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Abstract. This paper presents a linear cryptanalytic attack against re-
duced round variants of the SAFER family of block ciphers. Compared
with the 1.5 round linear relations by Harpes et al., the following new
linear relations were found: a 3.75-round non-homomorphic linear rela-
tion for both SAFER-K and SAFER-SK with bias e = 272%; a 2.75 round
relation for SAFER+ with bias ¢ = 27%°. For a 32-bit block mini-version
of SAFER a 4.75-round relation with bias e = 275 has been identified.
These linear relations apply only to certain weak key classes. The results
show that by considering non-homomorphic linear relations, more rounds
of the SAFER block cipher family can be attacked. The new attacks pose
no threat to any member of the SAFER family.

1 Introduction

SAFER (Secure And Fast Encryption Routine) is a family of block ciphers,
designed by Massey, which comprises 64-bit block ciphers like SAFER-K64 [11],
SAFER-K128 [12], SAFER-SK40, SAFER-SK64 and SAFER-SK128 [13]. The num-
ber that follows each cipher name indicates the key size. The newest member of
this family is the AES candidate SAFER+ [10] designed jointly with Khachatrian
and Kuregian; SAFER+ has a 128-bit block size and variable key size versions
of 128, 192 and 256 bits. We will also analyze a 32-bit block mini-version, called
SAFER-K32.

The more widespread, easy-to-deploy and better-understood an encryption
algorithm is, the more attractive it becomes as a target for cryptanalysts. All
SAFER family members have publicly available descriptions, are unpatented,
royalty-free, with plenty of flexibility for different key sizes and block sizes, and
are designed to be efficiently implementable in software [I3]. These are key fea-
tures to make SAFER+ widely deployed. An example is the inclusion of SA-
FER+ for authentication purposes in Bluetooth [1|, p. 149]; this is the codename
for a technology specification for low-cost, short range radio links between mobile
PC’s, mobile phones and other portable devices.
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Several theoretical attacks have been published on the ciphers of the SAFER
family (in most cases versions were considered with a reduced number of rounds):
differential cryptanalysis by Massey [12], truncated differentials by Knudsen and
Berson [17], later improved by Wu et al. [7], an algebraic attack by Murphy [20],
key schedule attacks by Knudsen [15] and by Kelsey et al. [9], and observations on
the PHT design by Vaudenay [21] and Brincat et al. [2]. Linear cryptanalysis has
been considered by Harpes et al. in [4] (see also [3]); they show that a generalized
linear attack becomes infeasible for three or more rounds of SAFER-K64. This
paper proposes an improved linear analysis by considering a wider class of linear
relations; it also identifies certain classes of keys that are ‘weak’ w.r.t. linear
cryptanalysis.

This paper is organized as follows. Section Pl describes the structure of SAF-
ER-K64 and its key-schedule algorithm. Section Bl describes a 32-bit-block mini-
version of SAFER-K. Section @l introduces principles of linear cryptanalysis and
some terminology for our attack. Section [l gives particular features of a new
type of linear relation for SAFER ciphers. Section [l contains our results for
the SAFER cipher family; their further use in an attack is described in Sect. [7}
Section [§ discusses the methodology used to obtain the new linear relations
and Sect. @ summarizes the analysis results. Annex[A] presents a ciphertext-only
attack.

2 Description of SAFER-K64

SAFER-K64 is a 64-bit-block iterated cipher with » = 6 rounds and a 64-bit
user-selected key K. The key K is expanded into 2r + 1 subkeys, that is, two
subkeys per round plus one subkey for an output transformation. The following
description of the round structure of SAFER-K64 also applies to SAFER-SK40,
SAFER-SK64 and SAFER-SK128, because their ciphers only differ in the key
schedule. Therefore, SAFER-K/-SK will be used as a notation when the analysis
applies to both ciphers.

2.1 The Round Structure

In each encryption round, the input block B is first split into 8 bytes: B =
(b1,b2,b3,b4, b5, b6,b7,b8), bi S 2256, 1 < 1 < 8. Each byte bj is combined with
the first round—subkey Kgii Y =B+ K2i = (bl D K2174, b2 H KQQZ, bg H KQBZ, b4 D
K3, bs® K5, bsBKS;, byHK],, bs B KS,) where & denotes bitwise XOR and H re-
presents ADD(ITION) modulo 256. Each byte of Y = (y1, y2, ys, Y4, Y5, Y6, Y7, Ys)
is input to an S-box: Z = (X(y1), L(y2), L(y3), X(y4), X(y5), L(ys), L(yr), X(ys)),
where X(.) is an eXponentiation S-box and L(.) a Logarithm S-box, described la-
ter. This S-box layer will be referred to as the non-linear or NL layer. Subsequently,
Z = (21, 22, 23, 24, 25, 26, 27, 28 ) 1s combined with the second round-subkey Ko;11:
T =7Z+Kaip1 = (18K 1, 0@ K31, s ® K3y, 2a BKY, Ly, s BES 4, 268
K§i+1,27 S) K27H_1,z8 H K§¢+1)- Finally, the bytes of T' are input to a linear
transformation called Pseudo-Hadamard Transform or PHT layer.
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The alternating XOR/ADD layer of input data with the first subkey bytes,
together with the NL layer will be referred to as the NL half-round; similarly,
the alternating ADD/XOR layer of intermediate data with the second subkey,
together with the PHT layer will be called the PHT half-round.

There are two S-boxes: an eXponentiation X (a) = (45* mod 257) mod 256
(X-box, for short), and a Logarithm L(a) = log,s(a) mod 257 (or L-box, for
short) for a # 0, with the special case L(0) = 128. They are each other’s inverses,
that is, X (L(a)) = L(X(a)) = a,Va € Zas6.

The PHT layer denotes a network of twelve 2-PHT boxes, where the latter
is defined as 2-PHT(a,b) = (2-a B b,a Bb), for a,b € Zss6. Denoting the
input to a PHT layer by Y = (y1, y2, s, Y4, U5, Ys, Y7, Ys) and its output by Z =
(21, 22, 23, 24, 25, 26, 27, 28), Where y;,z; € Zase, 1 < i < 8, this transformation
can be described by Z = YT - M, where M is called the PHT matrix:

8 442 42 21
42422121
42214221
21212121
M_44222211
22221111
22112211
11111111

Let T = (t,to,t3,t4,15,t6,t7,t3) be the output after r rounds. There is an
output transformation which mixes 7" with the last subkey, giving the ciphertext:
C=T+Kory1 = (t @Kzlr+1v to 53K227«+1, t3 BHK23T+17 ty @Kér—&-la ts @K25T+1v te B
KS 1, tzB8K]. |, ts® K5, ;). Decryption involves the application of the inverse
of each round with reverse order for the subkeys. More details can be found in
[11l12].

The round structure of SAFER+ uses the same S-boxes and 2-PHT primi-
tives found in 64-bit block members, but the former uses a different PHT layer

composed of four 2-PHT layers, and a particular fixed permutation between
2-PHT layers, called Armenian Shuffle (see Fig.[I]).

2.2 The Key Schedule

The key schedule of SAFER-K64 accepts a 64-bit user-selected key K and ge-
nerates 64-bit subkeys K;,1 < i < 2r 4 1, that is, two subkeys per round plus
one subkey for the output transformation. K itself is used (unchanged) as the
first subkey K. Subsequently, K is split into eight bytes, (K!, K2, K3, K* K?,
K% K7, K®), and each byte is left rotated by three bits. Next, fixed byte values
called key bias B, ..., BS are added to bytes K*',... , K® respectively, where

Bl = (458" mod 257 1104 257) mod 256 , 2<i<2r+1, 1<j<8.

The result is the second subkey Ko = (ROL3(K')HB Bs,... , ROL3(K®) @ BS).
The other subkeys are generated by following the same steps using the previous
subkey as input: rotate each input byte left by 3 bits and add the next key bias.
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Fig. 1. One round of SAFER+

Key schedule weaknesses in SAFER-K64 were demonstrated by Knudsen [15],
resulting in the improved key schedule of SAFER-SK64 [12]. Kelsey et al. have
pointed out a weakness in the key schedule of SAFER+ for long keys [9]. Key
schedule weaknesses will not be considered in this paper, but our analysis will
point out that some keys are weak w.r.t. linear cryptanalysis.

3 A Mini-Version of SAFER-K64

Some block ciphers allows all of their individual components to be reduced to
a half, a quarter or even smaller sizes, while the security level relative to the
block size remains similar. This is also the case for the SAFER cipher family.
This paper analyzes one such reduced version which will be called SAFER-K32.
This is a 32-bit block cipher with a 32-bit user key, » = 8 rounds, and with
S-boxes defined as X (a) = (¢* mod 17) mod 16, and L(a) = log, a mod 17, for
a # 0 and L(0) = 8. There are eight degrees of freedom in choosing g such
that GF(17) =< g >, namely g € {3,5,6,7,10,11, 13,14} (see [I7]). The value
g = 11 was chosen arbitrarily for this mini-version.
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The emphasis of the current analysis is not to attack the key schedule but the
cipher itself; therefore it will be assumed that the key schedule for SAFER-K32
has a structure similar to that of SAFER-K64. The scale is reduced: the key
schedule generates (2r 4+ 1) 32-bit subkeys and it uses the same generator as the
cipher.

The main reasons to consider reduced versions of ciphers are:

— the reduced dimensions allow a more comprehensive (exhaustive) analysis,
to be carried out which is not always possible in the original cipher;

— it is hoped that weaknesses found in the mini-version can be extended to
the larger cipher, or at least that they may provide some insight in potential
weaknesses in the original cipher.

4 Linear Cryptanalysis of SAFER

4.1 Linear Cryptanalysis

Linear cryptanalysis is a statistical, known-plaintext attack introduced by Mat-
sui and Yamagishi in 1992 in an attack against FEAL [19]. It was extended to
DES in 1993 [18]. The attack explores (approximate) linear relations between
plaintext, ciphertext and subkey bits. Linear approximations for an iterated ci-
pher are usually made by combining approximations for each round.

If X; = (xn,&pn-1,-..,%2,21) is an n-bit input to a round, R(X;) is its
output, and K; the round subkey, then a linear relation can be expressed as

Xi - I'N®R(X;)-I'O=K; - I'K; (1)

where I'I, I'O and I'K; are n-bit masks which specify the bits of X;, R(X;) and
K; involved in the linear relation. For example, X;-I'l = X -45, = 1 ®x3D x7
(the subscript ‘x’ indicates hexadecimal values).

The left-hand side of equation ([l) provides an estimate for the xor of the
subkey bits on the right-hand side. Without loss of generality, the following
simplified equation is employed

X, I'T&R(X,)-TO=0 . (2)

Two numerical values can be associated with (2]). First, a probability p =
Pr(X;-I'I = R(X;)-I'O)/2™ that expresses the frequency with which equation (2
holds (relation (@) is also called a linear approximation). Second, the deviation of
parity of ) from a random relation, or p’ = p— 1. It is clear that —1 <p/ <1
and the approximation is useful only if p’ # 0. The absolute value e = |p'| is called
bias [8]. The larger the bias the more useful the linear relation is, that is, the
more unbalanced the parity of () from a random distribution the less plaintext
is needed to estimate the value of K; - I'K; (with high degree of assurance). The
number N of known plaintexts required for an attack using a linear relation with
bias € equals N = ¢ - €2, where ¢ is a small constant, which depends on the
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algorithm used for the estimation [8/18]. In case p’ < 0, the value obtained for
Ki . FKz is actually Kz . FKz = (Kl . FKl) & 1.

The following notation will be used to represent a binary-valued linear rela-
tion for one round of an iterated (n-bit block) cipher:

I'=(I'I,I0e) . (3)

One-round linear relations can be concatenated or stacked in order to ap-
proximate more rounds. If It = (I'Xy,I'Y1,61), I = (I'Xo, 'Y, €3) are r1-
round and rs-round independent linear relations, respectively and I'Y; = I'Xs,
then it is possible to combine them to form an (rq + r2)-round linear relation
I's = (I'’X,,I'Y3,€) with bias € = 2 - €1 - €2 (Matsui’s Piling-Up lemma [18]).
Note however that this assumes that the subkeys are mutually independent and
uniformly distributed which is not the case for any member of the SAFER cipher
family, when the key schedule algorithms are used. Nonetheless, practical expe-
riments show that the subkeys generated through the respective key schedules of
each cipher are adequately randomized in order for the approximations to hold.

As an example of linked relation, a one-round linear relation for SAFER-
K64 can be viewed as the concatenation of two half-round linear relations: I’y =
(I'X,I'M,e1),and I'pgp = (I'M,I'Y, €2), where I'M denotes a bit-mask applied
to the intermediate value in the middle of a round, between the output of the
NL and the input to the PHT layers.

4.2 Homomorphic Linear Relations

Definition 1. Let G1 and G5 be groups with operations ® and [, respectively.
A mapping M from Gy into Gs is called a homomorphism if

My®z)=My)BM(z) , Vy,z€ Gy . (4)

Definition 2. A binary-valued function f is balanced if it outputs the value 0
for exactly half of its inputs.

Definition 3 (Harpes-Kramer-Massey [3}4]). An |/O sum S for a round
is a modulo-two sum of a balanced binary-valued function f; of the round input
Y=Y and a balanced binary-valued function g; of the round output YV, namely

SO = f;(YEV) & g, (YD) . (5)

The functions f; and g; are called input function and output function, respec-
tively, of the I/0O sum S, I/0 sums for successive rounds will be called linked if
the output function of each I/O sum except the last coincides with the input fun-
ction of the following I/O sum: g; = fir1. When SU S S are linked,
then their sum is also an 1/0O sum:

S = B SD = (v ) @ g, (v ™) . (6)

=1

which will be called an r-round I/0 sum.
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Harpes et al. report in [Bl4] that SAFER-K64 is immune to a generalization
of linear cryptanalysis [18] which involves only homomorphic /0 sums after 1.5
rounds. Namely, the best homomorphic I/O sum is stated as the concatenation
of the following NL-PHT-NL half-rounds:

(00000022000000zzx ,0000000100000001x , 2 - (Z%)?) (NL half-round)  (7)
(0000000100000001x ,0001000000000000x , 2~ (PHT half-round)

1
)

(0001000000000000x ,002z000000000000% ,  za¢)  (NL half-round) ,
where zz € {cdx, ffx}, and the overall bias (using Matsui’s Piling Up Lemma)
is € = 22+ (£)% ~ 2778, Using homomorphic linear relations, the bit-masks
which are used to approximate one round of SAFER-K64 take into account the
group operations used to mix subkey bits in each round. In this way the effect
of carry bits is avoided when the group operation is addition modulo 256.

The homomorphicity of the masking function is important for the appro-
ximation of subkey bits mixed in a round, or more specifically, for the group
operations used to mix subkey bits in a round. For example, let G = (Z256, HB)
and G = (Za56, D) be groups. The only homomorphic masking function in this
setting is M;(y) = I' -y = 01x -y, that is, the mask which takes only the least
significant bit (LSB). In [3] it is stated that ([7) is the best homomorphic linear
relation achievable for SAFER-K/-SK. In the next sections, it will be shown
that approximations using non-homomorphic bit-masks result in improved linear
relations.

4.3 Non-homomorphic Linear Relations

Let Ms(y) = 02 - y be a masking function and K be a subkey byte. The M,
mapping is non-homomorphic, because

Ma(yB K) = 02x - (y B K) # Ma(y) ® Ma(K) =02 -y ® 02x - K .

This happens because of a possible carry bit that can propagate from the LSB to
the second LSB. Assuming that the intermediate data values in a round and the
subkey bits are uniformly distributed, this carry bit only exists with probability
1/4. Therefore, a bias penalty of 272 is to be accounted for.

If one considers the bit-masks for the subkey bytes applied only to a fraction
of a round, like a subkey-mixing layer, then one can split a one round appro-
ximation into quarters of a round. Therefore, the bit-masks that make up the
approximation only of the mixing layer of subkey bits in a round, or only of
the NL layer, or only of the PHT layer will be called quarter-round approximati-
ons. As an example, (0002020100000201x, 0001010200000102,2~16) is an NL
quarter-round approximation of the S-box layer in a round of SAFER-K64. Such
partial approximations will be used later for (fractional) linear attacks.
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Key-Dependent Linear Relations

The non-homomorphicity of some bit-masks has two important consequences for
the corresponding linear relations:

(1)

Let X, S, K; € Zs56 be the input, the output and the subkey bytes in a
subkey addition operation in a round of SAFER-K/-SK, that is, S = XH#HK;.
An approximation for the addition operation, using bit-masks 02, take the
form S-02x = X - 02¢ H K - 02x. This approximation is non-homomorphic.
Besides, it assumes that there is no carry bit into the second LSB position,
otherwise the approximation would be void. This carry bit can be avoided if
the least significant bit of subkey Kj; is zero. Other non-homomorphic masks
present similar dependencies on the subkey bits.

If the carry bit restrictions are satisfied for the non-homomorphic bit-masks
as in the item (1) above, then the masks become homomorphic. In this
way, the overall bias of the corresponding linear relation is increased, as
there is no more bias penalty to account for. Therefore, one cannot only
control the carry propagation (assuring the approximations for the addition
of subkey bytes) but also improve the overall bias. The restricted validity
of the approximation to subkeys which possess a certain bit-pattern is only
apparent. By specifying bit-masks for each key class according to the different
approximations of the two LSBs in the addition, all keys in the key space can
be attacked. For example, let X = (2,-1,...,21,20) and K be the input
and S = (sp—1,...,51,80) = XHK, and I'K be the key bit-mask. Then, for
the bit-masks which explore only the two LSBs of addition of subkey bytes,
there are the following possibilities:

(a) Let the approximation be S-02¢ = X-02x @K -I'K or sy =21 9K -T'K.
As the expression of addition is s1 = x1 ® k1 D x¢ - ko, it follows that
kOZOaHdFK:OQX.

(b) Let the approximation be S-02¢x = X -03x @ K - I'K or s1 = x1 ®xo D
K -TI'K. As the expression of addition is s1 = 1 ® k1 ® xg - ko, it follows
that kg = 1 and I'K = 02x.

(c) Let the approximation be S-03x = X-02x @K -T'K or s1®sg =21 DK -
I'K. As the expression of addition is s1 @ sg = 21 D k1 B xq - ko D 2o D ko,
it follows that kg = 1 and I'K = 03%.

(d) Let the approximation be S-03x = X 03y @K -I'K or $1Bsg = 21 DxoD
K-T'K. As the expression of addition is s1®sg = x1Pk1Pxg-koPxoPBko,
it follows that kg = 0 and I'K = 03x.

Therefore, each bit-mask imposes a different restriction on the key bit pattern
but also includes all possibilities for the LSB of the key. For the bit-masks in
(a) and (d) the key bit ky might be 0, and for the bit-masks in (b) and (c),
ko is required to be 1. Although the bit masks in the linear relations in the
next section are valid for certain specific key bit patterns, they can easily be
changed to cover each different key class in the key space.
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6 Search Results

We now present the results of our search for non-homomorphic linear relations
for the different members of the SAFER family.

Definition 4. In a linear approzrimation, an S-box is said to be active if the
approximation applies a non-zero output bit-mask to that S-box. The number of
active S-boxes in a linear relation will be denoted with S.

A search for linear relations of SAFER-K/-SK resulted in a 3.75-round linear
relation with S = 7 and theoretical bias €; = 2739:

(0102010201020102x ,0000000000020000% , 27
(OOOOOOOOOOOQOOOOX ,0100000001000000% , 27
(0100000001000000x ,0002000200020003% , 2~
( 2
( 2

°)

)

(PHT half-round) (8)
(
1) (one round)
(
(

one round)

0002000200020003% ,0002000100000000% ,
0002000100000000% ,0002000100000000% ,

18) (one round)

%)

Recalling the key dependency discussed in Sect. [l item (1), the following re-
strictions on subkey bits are necessary for the approximation of subkey addition
in a 1.25R attack on five rounds SAFER-K/-SK to hold:

subkey quarter-round) .

LSB(Kjy, K5, K$, K¢, K3, K2, K8 Kg, K5, K3) =0 (9)

where the notation LSB(-, ... ,-) = 0 means that the least significant bit of each
argument is zero. Therefore, the actual bias of relation (§) is €] = 2729, These
keys are called weak keys w.r.t. relation (§). Incidentally, these ten key bits in
(@) map to exactly ten different user key bits, according to the key schedule of
SAFER-K64 [11] which means that one in 1024 user keys is weak. For the key
schedule of SAFER-SK64 (see [13]), these ten key bits imply conditions on 16
different user key bits.

Recalling the discussion in Sect. B, item (2), the bit-masks in (8) can be
adapted accordingly to satisfy the other 1023 subkey classes. For example,

0102010301020102x ,0000000000020000% |,
0000000000020000% ,0100000001000000% ,

( —5) (PHT half-round) (10)
(

(OlOOOOOOOlOOOOOOX ,0002000200020003% ,

(

(

(

) (

~11) (one round)
(
(

one round)

0002000200020003% ,0002000100000000% ,
0002000100000000% ,0002000100000000% ,

~18) (one round)

)

has the same theoretical bias as (8), but the weak key restrictions are:

wwl\’ww

subkey quarter-round)

LSB(K?,Kg,ﬁ?,ﬂ%,K?,K?,Kﬁ,ﬁ?,ﬁ?,ﬁg)::0 ) (11)

which imply a different weak key class. The actual bias though, is the same as
before, € = 272%. Similarly, changing each bit-mask in the addition of subkey bytes,
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in each round, one can get relations which hold for each key in the key space.
The same observation holds for the linear relations of SAFER+ and SAFER-K32
below.

For SAFER+ the following linear relation with & = 12 and 2.75 rounds was
found:

(00020102010000020002000202000100x , & , 2~ 11) (PHT half-round) (12)
(a ,B ,2729) (one round)
(8,7 ,2727) (one round)
(v ,v, 27° (subkey quarter round)

with theoretical bias €5 = 279, a = 00000200000202000002020000020200%, 3 =
00000001010000000100000001000001%, v = 02000002000203010203020102000100%.
The following key bit conditions are necessary for the approximation of subkey
addition in a 1.25R attack on four rounds of SAFER+ to hold:

LSB(K3, K5, K32 K33 K3 KS KI, K3 K3' K3*) =0

) (13)
LSB(K3® Kg,Kg, Ko, K83, K K8 KT K30 K2 =0 .

Therefore, the actual bias of (12) is €5 = 2749.

Linear cryptanalysis of SAFER-K32 resulted in a 4.75 round linear relation
with & = 9:
12121212¢ ,00000200%
00000200 ,10001000%
10001000 , 02020203
02020203 ,02010000%
02010000 ,32110000%
32110000x ,32110000%

PHT half-round) (14)
one round)
one round)
one round)

;270 (
;278 (
277 (
,278) (
, 279) (one round)
272 (

A~ N N/~~~

subkey quarter-round)

with theoretical bias e, = 2728, The following restrictions are needed for the
approximation of subkey addition in a 1.25R attack on six rounds of SAFER-
K32 to hold:

LSB(ng KQSa K367K617Kga K’?a K’?7K§la KSSa ngKil07K121) =0 (15)

and the actual bias of (4] is € = 2716.

7 Fractional Linear Attacks

In Sect. linear approximations were described that covered only part of a
SAFER-K/-SK round, for example, a half- or a quarter-round. Linear attacks
using such fractional linear relations include fractions of a round only at the
beginning and end of the cipher, and will be denoted fractional attacks. In the
following the subscript x will sometimes be omitted from bit masks to simplify
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notation, for example, 02 instead of 02; the interpretation should be clear from
the context.

As an example of fractional attack, relation (§) can be used in a 1.25R attack.
This is an analogy with the usual 1R or 2R attacks which only discard full rounds
[6I18]. This 1.25R attack does not include the first half of the first round neither
the last three quarters of the last round in the approximation, that is, the linear
relation (B) does not cover 1.25 rounds (see Fig. 2]). The idea for our attacks
is to place the linear relations between two subkey layers, such that subkeys at
both ends of the cipher are identified. A similar description applies for other
fractional values.

This attack covers five rounds of SAFER-K/-SK, without the output trans-
formation, and identifies 81 subkey bits as follows, assuming the weak-key con-
ditions (d) are satisfied:

— let Py,..., Ps be plaintext bytes, D1,..., Dg be the result of applying the
inverse of the PHT layer (which is unkeyed) to the ciphertext bytes, and
X(.) and L(.) the S-boxes. The following linear relation, derived from (g]),
can be used:

X(PoK{) 010 L(P,BK?) - 020 L(PsBK}) 01 @ (16)

X(Py@o K}) 020 X(Ps® K7)-01® L(PsBKY)-02 @

L(P,BK])- 01 X(Psa KY) 020 X(D,BKZ)-02 @
L(D,BK})-01=K,; -I'K; ,

where H denotes subtraction in Zsxg.

— the K; - I'K; bit is the following: (K3 & K3 ® K§ ® K5 & K§ & K} & K¢ &
K2OK}oKioKSOK3)- 020 (Ka KO KSO Ko KSo Ko K2 @
K2® KS @ K$)-01@ K803, and

— the other 80 subkey bits are K] - ff, K? - £f, K} - £f, K{ - £f, K} - £f,
K$.-tf K] -ff, K- £f, K2 -ff, K§-££f. They can be identified with about
N = (2729)72 = 258 known plaintext blocks using the maximum likelihood
methods from [I8].

Similarly, ([I2)) can be used in a 1.25R-attack on four rounds of SAFER+, assu-
ming weak key conditions (I3) hold, as follows:

— let Py,..., Pig be plaintext bytes, D1, ..., D1g be the result of applying the
inverse of the PHT layer (which is unkeyed) to the ciphertext bytes, and
X(.) and L(.) the S-boxes. The linear relation has the form:

L(P,BK}) 020 L(RBEK}) - 010 X(P,®K?)-02 @ (17)
X(PsaK}) 019 X(PRo K})-02@® L(PoB K% -02 @
X(Po@® K{?) 020 X(P3 3 K{®)-02¢ L(Ps BK®)-01 @
L(D1BK3)-020 L(D,BKg)-02® X(Ds @ KS)-02 @
X(Dr @ KI)-03@ L(DsBKS)-01® L(DyBKS)-02 @
X(D1p @ Ki%)-03@ X(Dyy © Ki')- 029 L(D1, BK?)-01 @

L(D13BK®)-020 X(D15 @ K3°)-01 =K, - T'K; .
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Fig. 2. A 1.25R attack on five rounds of SAFER-K/-SK (only non-zero bit-masks are
shown)
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— the K;- I'K; bit is: (K3 ® K3 & K5 ©® K3 ® K3 ® K3° © K5 @ K§ ® K &
KPeK3'0K' 0o KPP o Ko Ko Kio KPP o KPP oK e K1 o K7 Kia
K2oKI1oK?) . 020 (KIaoKP) 030 (Kio Ko KPP o Ko Ko K] @
K'¢eK{'eoK}*oKPPoKiao K)o K)o KB o Ki*a KE e Ki?® ki) 01
and

— the other 160 subkey bits are: K?-ff, K}-ff, K{-ff, K} -ff, K} -ff, K{0-ff,
Ki%?.ff, KI3-£f, K15 -£f, K} -£f, K§-£f, K§-£f, K{-£f, K§-£f, K - £f,
K0-£f Kt -£f K12 -£f K13 -£f K15 f£f. They can be identified using
maximum likelihood techniques with about N ~ (2719)72 = 29 known
plaintext blocks.

Finally, (I4) leads to the following 1.25R attack on six rounds of SAFER-K32
(using weak keys) without the output transformation:

— let Py,..., Ps be plaintext nibbles (4 bits), D1, ..., Dg be the result of ap-
plying the inverse of the PHT layer (which is unkeyed) to the ciphertext
nibbles, and X(.) and L(.) the S-boxes. The linear relation has the form:

XPoK) 1o LP,BKY) 20 L(RBK)-1 @ (18)

XPoK}) 20X(PsoK)) 1o L(PsBKY) -2 @

LPBEK) 1eX(RhaKY) 26 LD BKY) -3 &
X(De@® K3)- 20 X(D3® K3) 10 L(D,BKE) 1=K, - T'K; .

— the K; - I'K; bit is: (K} ® K ® K§ ® K] @ K§ & K} & K} ® K ® K§ ®
KoK}y K} @ K) 16 (K8aK{,) 30 (KoK, o KSaKS® Ko
KoK o Ko KoK Ko K§® K§® K{y® K}) -2 and then

— the other 48 subkey bits to be found are: K{ -f, K?-f, K-, K} - £, K7 - £,
K- f K{-f, K8-f, Ki,-f, K} -f, K-, K} -f using maximum likelihood
methods with N ~ (2716)72 = 232 known plaintext blocks.

8 Methodology

The following procedure was used in order to obtain relations (8), (I2) and (I4):

— Initially, a Linear Approximation Table (LAT) for the S-boxes X and L was
generated, containing for all possible input and output bit-masks the corre-
sponding deviation value. Denoting by I'I and I'O general input and output
bit-masks, and by S(.) an S-box, each entry in the LAT contains

1
LAT[I'I, IO =Pr(I-T'T=S{)-T0) - 3 (19)
for all possible inputs I € Zy56. Only one table is actually needed, because
the X-box is the inverse of the L-box, and for the latter one can swap the
input and output masks to obtain the corresponding linear approximations.
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— The approximation of subkey addition and xor was made separately and then
evaluated together with the approximations for the S-boxes, confirming the
key dependency (for addition). Indeed, the bias decreases if the subkeys do
not exhibit a pattern that allows the expected bit-mask approximation. For
example, the mask My(z) = 02 - z, in the output of an addition operation
with odd-valued key bytes gives zero bias; otherwise, the overall bias is the
one provided by the xor of subkey and the X-box approximations.

— The approach taken for generating linear relations for the PHT layer was

not exhaustive as was done for the S-boxes. Due to the addition operation
performed in the 2-PHT boxes, it was observed that the most biased linear
relations through the PHT layers would explore preferably the LSB(s) of the
2-PHT because they are least affected by carry bits. Besides, exploring few
LSBs would require less weak-key restrictions. It was decided, arbitrarily,
to concentrate efforts in the two LSBs only of each 2-PHT. A linear hull
approximation was made for the PHT layer, because it was observed that
linking together local (non-zero bias) approximations for the 2-PHT boxes
could sometimes result in linear approximations for the PHT layer with zero
bias. Indeed, some component relations of the linear hull have positive and
others negative deviation with the same absolute value, which can cancel the
effect of each other.
Note that a (basic) linear relation tracks a single (approximation) path bet-
ween input and output bits of a round component. A linear hull [I4] corre-
sponds to a set of linear relations all of which share the same input and output
bit-masks, but each relation takes different paths across the component.

— The next step consisted in combining linear hulls for the (NL+subkey) lay-
ers with others for the PHT layer, in order to generate one-round linear
approximations (hulls). Further, these one-round relations were combined
either on top or at the bottom end of each other, in order to get as long
a linear relation as possible. Such stacking strategy of combining one-round
approximations was based on the idea of the inside-out attack of Wagner
[5]. While constructing the final linear hull an important restriction was
to try to keep the number of active S-boxes as small as possible from one
round to the next, both in order to control the overall bias as well as to
avoid attacking too many subkey bits at both ends of the cipher. For a li-
near relation of bias e, the known-plaintext requirements for an effective
(high success rate) linear attack on 2n-bit block ciphers is N > (€)~2, that
is, € > (V/22)~! = 27" Therefore, an immediate restriction for 64-bit-
block cipher versions is € > 2732, Similarly, for SAFER+, € > 27%4, and for
SAFER-K32, ¢ > 2716,

9 Conclusion

In this paper, SAFER-K32, SAFER-K/-SK and SAFER+ ciphers were analyzed

using non-homomorphic linear cryptanalysis. Table [l summarizes our results.
The algorithm used for our attack uses Matsui’s idea of keeping only the

highest parity counter(s) (say, for the best ten key candidates). The advantage
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Table 1. Linear relations found for the SAFER cipher family

Cipher
SAFER-K32 SAFER-K/-SK SAFER+
# rounds lin. rel. 4.75 3.75 2.75
Bias (weak keys) 2716 2729 2749
Attack type 1.25R 1.25R 1.25R
# subkey bits 48+1 80+1 160+1 1
Time complexity
(parity computation) Q48+2:16 280+2:29 Q160+2-49
Space complexity ~ 232 ~ 2°8 ~ 298

1 That is the worst case, i.e. assuming all the subkeys are independent.

is that we do not need to keep separate counters for each key candidate. But, on
the other hand, we need to store all the plaintext samples (therefore our space
requirement: N &~ ¢~ 2).

The 3.75 round linear relation () found for SAFER-K/-SK does not cont-
radict the results in [3] (the 1.5 round relation (1)) because the former is non-
homomorphic. Besides, the non-homomorphicity of linear relations (8)—(Id) cau-
sed them to be key-dependent for the bit-mask approximations to hold, while ()
is key-independent. Another interesting observation is that relation (B) actually
holds for any of the 128 possible S-box generators (of GF(257)), not only for 45
as used in SAFER-K/-SK and SAFER+. That is because, only few approxima-
tions are actually used, namely, the ones which explore the two LSB’s in both
the input and output masks. Therefore, changing the S-boxes’ generator would
not help protect these ciphers against our particular linear attack.

Nonetheless, our relation (I4) is only valid for SAFER-K32 with generator
g = 11. For the other seven possible generators of GF(17) the linear relation
() does not hold.

Table 2] compares the current analysis to other attacks on SAFER-K64. We
conclude that the attack based on truncated differentials by Wu et al. [7] (which
improves the original attack by Knudsen and Berson [17]) is still the best shortcut
attack on SAFER-K64. Moreover, while differential attacks are typically chosen
plaintext attacks, they can be converted to known plaintext attacks (see Biham
and Shamir [6, p. 31]).

Theoretically it was predicted that for five rounds one key in 1024 is ‘weak’
(restrictions (@)), which means that the relation (8) with theoretical bias 2737 can
actually be used, restricted to weak keys, with bias 272°. Nonetheless, practical
implementations of the attack show that only one out of eight keys is actually
weak (only three of the subkey bits K3, K§, K2, at the beginning and end of the
linear hull need to have a certain bit-pattern). This may be another consequence
of the linear-hull effect.



Linear Cryptanalysis of the SAFER Block Cipher Family 259

Table 2. Plaintext requirements of DC attacks by Knudsen—Berson (KB) and Wu,
Boa, Deng and Ye (WBDY) and LC attacks on SAFER-K64

|[Differential (chosen/known texts)[[ Linear (known texts) |

#rounds|| KB [17] WBDY [7] Harpes [3]| this paper
chosen chosen known (weak keys)
2 _ - - ~ 152 ~ 25t
3 o o o (> 264) ~ 212 i
4 — — — — ~ 228§
5 ~ 045 ~ 938 ~ 951 _ ~ 958
6 (> 264) ~ 253 ~ 259 o (> 264)
7 — (>25%) | (>2%) — —

1 Any homomorphic-only approximation can be used here
1 This approximation comes from the first 1.75 rounds of relation (8]
§ This approximation comes from the first 2.75 rounds of relation (8]

The main conclusion however is that, while the analysis of Harpes et al.
could be improved, linear cryptanalysis does not seem a serious threat, even to
SAFER-K64 with its nominal number of rounds.

The main contribution of this paper towards better block cipher design is the
issue of key-dependency in linear cryptanalysis, through non-homomorphic bit-
masks. This improved on previous linear attacks on all SAFER family members
by specifying linear relations valid for particular key classes; this analysis can
have the same effect on other similar designs.
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A Ciphertext-Only Attack

In all previous linear attacks we did not make any assumption on the plaintext
distribution. In many cases the plaintext consists (mostly) of printable ASCII
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characters, that is, characters with values between 20, and 7E,. Matsui deve-
loped for this case a ciphertext only attack on DES with a reduced number of
rounds [18]. For SAFER-K/SK, there exist linear hulls which allow for a 3-round
ciphertext-only attack when the most significant bit of all plaintext bytes are
equal to zero. One such hull with 2.25 rounds and S = 2 is

(0000000000000080% , 0200000000000000% , 2~ %) (one-round) (20)
(02000000000000005 , 0202020202020202x , 2~Y) (one round)
(0202020202020202x ,0202020202020202x , 2~°) (subkey quarter-round)

which has bias € = 2718, The key dependency conditions for the validity of (20
in a 0.75R attack on three rounds of SAFER-K/-SK are

The actual bias of (1) is therefore e = 2713.

Let Py, ..., Ps denote the plaintext bytes, D1, ... , Dg the result of applying
the inverse of the (unkeyed) PHT layer to the ciphertext bytes, and X(.) and
L(.) the S-boxes. We use the following linear relation based on (20):

Py-80@ L(D1BKY) 020 X (Dy @ Ki) - 020 (22)
X(D3 @ K§)-02® L(Dy B Kg) - 020
L(Ds BK§)-02® X (Dg @ K§)-02@
X(Dr@ Kl)-02@ L(DsBK§)-020 = K; - T'K; .

If the plaintext is composed mostly of ASCII characters then equation (22)
reduces to

L(D;BK})-02® X(Dy ® KZ) - 020 (23)
X (D3 ® K3)-02® L(Ds B K¢§) - 026
L(DsBK§)-02@® X(Dg @ K§)-02@
X(D; @ K)-02@ L(DsBK§)-020 = K; - I'K; .

keeping the same bias €4 = 27!3 because Ps - 80 = 0 has bias €5 = 271.

The actual plaintext does not need to be composed of ASCII only characters,
like in .HTML files. Some experiments show that even .JPG, .MP3, and WAV
files contain some small bias in the most significant bit of each byte, like e5 =
2710: combined with the bias of (Z0) this results in a linear hull with bias €4 =
2722 requiring about N = 244 ciphertext (only) blocks. Note that some popular
(UNIX) file compression utilities like “compress” and “gzip” can destroy the
redundancy of the MSB byte in ASCII files, but apparently they cannot destroy
the bias of .JPG, .MP3 or .WAV files. Other possible biased distributions of
(combinations of) plaintext bits can also be explored, that is, there is no need
to consider only the most significant bit.
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