Statistical Analysis of the Alleged RC4
Keystream Generator

Scott R. Fluhrer and David A. McGrew

Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
{sfluhrer, mcgrew}@cisco.com

Abstract. The alleged RC4 keystream generator is examined, and a
method of explicitly computing digraph probabilities is given. Using this
method, we demonstrate a method for distinguishing 8-bit RC4 from
randomness. Our method requires less keystream output than currently
published attacks, requiring only 23°-¢ bytes of output. In addition, we
observe that an attacker can, on occasion, determine portions of the in-
ternal state with nontrivial probability. However, we are currently unable
to extend this observation to a full attack.

1 Introduction

We show an algorithm for deriving the exact probability of a digraph in the
output of the alleged RC4 stream cipher. This algorithm has a running time
of approximately 26, where n is the number of bits in a single output. Using
the computed probabilities of each digraph for the case that n = 5, we discern
which digraphs have probabilities furthest from the value expected from a uni-
form random distribution of digraphs. Extrapolating this knowledge, we show
how to distinguish the output of the alleged RC4 cipher with n = 8 from ran-
domness with 23%-6 outputs. This result improves on the best known method
of distinguishing that cipher from a truly random source. In addition, heuristic
arguments about the cause of the observed anomalies in the digraph distribution
are offered.

The irregularities in the digraph distribution that we observed allow the
recovery of n and ¢ parameters (defined in Section B)) if the attacker happens not
to know them. Also, an attacker can use this information in a ciphertext-only
attack, to reduce the uncertainty in a highly redundant unknown plaintext.

We also observe how an attacker can learn, with nontrivial probability, the
value of some internal variables at certain points by observing large portions of
the keystream. We are unable to derive the entire state from this observation,
though with more study, this insight might lead to an exploitable weakness in
the cipher.

This paper is structured as follows. In Section] the alleged RC4 cipher is
described, and previous analysis and results are summarized. Section [presents
our analysis of that cipher, and Section @l investigates the mechanisms behind the

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 19-B0] 2001.
© Springer-Verlag Berlin Heidelberg 2001

20 S.R. Fluhrer and D.A. McGrew

statistical anomalies that we observe in that cipher. Section[f] examines fortuitous
states, which allow the attacker to deduce parts of the internal state. In Section
[l extensions of our analysis and directions for future work are discussed. Section
[(lsummarizes our conclusions. Lastly, the Appendix summarizes the results from
information theory that are needed to put a strong bound the effectiveness of
tests based on the statistical anomalies, and presents those bounds for our work
and for previous work.

2 Description of the Alleged RC4 Cipher and Other
Work

The alleged RC4 keystream generator is an algorithm for generating an arbitra-
rily long pseudorandom sequence based on a variable length key. The pseudoran-
dom sequence is conjectured to be cryptographically secure for use in a stream
cipher. The algorithm is parameterized by the number of bits n within a per-
mutation element, which is also the number of bits that are output by a single
iteration of the next state function of the cipher. The value of n = 8 is of greatest
interest, as this is the value used by all known RC4 applications.

The RC4 keystream generator was created by RSA Data Security, Inc. [6].
An anonymous source claimed to have reverse-engineered this algorithm, and
published an alleged specification of it in 1994 [8]. Although public confirmation
of the validity of this specification is still lacking, we abbreviate the name ‘alleged
RC4’ to ‘RC4’ in the remainder of this paper. We also denote n-bit RC4 as
RC4/n.

A summary of the RC4 operations is given in Table 1. Note that in this table,
and throughout this paper, all additions and increments are done modulo 2™.

Table 1. The RC4 next state function. ¢ and j are elements of ZZ/2", and S is a
permutation of integers between zero and 2" — 1. All increments and sums are modulo
2",

Increment ¢ by 1
Increment j by S[i]
Swap S[i] and S[j]
Output S[S[z] + S[j]]

W=

2.1 Previous Analysis of RC4

The best previously known result for distinguishing the output of RC4 from
that of a truly random source was found by Goli¢ [3]2], who presents a stati-
stical defect that he estimates will allow an attacker to distinguish RC4/8 from
randomness with approximately 249 successive outputs. However, this result ap-
pears to be somewhat optimistic. We use the information theoretic lower bound

Statistical Analysis of the Alleged RC4 Keystream Generator 21

on the number of bytes needed to distinguish RC4 from randomness, for a given
statistical anomaly, and use this to measure the effectiveness of Goli¢’s anomaly
and our own anomalies (see the Appendix). The number of bytes of RC4/8 ou-
tput needed to reduce the false positive and false negative rates to 10% is 2447,
using Goli¢’s anomaly, while the irregularities in the digraph distribution that
we found require just 2396 bytes to achieve the same result.

Mister and Tavares analyzed the cycle structure of RC4 [5]. They observe
that the state of the permutation can be recovered, given a significant fraction
of the full keystream. In addition, they also present a backtracking algorithm
that can recover the permutation from a short keystream output. Their analyses
are supported by experimental results on RC4/n for n < 6, and show that an
RC4/5 secret key can be recovered after only 242 steps, though the nominal key
size is about 160 bits.

Knudsen et. al. presented attacks on weakened versions of RC4 [4]. The wea-
kened RC4 variants that they studied change their internal state less often than
does RC4, though they change it in a similar way. Their basic attack backtracks
through the internal state, guessing values of table entries that have not yet been
observed, and backtracking upon contradictions. They present several variants
of their attack, and analyze its runtime. They estimate that the complexity of
their attack is less than the square root of the number of possible RC4 states.

3 Analysis of Digraph Probabilities

The probability with which each digraph (that is, each successive pair of n-bit
outputs) will appear in the output of RC4 is directly computable, given some
reasonable assumptions. The probability of each digraph for each value of the 4
index is also computable. By taking advantage of the information on ¢, rather
than averaging over all values of ¢ and allowing some of the detail about the
statistical anomalies to wash away, it is possible to more effectively distinguish
RC4 from randomness.

To simplify analysis, we idealize the key set up phase. We assume that the
key setup will generate each possible permutation with equal probability, and
will assign all possible values to j with equal probability. Then, after any fixed
N steps, all states of j and the permutation will still have equally probability,
because the next state function is invertible. This is an idealization; the actual
RC4 key setup will initialize j to zero. Also, the RC4 key setup routine generates
only 2™ different permutations, where n is the number of bits in the key, while
there are 2"! possible permutations. Intuitively, our idealization becomes a close
approximation of the internal state after RC4 runs for a short period of time.

However, we leave in the assumption that the 7 pointer is initially zero after
the key setup phase. Note that, since each step changes i in a predictable manner,
the attacker can assume knowledge of the ¢ pointer for each output.

We compute the exact digraph probabilities, under the assumptions given
above, by counting the number of internal states consistent with each digraph.
This approach works with RC4 because only a limited amount of the unknown

22 S.R. Fluhrer and D.A. McGrew

internal state actually affects each output, though the total amount of internal
state is quite large.

Starting at step 4 of Table 1, we look at what controls the two successive
outputs. The exhaustive list of everything on which those two outputs depend
on is given in Table 2.

Table 2. The variables that control two successive outputs of RC4 and the cryptana-
lyst’s knowledge of them.

Variable Cryptanalyst’s knowledge
i known (increments regularly)
i unknown

Sli] unknown

STj] unknown

S[S[i] + S[J]] known (first output)
Slt+1] unknown

Sy + Sl + 1]] unknown
Sli+Sli+1]]ifi+1=S[i+1]+ S[j+ S +1]]] known (second output)
Sli+1] if j + S[i + 1] = S[i + 1] + S[j + S[i + 1]

S[S[i + 1] + S[j + S[i + 1]]] otherwise

As the next-state algorithm progresses, for each successive unknown value,
any value that is consistent with the previously seen states is equally probable.
Thus the probability of a digraph (a, b) for a particular value of ¢ can be found
by stepping through all possible values of all other variables, and counting the
number of times that each output is consistent with the fixed values of i,a,
and b. The consistency of a set of values is determined by the fact that S is
a permutation. Because the start states were considered equally probable, this
immediately gives us the exact value of the probability of 4, (a,b). This approach
requires about 25" operations to compute the probability of a single digraph, for
a given value of 4, as there are five n-bit unknowns in Table 2. Approximately 257
operations are required to compute the probabilities of a digraph for all values
of i. This puts the most interesting case of n = 8 out of immediate reach, with a
computational cost of 264 operations. However, we circumvented this difficulty
by computing the exact n = 3,4,5 digraph distributions for all i, observing
which digraphs have anomalous probabilities, and estimating the probabilities
of the anomalous digraphs for RC4/8. This method is described in the next two
subsections.

3.1 Anomalous RC4 Outputs

The full digraph distributions for n = 3,4, and 5 are computable with about 24°
operations. We computed these, and found that the distributions were signifi-
cantly different from a uniform distribution. In addition, there is a consistency
(across different values of n) to the irregularities in the digraph probabilities. In

Statistical Analysis of the Alleged RC4 Keystream Generator 23

particular, one type of digraph is more probable than expected by a factor of
approximately 1 4 27"+, seven types of digraphs are more probable than ex-
pected by approximately 1 + 27", and three types of digraphs are less probable
than expected by approximately 1+27". These results are summarized in Table
3.

Table 3. Positive and negative events. Here, ¢ is the value of the index when the first
symbol of the digraph the output. The top eight digraphs are in the set of positive
events, and the bottom three digraphs are in the set of negative events, as defined in
Section [B:I] The probabilities are approximate.

Digraph Value(s) of ¢ Probability
(0,0) i=1 277" (1+27"TT)
(0,0) i#£1,2" 1 277" (14277
(0,1) i#£0,1 27714277
(G+1,2" - 1) i £ 2" —2 277 (1+27")
(2" —1,i+1) i#1,2" —2 277" (14277
(2" —1,i+2) i #0,2" —1,2" —2,2" —3[27 (1 +27")
(2" —1,0) i=2" -2 277 (1+27")
2" —1,1) i=2" -1 277 (14277
(2" —1,2) i=0,1 27714277
@ T+1,2" T +1) i=2 27 (14277
(2" —1,2" —1) i£2" —2 27 (1 —27")
(0,i+1) i#£0,2" -1 277 (1 —27")

We call the event that a digraph appears in the RC4 output at a given value
of i a positive event when it is significantly more probable than expected. A
negative event is similarly defined to be the appearance of a digraph at a given
1 that is significantly less probable than expected. An exhaustive list of positive
and negative events is provided in Table 3.

In Section f] we examine these particular digraphs to see why they are more
or less likely than expected. Most of the positive events correspond to length
2 fortuitous states, which will be defined in Section[H. For the (0,1) and (0,0)
positive events, and the negative events, a more complicated mechanism occurs,
which is discussed in the next section.

3.2 Extrapolating to Higher Values of n

To apply our attack to higher values of n without directly computing the di-
graph probabilities, we computed the probabilities of positive events and nega-
tive events by running RC4/8 with several randomly selected keys and counting
the occurances of those events in the RC4 output. The observed probabilities
(derived using RC4/8 with 10 starting keys for a length of 23® for each key),
along with the computed expected probability from a truly random sequence,
are given in Table 4. It is possible to distinguish between these two probability

24 S.R. Fluhrer and D.A. McGrew

distributions with a 10% false positive and false negative rate by observing 23°-6
successive outputs using the data in Table 3 (see the Appendix).

Table 4. Comparison of event probabilities between RC4/8 and a random keystream.
The listed probabilities are the probability that two successive outputs are the specified
event

Positive Events|Negative Events
RC4/8 0.00007630 0.00003022
Random| 0.00007600 0.00003034

In order to evaluate the effectiveness of our ‘extrapolation’ approach, we
compute the amount of keystream needed using a test based on our observed
positive and negative events, and compare that to the best possible test using
the exact probabilities. For RC4/5 our selected positive/negative events require
218.76 keystream outputs, while the optimal test using the exact probabilities of
all digraphs requires 2'8:62 keystream outputs. These numbers agree to within a
small factor, suggesting that the extrapolation approach is close to optimal.

4 Understanding the Statistical Anomalies

In this section we analyze the next state function of RC4 and show mechanisms
that cause the increased (or decreased) likelihood of some of the anomalous
digraphs. The figures below show the internal state of RC4 immediately before
state 4 in Table 1 of the first output of the digraph. The bottom line shows
the state of the permutation. Those permutation elements with a specific value
are labeled with that value. Elements that are of unspecified value are labeled
with the ‘wildcard’ symbol . Ellipsis indicate unspecified numbers of unspecified
elements, and elements separated by ellipsis may actually be in opposite order
within the permutation. The elements pointed to by ¢ and j are indicated by the
¢ and j symbols appearing above them.

The mechanism that leads to the (0,1) digraph starts in the state

i J

*, .00, %, 1,0, %, ..., %, AA, %, ... where AA =i.

Following through the steps in the next-state function, the first output will
be 0, and at the following step 4, be in the state

i J

vk 1L AA R, Lk, 0, K, L
and output an 1. This mechanism occurs approximately 273" of the time, and
since other mechanisms output a (0,1) 272" of the time, this accounts for the
observed increase over expected.

For the (0,0) positive events, the additional mechanism starts with the fol-
lowing state:

i J

%, ..., % AA 0, %, ..., %, BB, *, ... where AA=7+4+1—jand BB = .

*,

Statistical Analysis of the Alleged RC4 Keystream Generator 25

The negative events, on the other hand, correspond to mechanisms that normally
contribute to the expected output which do not work in those particular cases.
For example, a normal method of producing a repeated digraph (4AA, AA) il
i
*, ...k, BB, -1, %, ..., %, AA, %, ...
Here the value AA occurs at location BB — 1. This outputs an AA, and steps
into the state:
j i

%, ..., % -1, BB, *, ..., %, AA, x, ...
This will output another AA, unless AA happens to be either BB or —1. In either
case, this will output a BB. Since normal (AA, AA) pairs rely on this to achieve a
near-expected rate, the lack of this mechanism for (—1, —1) prevents the output
once every approximately 273" outputs, which accounts for the reduction of
approximately a factor of 27 that we observe.

These mechanisms do not depend on the value of n, and so can be expected
to operate in the n = 8 case. This supports our extrapolation approach, which
assumes that the positive and negative events to still apply in that case.

5 Analysis of Fortuitous States

There are RC4 states in which only N elements of the permutation S are involved
in the next N successive outputs. We call these states fortuitous statedd. Since the
variable i sweeps through the array regularly, it will always index N different
array elements on N successive outputs (for N < 2™). So, the necessary and
sufficient condition for a fortuitous state is that the elements pointed to by j
and pointed to by S[i]+S[j] must come from the set of N array elements indexed
by i.

An example of an N = 3 fortuitous state follows:
i J
*,200, 2, 1, %, %, ...,
1. advance ¢ to 1
2. advance j to 2
3. swap S[1] and S[2]
4. output S[1] = 2

i
*, 2,255, 1, %, %, ...,
1. advance 7 to 2
2. advance j to 1
3. swap S[2] and S[1]
4. output S[1] = 255

! The symbol -1 is used as shorthand for 2" — 1 here and throughout the paper.
2 Observing such a state is fortuitous for a cryptanalyst.

26 S.R. Fluhrer and D.A. McGrew

Jjoi
%, 250, 2, 1, %, %, ...,
. advance i to 3
. advance j to 2
. swap S[3] and S[2]
. output S[3] = 2

W N

j i
%, 250, 1,2, %, %, ...,

If i = 0 at the first step, and assuming that all permutations and settings for j
are equally probable, then the above initial conditions will hold with probability
1/(256 - 256 - 255 - 254). When the initial conditions hold, the output sequence
will always be (2,255,2). If RC4 outputs all trigraphs with equal probability
(the results in our previous section imply that it doesn’t, but we will use that as
an approximation), the sequence (2,255,2) will occur at ¢ = 0 with probability
1/(256 - 256 - 256). This implies that, when the output is the sequence (2, 255, 2)
when ¢ = 0, then this scenario caused that output approximately 1/253 of the
time. In other words, if the attacker sees, at offset 0, the sequence (2,255,2), he
can guess that j was initially 3, and S[1], S[2], S[3] was initially 255, 2 and 1,
and be right a nontrivial portion of the time.

The number of fortuitous states can be found using a state-counting algo-
rithm similar to that given above. The numbers of such states, for small NV, are
given in Table 5. The table lists, for each N, the number of fortuitous states
that exist of that length, the logarithm (base 2) of the expected time between
occurrances of any fortuitous state of that length, and the expected number wit-
hin that length of false hits. By false hit, we mean those output patterns that
have identical patterns as a fortuitous state, but are not caused by a fortuitous
state. For example, an attacker can expect to see, in a keystream of length 2352,
one fortuitous state of length 4 and 250 output patterns that look like fortuitous
states.

Table 5. The number of fortuitous states for RC4/8, their expected occurrance rates,
and their expected false hit rates.

Length|Number|Lg(Expected)| Expected False Hits
2 516 22.9 255
3 290 31.8 253
4 6540 35.2 250
5 25,419 41.3 246
6 101,819 47.2 241

It is not immediately clear how an attacker can use this information. What
saves RC4 from an immediate break is that the state space is so huge that an
attacker who directly guess 56 bits (which is approximately what you get with
a length 6 fortuitous pattern) still has so many bits unguessed that there is

Statistical Analysis of the Alleged RC4 Keystream Generator 27

no obvious way to proceed. However, it does appear to be a weakness that the
attacker can guess significant portions of internal state at times with nontrivial
probability.

It may be possible to improve the backtracking approaches to deriving RC4
state [5l4] using fortuitous states. For example, a backtracking algorithm can
be started at the keystream location immediately after a fortuitous state, using
the values of the internal state that are suggested by that state. This approach
extends slightly the attack using ‘special streams’ presented in Section 4.3 of [4].

6 Directions for Future Work

Some extensions of our current work are possible. One direct extension is to
compute the exact digraph probabilities for the case that n = 8, and other
cases for n > 5. Since RC4/n is actually a complex combinatorial object, it
may happen that the results for these cases are significantly different than what
might be expected.

Another worthwhile direction is to investigate the statistics of trigraphs (that
is, the three consecutive output symbols). The exact trigraph probabilities can
be computed using an algorithm similar to that outlined in Section Bl The com-
putational cost to compute the complete trigraph distribution, for all 4, is 2117,
We have computed this for RC4/4, and found that the length of outputs required
to distinguish that cipher from randomness using trigraphs is about one-seventh
that required when using digraphs. This result is encouraging, though it does
not guarantee that trigraph statistics will be equally as effective for larger values
of n. It must be considered that with n = 4, there are only 2* = 16 entries in
the table S, and that three consecutive output symbols typically uses half of the
state in this cipher.

The computational cost of computing the complete trigraph distribution mo-
tivates the consideration of lagged digraphs, that is, two symbols of fixed value
separated by some symbols of non-fixed value. We call the number of interve-
ning symbols of non-fixed value the lag. For example, adapting the notation used
above, (1,%,2) is a lag one digraph with initial value 1 and final value 2. Here
we use the ‘wildcard’ symbol * to indicate that the middle symbol can take on
any possible value. Lagged digraphs are far easier to compute than trigraphs,
because it is not necessary to individually count the states that are used only
to determine the middle symbols. In general, the computational effort to com-
pute the distribution of RC4/n lag L digraphs, for all ¢, requires about 2(8+L)n
operations.

Another approach to computing a digraph probability is to list the possible
situations that can occur within the RC4 cipher when producing that digraph,
generate the equations that must hold among the internal elements, and use
algebraic means to enumerate the solutions to those equations. The number of
solutions corresponds to the number of states that lead to that digraph. This
approach could lead to a method to compute the exact digraph probability in a
time independent of n.

28 S.R. Fluhrer and D.A. McGrew

Another direction would be to eliminate some of the assumptions made in our
analysis. For example, the assumption that S and j are uniformly random is false,
and it is especially wrong immediately after key setup. In particular, j is initially
set to zero during the key setup. We venture that an analysis of fortuitous states
that takes the key setup into consideration may lead to a method for deriving
some information about the secret key.

7 Conclusions

We presented a method for computing exact digraph probabilities for RC4/n un-
der reasonable assumptions, used this method to compute the exact distributions
for small n, observed consistency in the digraph statistics across all values of n,
and presented a simple method to extrapolate our knowledge to higher values of
n. The minimum amount of RC4 output needed to distinguish that cipher from
randomness was derived using information theoretic bounds, and this method
was used to compare the effectiveness of our attack to those in the literature.
Our methods provide the best known way to distinguish RC4/8, requiring only
2306 hytes of output.

While we cannot extend either attack to find the original key or the ent-
ire internal state of the cipher, further research may be able to extend these
observations into an attack that is more efficient than exhaustive search.

Appendix: Information Theoretic Bounds on
Distinguishing RC4 from Randomness

Information theory provides a lower bound on the number of outputs that are
needed to distinguish RC4 output from a truly random sequence. We derive this
bound for the case that with false positive and false negative rates of 10%, for
our results and for those in the literature.

Following [I], we define the discrimination L(p,q) between two probability
distributions p and ¢ as L(p,q) = > ,p(s)lg 58, where the sum is over all
of the states in the distributions. The discrimination is the expected value of
the log-likelihood ratio (with respect to the distribution p), and can be used to
provide bounds on the effectiveness of hypothesis testing. A useful fact about
discrimination is that in the case that [independent observations are made
from the same set of states, the total discrimination is equal to [times the
discrimination of a single observation.

We consider a test 7 that predicts (with some likelihood of success) whether
or not a particular input string of [symbols, each of which is in ZZ/2", was
generated by n-bit RC4 or by a truly random process. If the input string was
generated by RC4, the test T returns a ‘yes’ with probability 1 — 3. If the
input string was generated by a truly random process, then 7 returns ‘no’ with
probability 1 — «. In other words, « is the false positive rate, and 3 is the
false negative rate. These rates can be related to the discrimination between

Statistical Analysis of the Alleged RC4 Keystream Generator 29

the probability distribution p, generated by a truly random process and the
distribution prc4 generated by n-bit RC4 (with a randomly selected key), where
the distributions are over all possible input strings. From [1], the discrimination
is related to « and (8 by the inequality

L(pr,prca) > Blg b +(1-0)lg

1-0
1—« a

(1)

Equality can be met by using an information-theoretic optimal test, such as
a Neyman-Pearson test [[1]. We expect our cryptanalyst to use such a test, and
we regard Equation [I] as an equality, though the implementation of such tests
are outside the scope of this paper.

Applying this result to use the RC4 digraph distribution p from the uniform
random distribution ¢,

_ —2n 1 _ ﬁ _ 1_ﬁ
L(¢,p)—ld€ZD2 e g AT TA-Ak—— @

where D is the set of digraphs, and p(d) is the probability of digraph d with
respect to the distribution p. Solving this equation for [, we get the number of
RC4 outputs needed to distinguish that cipher.

To distinguish RC4 from randomness in the case that we only know the pro-
babilities of the positive and negative events defined in Section B.1], we consider
only the states IV, P and @, where N is the occurrance of negative event, P
is the occurrance of a positive event, and @ is the occurrance of any digraph
that is neither a positive nor negative event. Then the discrimination is given
by Equation [, where the sum is over these three states. Solving this equation
for the number [of outputs ,with &« = 8 = 0.1 and the data from Table 4 gives
930.6

The linear model of RC4 derived by Goli¢ demonstrates a bias in RC4/8 with
correlation coefficient 3.05x 10~7 [32]. In other words, an event that occurs after
each symbol output with probability 0.5 + 1.52 - 1077 in a keystream generated
by RC4, and with probability 0.5 in a keystream generated by a truly random
source. Using Equation [l with o = 3 = 0.1, we find that at least 2447 bytes are
required.

References

1. Blahut, R., ”Principles and Practice of Information Theory”, Addison-Wesley,
1983.

2. Golié, J., ” Linear Models for a Time-Variant Permutation Generator”, IEEE Trans-
actions on Information Theory, vol. 45, No. 7, pp. 2374-2382, Nov. 1999

3. Goli¢, J., "Linear Statistical Weakness of Alleged RC4 Keystream Generator”,
Proceedings of EUROCRYPT ’97, Springer-Verlag.

4. Knudsen, L., Meier, W., Preneel, B., Rijmen, V., and Verdoolaege, S., “Analysis
Methods for (Alleged) RC4”, Proceedings of ASTACRYPT ’99, Springer-Verlag.

30

S.R. Fluhrer and D.A. McGrew

Mister, S. and Tavares, S., “Cryptanalysis of RC4-like Ciphers”, in the Workshop
Record of the Workshop on Selected Areas in Cryptography (SAC ’98), Aug. 17-18,
1998, pp. 136-148.

Rivest, R., ”The RC4 encryption algorithm”, RSA Data Security, Inc, Mar. 1992
RSA Laboratories FAQ, Question 3.6.3, http://www.rsasecurity.com/rsalabs/faq/
3-6-3.html.

Schneier, B., “Applied Cryptography”, New York: Wiley, 1996.

	Introduction
	Description of the Alleged RC4 Cipher and Other Work
	Previous Analysis of RC4

	Analysis of Digraph Probabilities
	Anomalous RC4 Outputs
	Extrapolating to Higher Values of n

	Understanding the Statistical Anomalies
	Analysis of Fortuitous States
	Directions for Future Work
	Conclusions

