a′′

i+8 ⊕ a′′
i+4a

′
i+8 ⊕ a′′

i+4a
′′
i+8 ⊕ 1.

To guarantee decorrelation of all operands, the order in which these functions
are computed is important. Consider the expression for f ′ given above. If it is
evaluated from right to left, after the addition of the two rightmost terms, the
following operand occurs: a′

i+4a
′′
i+8 ⊕ a′

i+4a
′
i+8 = a′

i+4ai+8. Clearly each bit of
this operand has a correlation of 1/2 with the corresponding bit of state word
ai+8. Since a′ is random and independent of a, we have:

a′
i+4ai+8 =

{
ai+8 when a′

i+4 = 1,

0 when a′
i+4 = 0, and thus

(9)

C
(
a′

i+4ai+8, ai+8
)

=
1
2
. (10)

If the expression for f ′ is evaluated from left to right, it can be shown that
no operands occur that have a correlation with the state. The computations of
all terms except the last one involve only words of a′, hence here decorrelation
from a is automatic. For the addition of the last term to the intermediate result
of the computation, the presence of a′

i in the first term implies that the masking
words of two terms are decorrelated.

The state splitting method can be generalized to provide protection against
second and higher order DPA attacks. In principle, this enables the smartcard
designer to adjust the level of security by making DPA attacks arbitrarily diffi-
cult. For instance, protecting against second-order DPA requires the state a to
be split into three parts, namely a = a′ ⊕ a′′ ⊕ a′′′. The evaluation of the S-box
requires care when deciding in which order the operations must be performed.

144 J. Daemen, M. Peeters, and G. Van Assche

5.3 The Bias Vector Method

In the bias vector method one of the two split states is in a particular sub-class
that can be kept invariant under the cipher computations. For BaseKing this
is the class of states where each 16-bit word is either all-0 (0) or all-1 (0̄). These
particular split states are called bias states. A bias state can be represented by
a 12-bit vector, called a bias vector.

A bias state is invariant under the shift operations. The diffusion operation
maps every bias state to another bias state, since it operates in parallel on the
bits of the words. Thanks to the linearity of the diffusion operation, computing
the bias vector at the output of a diffusion step from the bias vector at its input
can be done with some table-lookups and exors. For example: 3 table lookups in
tables with 16 (24) entries and two exors. Thanks to their compactness, input-
output bias vector pairs can be computed beforehand and stored in memory for
later usage.

The cipher computation operates on a biased state A equal to a ⊕ d. The
bias vector corresponding with d is denoted by δ.

For the linear steps including the key addition, the computation is performed
on A. The evolution of the bias vector in the linear steps is computed using the
table-lookups described above. For each round a new random 12-bit bias vector
is introduced.

We explain the computation of the first word of the output of the nonlinear
transformation corresponding with:

a′
0 = a0 ⊕ (a4 ∨ a8)

All other words are computed in the same way. The computation of A′
0 is done

as follows:

1. Computation of required values: Compute A4 ⊕ A8 and store it in a
register. Store 0 in a register (A4 and A8 are already assumed to be in
registers);

2. Nonlinear computation: We compute A4 ∨A8 and store it as G.
3. Computation of correction term: depending on the bias vector bits

δ4, δ8, one of the four registers containing 0, A4, A8 or A4 ⊕ A8 is selec-
ted and its complement is stored. The selected register or the one containing
its complement (depending on γ) is exored to G:
– δ4 = 0, δ8 = 0: complement 0 and store as H. If γ = 0 add 0 to G, else

add H to G;
– δ4 = 0, δ8 = 1: complement A4 and store as H. If γ = 0 add H to G,

else add A4 to G;
– δ4 = 1, δ8 = 0: complement A8 and store as H. If γ = 0 add H to G,

else add A8 to G;
– δ4 = 1, δ8 = 1: complement A4⊕A8 and store as H. If γ = 0 add A4⊕A8

to G, else add H to G;
This is programmed such that the sequence of instructions is independent of
the branch that is taken, the only difference are the source/target registers.

Bitslice Ciphers and Power Analysis Attacks 145

4. Computation of A′
0 and δ′

0: A′
0 = A0 ⊕G and δ′

0 = δ0 ⊕ γ.

This computation can be repeated for all state words. The bits of all operands
in the computation are decorrelated from state words:

– Bits of A4 and A8 are decorrelated independently (via d4 and d8) from state
words, hence the results of A4 ⊕A8 and A4 ∨A8 are also decorrelated.

– Depending on the values of δ4 and δ8 the operand is 0, A4, A8 or A4⊕A8. The
bits of individual operands are all decorrelated, except 0 that is obviously
constant.

– In the subsequent computations of G and A′
0 the bits of all operands are

decorrelated.

The advantage of the bias vector method is that second order DPA will be
more difficult to accomplish than in the case of full state splitting thanks to the
compact (and possible delocalized) processing of the bias vector. Unfortunately,
the bias vector method has the disadvantage that decorrelation is only reached
at bit-level and not at word level (e.g., if in a word ai of the state the two LSB
bits are equal, the two LSB bits of Ai will be equal). In cyclic shift operations,
this might give away information via second-order effects.

5.4 Coding Results

To evaluate the implementability and cost of the methods described above, se-
veral versions of BaseKing were programmed on the ARM7 RISC processor (see
www.arm.com for technical and other information). This processor is well know
for its very high computation power vs. consumption ratio, and hence is ideal for
smartcards. Special care has been taken to guarantee immunity against timing
(for instance, handling of pipeline clearing) and SPA attacks. The following table
summarizes the code size and execution time for the different versions.

version cycles code size
timing and SPA resistant 1949 776
full state splitting 4593 1148
bias vector 4505 2804
bias vector, guarded instr. 3845 1844

Clearly, the application of the anti-DPA methods has a considerable cost in
execution time and code size. In the case of the bias vector method, most of
the overhead comes from the computation of the S-box (2119 cycles, 1216 bytes
code size).

We did not conduct actual power measurements and therefore were unable to
verify whether the use of guarded instructions endangers the immunity against
DPA attacks, and hence the last line of the table is only included for information.

More detailed information on the coding and updates will be made available
at http://www.protonworld.com/research.

146 J. Daemen, M. Peeters, and G. Van Assche

5.5 Applicability to 3-Way and Serpent

The bias vector method makes use of particular symmetry properties of the
cipher BaseKing and cannot be extended to 3-Way or Serpent. The full state
splitting method however can be extended to any bitslice cipher. For 3-Way,
both the linear steps and the S-box evaluation can be done in exactly the same
way as described for BaseKing.

In Serpent, the linear steps of the round function pose no problem. However,
we do not expect that implementing the method for the Serpent S-boxes will be
trivial. The BaseKing S-box mapping is very simple, containing only a single
nonlinear term with only two factors per output word computation. Moreover,
the expression is the same for all output words, only the input words differ. In
Serpent, there are 8 different S-boxes, and the expressions of the output bits
contain more terms with degrees up to 3. This is likely to give more mixed terms
in the expressions of Serpent’s equivalents of the f ′ and f ′′ functions and a
relatively more important reduction in performance. Special care must be taken
in the order of evaluation of these functions to guarantee correlation immunity
(if possible). Moreover, due to the lack of symmetry in the Serpent S-boxes, this
may give rise to an important overhead in code size.

Acknowledgments. We would like to thank Mr. Philip Theunissen for proof-
reading the final version of this paper.

6 Conclusions

We have applied and extended techniques to protect block ciphers against power
analysis attacks to the bitslice block cipher BaseKing. These techniques have
been validated by actual coding in assembly language on an ARM processor.

One of the techniques described generalises readily to the block cipher 3-
Way. We have shown that this technique can be applied to Serpent, but more
analysis and research is required to see what is the performance penalty in this
case.

Finally, in the appendix we show the difference in power between first-order
and second-order DPA with information-theoretical arguments.

References

1. E. Biham, R. Anderson, and L. Knudsen. Aes proposal serpent. AES CD-1:
documentation, 1998.

2. E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

3. E. Biham and A. Shamir. Power analysis of the key scheduling of the aes candi-
dates. In 2nd AES Candidates Conference, March 1999.

4. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A cautionary note regarding evalua-
tion of aes candidates on smart-cards. In Proceedings of the 2nd AES Candidates
Conference, March 1999.

Bitslice Ciphers and Power Analysis Attacks 147

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards sound approaches to counteract
power-analysis attacks. In Advances in Cryptology - CRYPTO’99, pages 398–412.
Springer-Verlag, 1999.

6. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, 1991.

7. J. Daemen. Cipher and Hash Function Design. PhD thesis, Katholieke Universiteit
Leuven, March 1995.

8. J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In R. Anderson,
editor, Fast Software Encryption, pages 275–285. Springer-Verlag, 1994.

9. J. Daemen, R. Govaerts, and J. Vandewalle. A new approach towards block cipher
design. In R. Anderson, editor, Fast Software Encryption, pages 18–33. Springer-
Verlag, 1994.

10. J. Daemen, R. Govaerts, and J. Vandewalle. Weak keys of idea. In Advances in
Cryptology - CRYPTO’93, pages 224–231. Springer-Verlag, 1994.

11. D.W. Davies. Some regular properties of the des. In Advances in Cryptology -
CRYPTO’82, pages 89–96. Plenum Press, 1983.

12. L. Goubin and J. Patarin. Des and differential power analysis. In CHES’99, volume
1717, pages 158–172. Springer-Verlag, 1999.

13. J. Kelsey, B. Schneier, and D. Wagner. Key-schedule cryptanalysis of idea, g-des,
gost, safer and triple-des. In Advances in Cryptology - CRYPTO ’96, page 237.
Springer-Verlag, 1996.

14. P. Kocher, J. Jaffe, and B. Jun. Introduction to differential po-
wer analysis and related attacks. The article can be found at
http://www.cryptography.com/dpa/technical/index.html, 1998.

15. M. Matsui. Linear cryptanalysis method for des cipher. In Advances in Cryptology
- EUROCRYPT’93, page 386. Springer-Verlag, 1993.

A First Order vs. Second Order DPA

Using a simple statistical model we compare the distinguishing power of second
order DPA and first order DPA, i.e., we compute the required number of samples
for both methods under identical noise levels.

Assume an emitter has chosen one of the two random process (with x a
continuous variable, e.g., the power consumption at a given stage):

– Process f , probability density f(x);
– Process g, probability density g(x).

The observer receives a sequence of xi and wants to determine whether it comes
from f or from g. From the observer’s point of view, the probability that values
in [xi, xi + dxi] come from f is:

P (f | x1x2 . . . xz) dx1 . . . dxz =
P (x1x2 . . . xz | f)P (f)

P (x1x2 . . . xz)
dx1 . . . dxz

= P (f)
∏

i

P (xi | f)
P (xi)

dxi,

148 J. Daemen, M. Peeters, and G. Van Assche

and similarly for g,

P (g | x1x2 . . . xz) dx1 . . . dxz = P (g)
∏

i

P (xi | g)
P (xi)

dxi.

For simplicity, we now assume that P (f) = P (g), and thus one gets

P (f | x1x2 . . . xz)
P (g | x1x2 . . . xz)

=
∏

i

P (xi | f)
P (xi | g)

=
∏

i

f(xi)
g(xi)

In order to detect f over g, we must reach the situation where

P (f | x1x2 . . . xz) ≥ λP (g | x1x2 . . . xz).

For simplicity, let λ = e. Taking the logarithm on both sides, it reads:∑
i

(log(f(xi))− log(g(xi)) ≥ 1 (11)

The main question we address is how many samples (parameter z) are required
to reach this condition. Assuming that the emitter chose the random process f ,
i.e., distribution f(x) applies, each new xi will on average contribute to the sum
in (11) as much as:

D(f‖g) =
∫

f(x)(log(f(x))− log(g(x))dx,

where D(f‖g) happens to be the relative entropy of f and g (see [6]).
Therefore, the average number of samples required to clearly distinguish f

from g is z ∼ 1/D(f‖g).

Fig. 1. First order vs. second order DPA distributions. The 2D distributions clearly
have more overlap than 1D distributions.

The above result does not depend on a particular form of f(x) or g(x). We
will now illustrate this with normal distributions:

Bitslice Ciphers and Power Analysis Attacks 149

– First order DPA: One has to distinguish between two noisy sets with slightly
different averages. We thus create two classes, one for logical zero f ∼ N(0, σ)
and one for logical one g ∼ N(1, σ). See Figure 1 (left).

– Second order DPA: The same individual distributions are used. However,
one is interested in the exor of two independent bits. Therefore, we create
two 2D distributions. See Figure 1 (right).
– Since 0 = 0⊕0 = 1⊕1, f consists of a balanced mix of N(0, σ)×N(0, σ)

and N(1, σ)×N(1, σ).
– Since 1 = 0⊕1 = 1⊕0, g consists of a balanced mix of N(0, σ)×N(1, σ)

and N(1, σ)×N(0, σ).

Notice that symmetry implies D(f‖g) = D(g‖f) in this case. We numerically
evaluate D(f‖g) with varying σ for both first order and second order DPA. The
results are listed in the table below. It appears that the number of samples
necessary for second order DPA is much higher than that of first order DPA
with the approximate relationship z2ndODPA ≈ 2z2

1stODPA.

σ z1stODPA z2ndODPA
4 8 143
5.7 16 543
8 32 2111
11.3 64 8319
16 128 33023
22.6 256 131586
32 512 525326

	Introduction
	Implementation Attacks
	Timing Attacks and Simple Power Analysis
	Differential Power Analysis
	Higher-Order DPA
	On Correlation and Decorrelation

	The Duplication Method
	Bitslice Ciphers
	BaseKing
	Cryptanalysis

	Protecting Bitslice Ciphers against DPA
	Key Addition
	Full State Splitting
	The Bias Vector Method
	Coding Results
	Applicability to 3-Way and Serpent

	Conclusions
	First Order vs. Second Order DPA

