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Abstract. General problems and difficulties are discussed which have
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formulated which appropriate online tests should fulfill. Then we propose
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1 Introduction

Random numbers play an important role in many cryptographic applications.
Random numbers are used, for instance, to generate random session keys, signa-
ture parameters and challenges for challenge-response protocols and zero knowl-
edge proofs. Roughly speaking, the class of random number generators can be
divided in three subclasses. First, there are true (physical) random number gener-
ators. Usually, an analog signal generated by a physical noise source is digitalized
after uniform time intervals, e.g. by a comparator. Many true random number
generators use a mathematical follow-up-treatment, i.e. an algorithm applied on
the digitalized analog signals. The goal of a mathematical follow-up treatment
is to reduce or at least to mask weaknesses of the digitalized analog signals.
In contrast, pseudorandom number generators derive (pseudo-)random numbers
deterministically from a randomly chosen seed. Pseudorandom number genera-
tors are very cheap as they merely require some additional lines of code. Their
drawback is that the whole entropy is “contained” in the seed. Finally, there
are “mixed” generators which derive random numbers from user’s interaction
(mouse movement or key strokes) or register values of the used PC.

In the following we restrict our attention to true random number generators
(TRNGs). We denote the digitalized analog signals as das-random numbers and
the values after the mathematical follow-up treatment has been applied on as
internal random numbers. Upon an external call the TRNG outputs internal
random numbers.

Obviously, non-appropriate randomnumbers canweaken strong cryptographic
mechanisms considerably. To assess a TRNG a mathematical model of the physi-
cal noise source should be evaluated and analyzed, and suitable (that is, suitable
with respect to the mathematical model) statistical tests should be applied on
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the das-random numbers generated by some TRNGs prototypes. A lot of re-
search work has been devoted to the generation of good physical noise sources
and the determination of suitable statistical tests ([2], [10], [12] etc.).

Tolerances of the components of the random noise sources may cause that
a particular TRNG produces worse das-random numbers than the carefully in-
vestigated prototypes. Further, ageing of these components may also affect the
statistical quality of the generated das-random numbers. As a consequence sta-
tistical tests (“online tests”) have to be executed while the TRNG is in operation
to ensure that the generated random numbers are appropriate. Especially, if the
TRNG is integrated in a smart card online tests should run fast, require only
few lines of additional code and little memory.

Section 2 considers the question whether the das-random numbers or the
internal random numbers should be tested and in Sect. 3 general demands are
formulated which online tests should fulfill. In Sect. 4 we briefly discuss the
drawbacks of a widely used online test. In Sects. 5 – 9 a new online test procedure
is described, analyzed and illustrated at two examples. The paper ends with final
remarks.

2 Which Random Numbers Should Be Tested?

If there is no mathematical follow-up treatment the das-random numbers co-
incide with the internal random numbers. Otherwise, the online tests can be
applied on the das-random numbers or, alternatively, to the internal random
numbers.

For many cryptographic applications it is inevitable that random numbers
cannot be determined or guessed with a reasonable probability, even if prede-
cessors or successors are known. Pseudorandom number generators rely on the
complexity of their algorithms which shall ensure practical security (see, e.g. [1]).
For TRNGs the situation is much more comfortable as the total entropy of a
das-random number sequence increases per generated das-random number. If the
increase of entropy is sufficiently large, this ensures theoretical security. (Clearly,
a lucky attacker could guess a randomly chosen session key, for instance, but if
the key length is sufficiently large his success probability is negligible.)

Hence it is desirable to control the increase of entropy. Unfortunately, entropy
is not a function of random numbers but of random variables. In the following
we will interpret das-random numbers as values assumed by random variables
whose distribution usually is at least not exactly known. We use statistical tests
to compare das-random number sequences with sequences generated by ideal
random number generators.

Remark 1. In [3] a variant of Maurer’s “universal” statistical test (cf. [11], [4]) is
introduced. Its test value is closely related to the entropy per bit block provided
that the bits were generated by a stationary binary random source with finite
memory. If this is not the case, however, as for Maurer’s test the test value need
not yield a reliable estimate of the entropy. For pseudorandom bits generated
by a linear feedback shift register, for example, the increase of entropy per bit
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equals zero whereas the test value “suggests” a considerable amount of entropy
per bit block. Moreover, as Maurer’s test it requires a lot of memory and gigantic
sample sizes. Hence both tests are not suitable as online tests but may be used
for the investigation of TRNG prototypes.

Example 1. Let the TRNG produce binary das-random numbers and let a linear
feedback shift register of length 63 with primitive feedback polynomial be syn-
chronized with the digitalization of the analog noise signal. In each time step the
feedback shift register delivers an internal random number (a single bit). The
actually generated das-random number is XOR-ed to the feedback value and the
sum is fed back into the shift register.

For each initial value of the feedback shift register this mathematical follow-
up treatment is a one-to-one mapping and thus cannot increase the average
entropy per bit. Statistical weaknesses of the das-random numbers are not re-
duced but only transferred into others. If, for example, the das-random numbers
are independent but not equidistributed (i.e., if the probability for “0” is not
0.5) the internal random numbers are essentially equidistributed but dependent.
Unless its linear complexity profile is tested applying statistical tests on the in-
ternal random number sequence will presumably even not detect the worst case,
i.e. if the physical noise source has totally broken down. In fact, after this mo-
ment the das-random numbers are constant and the internal random numbers
are generated deterministically.

This brief analysis of Example 1 has revealed an important fact: The internal
random numbers may pass certain statistical tests which the das-random num-
bers do not. However, this does not necessarily imply that the mathematical
follow-up treatment reduces statistical weaknesses of the das-random numbers.
Maybe they are merely masked and transformed into others. An increase of the
entropy per bit can only achieved by a data compression which in turn lowers the
bit rate. (In the simplest case non-overlapping bits are XORed.) Of course, the
das-random numbers may not be equidistributed and there may exist dependen-
cies on preceding das-random numbers but in contrast to the internal random
numbers there will not exist complicated algebraic dependencies. Consequently,
the das-random numbers but not the internal random numbers should be tested,
especially if the TRNG is used for sensitive applications.

3 Which Requirements Should Online Tests Fulfill?

As motivated in the previous section online tests should be applied on das-
random numbers which usually (but not necessarily) are single bits.

Definition 1. A realization of a random variable X is a value assumed by
X. The term iid abbreviates “independent and identically distributed”. We
call a random variable binary if it only assumes the values 0 and 1. A ran-
dom variable X is called equidistributed on a finite set Ω := {ω1, . . . , ωk} if
Prob(X = ωj) = 1/k holds for all j ≤ k. Applying a statistical test on a sample
delivers a numerical value called test value or test statistic.
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Mathematical Model and Definitions. Das-random numbers assume val-
ues in Ωdas (usually, but not necessarily, Ωdas = {0, 1}). We assume that the
das-random numbers are realizations of random variables B1, B2, . . . so that the
test value T̃ itself may be interpreted as a realization of a random variable T ,
the so-called test variable. The distribution of B1, B2, . . . and that of T clearly
depend on the particular TRNG. For an ideal random number generator (a fic-
tion!), of course, the random variables B1, B2, . . . are iid and equidistributed on
Ωdas. To avoid clumsy formulations we call bit sequences generated by an ideal
random number generator ideal sequences. A χ2-distribution with k degrees of
freedom is denoted with χ2k.

We will use statistical tests to compare das-random numbers with ideal se-
quences. To a certain degree statistical deviations of the das-bits from ideal
sequences, however, are tolerable. (Assume, for example, that the das-bits were
realizations of iid random variables B1, B2, . . . with Prob(Bj = 1) = 0.49. Then
the average entropy per das-bit was about 0.9997.) Clearly, “tolerable” essen-
tially depends on the intended applications for which the random numbers shall
used and, to a certain degree, on the mathematical follow-up treatment which
may increase the entropy per random number (cf. Sect. 2). If the statistical prop-
erties of the das-random number sequence deviate too much from that of ideal
sequences the online test should generate a noise alarm. The preceding consider-
ations suggest various requirements which online tests should fulfill. Recall that
due to tolerances of components or ageing effects a TRNG may produce worse
das-random number sequences than the carefully investigated TRNG prototypes.
Clearly, also ideal sequences would occasionally fail statistical tests.

Requirements for online tests.
(R1) An online test has to detect a total breakdown of the noise source very soon.
(R2) An online test should detect non-tolerable statistical weaknesses of the das-
random numbers.
(R3) The probability for a noise alarm should be small if the deviation of the
statistical properties of the das-random numbers from that of ideal sequences is
tolerable.
(R4) An online test should run fast and require only a few lines of code and little
memory.

4 Drawbacks of a Widely Used Online Test
and General Difficulties

In this section we discuss briefly problems of a near-at-hand online test procedure
which is widely used in practice.

Example 2. Let the TRNG generate binary das-random numbers. A FIFO stores
internal random numbers. If the FIFO is full the generated internal random
numbers are neither used nor stored. Upon external request, the FIFO outputs
internal random numbers. Periodically every minute and whenever the FIFO has
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to be refilled n = 320 consecutive das-bits are segmented into 80 non-overlapping
four-bit blocks W̃1 := (B̃1, . . . , B̃4), . . . , W̃80 := (B̃317, . . . , B̃320). On each sample
a χ2-test (or more precisely, a χ2-test for goodness of fit ([7], 69)) is applied. For
this, the W̃j are interpreted as binary representations of four-digit numbers. For
i = 0, . . . , 15 the frequencies fr(i) := |{j ≤ 80 | W̃j = i}| are determined and
finally

T̃ :=
15∑

i=0

(fr(i) − 5)2

5
. (1)

The null hypothesis, i.e. that the tested sample was generated by an ideal noise
source, is rejected if the test value T̃ exceeds 65.0. A rejection of the null hy-
pothesis causes a noise alarm which puts the TRNG out of service. The TRNG
has to pass extensive investigations before it can manually be restarted by an
authorized person.

The system administrator has laid down that there should not occur more
than 0.027 noise alarms per TRNG and year in average if the TRNG produces
tolerable das-random numbers. (The numerical value 0.027 clearly depends on
the concrete application. For other applications, however, smaller values may be
appropriate.) To reach this goal the designer of this online test has chosen the
rejection area (65.0,∞). His considerations were the following: It is reasonable
to assume that each TRNG executes about 530000 χ2-tests per year. If the
das-random numbers were generated by an ideal random number generator the
test variable T was approximately χ215-distributed ([7], 69) and thus Prob(T >
65.0) ≈ 3.4·10−8. This yields an expected number of 0.018 noise alarms per year.
As the das-random numbers generated by the investigated TRNG prototypes did
not reveal serious statistical weaknesses the online test designer expects that the
average number of noise alarms per TRNG and year will not exceed the given
upper bound 0.027 = 1.5 · 0.018.

However, this argumentation is not quite correct. Even for ideal sequences
the test variable T is not exactly but merely approximately χ215-distributed.
In fact, the 4-tuples are multinomially distributed and the exact probability
Prob(T > 65.0) is about 3.8 · 10−7. If X denotes a χ215-distributed random
variable the absolute error |Prob(T > 65.0) − Prob(X > 65.0)| is surely small
but not the relative error

|Prob(T > 65.0) − Prob(X > 65.0)|
Prob(X > 65.0)

≈ 10.1 . (2)

(Note that we use Prob(X > 65.0) as denominator but not Prob(T > 65.0)
because the predictions of the test designer are based on the approximate prob-
ability.) For the scenario described in Example 2 this means that even ideal
random number generators would cause about 11 · 0.018 ≈ 0.2 noise alarms per
year in average; the TRNGs maybe even more. Anyway, this exceeds the upper
bound 0.027 considerably. To avoid this, of course, the test parameter 65.0 could
be increased (e.g. to 75.0). However, as the amount of increase is not based on
a solid computational basis but more or less arbitrary it may happen that even
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serious statistical weaknesses will not be detected. In particular, a strong (data-
compressing and hence throughput-reducing) mathematical follow-up treatment
is absolutely inevitable.

The χ215-approximation may seem to be terribly bad. However, this is not the
case: Note that Prob(T > 30.6) = 0.01025 and Prob(X > 30.6) = 0.00993, for
example, with an relative error of about 0.03. The relative error is maximal at
the tail of the χ215-distribution, i.e. for large rejection boundaries z. Increasing
the sample size (here: 320 bits) reduces the relative error for each fixed value z
(here: for z = 65.0) since the exact distributions converge to the χ215-distribution
as the sample sizes tend to infinity.

However, these considerations point to a serious general problem. In partic-
ular, especially if the sample size of a statistical test is small, one has to be very
careful when using an approximate distribution of the respective test variable at
its tail. To obtain the exact rejection probability for ideal sequences in Example
2 we just had to count the tuples in ({0, 1}4)80 for which the χ2-test value is
≤ 65.0. However, although symmetries were exploited the computational effort
was considerable. For non-ideal sequences it was not practically feasible to decide
whether demand (R2) or (R3), resp., is fulfilled. However, online tests with such
unpleasant properties are widely used in practice. In many cases even for ideal
sequences the exact distribution of the test variable cannot be determined.

5 A New Online Test Procedure

In Sect. 5 we describe a new online test procedure. We will show later that it
meets all requirements formulated in Sect. 3. In Sect. 8 it will be illustrated at
two examples.

Step 1: First, the statistician has to choose a statistical test, the so-called “basis
test”, and to fix its sample size n. This may be a χ2-test or any tests from [7], for
example, provided that the needed memory, the lines of code and the execution
time are acceptable for the used device and the intended applications. Ideally,
the basis test should be chosen with respect to the mathematical model of the
TRNG, or more precisely, of the random variables B1, B2, . . .. (Of course, this
mathematical model should have been confirmed by extensive statistical investi-
gations of some TRNG prototypes. As the choice of the basis test does not affect
the general principle of our online test procedure we will not pursue this topic
in the remainder.) In the following E0(T ) denotes the mean of the test variable
T under the null hypothesis, that is, if the random variables B1, B2, . . . were iid
and equidistributed on Ωdas.

Step 2: With respect to the intended applications minimal requirements on the
distribution of the random variables B1, B2, . . . have to be specified. (Exam-
ple: Based on the mathematical model of the noise source and the evaluation
of TRNG prototypes the test designer concludes that the binary random vari-
ables B1, B2, . . . are Markovian. For the intended applications Prob(Bj = 1) ∈
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[0.48, 0.52] and |Prob(Bj+1 = 1 | Bj = 0) + Prob(Bj+1 = 0 | Bj = 1) − 1| ≤ 0.01
are viewed as sufficient. In particular, it may be reasonable to choose a ba-
sis test which considers the one-step transition frequencies.) Time intervals or
events have to be specified after those a basis test has to be executed, e.g.: al-
ways, one basis test per second, one basis test after an external call for random
numbers, basis tests within the idle time of the device (if the TRNG is part of
a larger cryptographic system) etc. With regard to the intended applications a
reasonable upper bound for the average number of noise alarms within a time
interval (year, month etc.) has to be specified. This upper bound should not be
exceeded for any distribution of the random variables B1, B2, . . . which meets
the minimal requirements specified before. Moreover, the consequences of a noise
alarm have to be laid down, e.g.: The TRNG is put out of service, no further
random numbers are produced till a check of the noise source and / or a manual
restart of the TRNG, or something like that.

Step 3: A test suite consists of at most N basis tests. The basis test values
are denoted with T̃1, T̃2, . . . while H̃0 := E0(T ). In step j ≥ 1 a basis test is
performed, and the basis test value T̃j is determined. Then H̃j := (1−β)H̃j−1+
βT̃j is computed (β � 1) and rounded to a multiple of 2−c where c is a fixed
integer. Moreover, the following decision rules have to be considered:

(A): if T̃j �∈ [r, s] ⇒ noise alarm (3)

(B): if T̃j−k+1, . . . , T̃j �∈ [t, u] ⇒ stop the test suite (4)

(C): if H̃j �∈ [v, w] ⇒ stop the test suite (5)

The parameter r and s should be chosen that a violation of decision crite-
rion (A) is absolutely unlikely unless the random noise source has totally broken
down. Consequently, a violation of decision rule (A) causes a noise alarm. Al-
ternatively, if x consecutive test suites have been stopped due to (B) or (C) this
also causes a noise alarm. Otherwise, after a test suite has been finished (due to
a stop or because N basis tests have been executed) the next test suite begins.

The choice of the parameters n,N, β, c, r, s, k, t, u, v, w and x should consider
the goals formulated in Step 2. Without loss of generality we may assume that the
parameters v and w are multiples of 2−c. We point out that storing and updating
the “history value” H̃j needs no more than integer arithmetic. For this, we set
β := 2−b for a suitable integer b. Before the test suite begins H̃0 := E0(T ) is
rounded to a multiple of 2−c. To update the history value H̃j−1 the actual basis
test value T̃j is rounded to a multiple of 2−c and then

H̃j := ((2b − 1)H̃j−1 + T̃j + 2b−1) >> b (6)

is calculated. (As usually, “>> b” denotes a right shift of b bits.) We point out
that if H̃j is calculated with a floating point arithmetic the basis test value T̃j

need not to be rounded before (cf. Remark 2 in Sect. 7).
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6 Rationale and Advantages
of the New Online Test Procedure

Roughly speaking, statistical results get more reliable the more tests are per-
formed. The value H̃j “contains” the history of the actual test suite up to step j
without storing the test values T̃1, T̃2, . . . , T̃j explicitely. Decision rules (A) and
(B) shall detect a total breakdown of the noise source or if the statistical quality
of the das-random numbers has rapidly become worse, resp. The main task of
decision rule (C), however, is to detect weaknesses in the long-term behaviour.

If the basis test values can be calculated with integer arithmetic (which should
exist anyway) then the whole online test procedure needs no more than integer
arithmetic (cf. Sect. 5). As the evaluation of the decision rules (A), (B) and (C)
requires only little running time, a few extra lines of code and little extra memory
our online test procedure perfectly meets demand (R4). In the worst case decision
rule (A) requires only a few das-random numbers more than the sample size n of
one basis test to detect a total breakdown of the noise source. Hence requirement
(R1) is also fulfilled. In Example 2 we described an online test which is widely
used in practice. Even for ideal random number generators it required enourmous
computational power to determine the expected number of noise alarms within
a particular time interval. For (non-ideal) TRNGs however, the system designer
had almost no control what is going on. For the online test procedure described
in Sect. 5, however, for each parameter set and for each assumed distribution of
the B1, B2, . . . we can at least approximately determine the expected number
of noise alarms within a time interval. That is, we also have control on the
effects of the test procedure if it is applied on non-ideal das-random number
sequences. A suitably chosen parameter set n,N, b (β := 2−b), c, r, s, k, t, u, v, w
and x supports the goals formulated in Step 2 of Sect. 5. Especially, it meets the
requirements (R2) and (R3).

7 Mathematical Background

In this section we determine the average number of test suites until a noise alarm
occurs. As each basis test requires a large number of das-random numbers we
may assume that the test variables

T1, T2, . . . are iid, (7)

regardless of the distribution of the random variables B1, B2, . . . (which may be
dependent!) and the test strategy, i.e whether all das-random numbers are tested
or not (see Sect. 5, Step 2). The distribution of the test variables T1, T2, . . ., of
course, depends essentially on that of B1, B2, . . . , Bn.

The only task of decision rule (A) is to detect an eventual total breakdown
of the noise source. The probability that (A) causes a noise alarm is absolutely
negligible unless the random noise source has indeed totally broken down. We
hence restrict our attention to decision rules (B) and (C). First, we first derive
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a formula to calculate the probability pst for a stop of a test suite. Recall that
the history values H̃1, H̃2, . . . and the parameters v and w are multiples of 2−c.

Let Ỹj denote the largest integer for which T̃
j−Ỹj+1, T̃j−Ỹj+2, . . . , T̃j /∈ [t, u].

(Especially, Ỹj := 0 if Tj ∈ [t, u].) We interpret the numbers Ỹ1, Ỹ2, . . . as realiza-
tions of random variables Y1, Y2, . . .. Due to (7) the random vectors (H0, Y0 :=
0), (H1, Y1), . . . form a homogeneous Markov chain on the infinite state space
{. . . ,−2−c, 0, 2−c, 2 · 2−c . . .} × {0, 1, . . .}. Therefrom we derive a homogeneous
Markov chain Z0, Z1, . . . on the finite state space

Ω =
{
(h, y) | h ∈ [v, w], h is a multiple of 2−c, 0 ≤ y < k

} ∪ {∞}. (8)

In particular, Zj attains the state ∞ if (1 − β)Hm−1 + βTm �∈ [v, w] or Ym = k
for any m ≤ j whereas Zj := (Hj , Yj) else. That is, Zj attains the state ∞ if the
test suite has been stopped till time step j. Especially, ∞ is an absorbing state.
(For the mathematical background of finite Markov chains the interested reader
is referred to [8].)

Next, we determine the transition matrix Q = (qω1,ω2)ω1,ω2∈Ω We point out
that (H̃j−1, H̃j) = (h, h′) for h, h′ ∈ [v, w] iff (1 − β)h+ βT̃j ∈ [h′ − 2−c−1, h′ +
2−c−1), or equivalently, iff T̃j ∈β−1

[
h′ − 2−c−1 −(1 − β)h, h′ + 2−c−1 −(1 − β)h

)
.

Elementary but careful considerations yield the transition matrix

Q = (qω1,ω2)ω1,ω2∈Ω with transition probabilities qω1,ω2 =


Prob (Tj ∈ Ah,h′ ∩ (IR \C)) if ω1 = (h, y), ω2 = (h′, y + 1) and y < k − 1
Prob (Tj ∈ Ah,h′ ∩ C) if ω1 = (h, y), ω2 = (h′, 0)
Prob (Tj ∈ IR \Dh) if ω1 = (h, y), ω2 = ∞ and y < k − 1
Prob (Tj ∈ (IR \Dh) ∪ (IR \C)) if ω1 = (h, k − 1), ω2 = ∞
1 if ω1 = ω2 = ∞
0 else

(9)

where we used the abbreviations

Ah,h′ : = β−1[h′ − 2−c−1 − (1 − β)h, h′ + 2−c−1 − (1 − β)h) ,
C : = [t− 2−c−1, u+ 2−c−1) and
Dh : = β−1[v − 2−c−1 − (1 − β)h,w + 2−c−1 − (1 − β)h) .

Remark 2. If the basis test value T̃j is rounded to a multiple of 2−c before it is
“mixed” with H̃j−1 (cf. end of Sect. 5) in (9) the terms “Prob(Tj ∈ . . .)” should
read “Prob(round(Tj) ∈ . . .)” where round(·) temporarily denotes the round-off
function.

Now let v(ω) denote the column vector with |Ω| components which are all zero ex-
cept the component indexed by ω which equals 1. As Z0 = (H0, Y0) = (E0(T ), 0)
we obtain

pst := Prob(test suite is stopped) = Prob(ZN = ∞) = v t
(E0(T),0)Q

Nv(∞). (10)
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The probability that x particular test suites are stopped is
1 − ∑x

i=1(1 − pst)pi−1
st = 1 − (1 − px

st) = px
st. Wald’s equation ([5], 50) hence

implies

E(#test suites per noise alarm) =
∑x

i=1 i(1 − pst)pi−1
st + xpx

st

px
st

(11)

In the following we denote the distribution of B1, B2, . . . , Bn with ν[n] while
Fν[n](·) denotes the cumulative distribution function of the test variable Ti if the
basis test is applied on B1, . . . , Bn. Especially, µ[n] means that the Bj are iid
and equidistributed on Ωdas (null hypothesis).

To initialize the transition matrix Q we have to know the cumulative dis-
tribution function of Ti. What’s the difference to the situation in Example 2?
Also there the knowledge of Fν[n](65.0) would have solved the main problems.
In particular, one could check whether (R2) and (R3) are fulfilled. As already
mentioned in Sect. 4 even for µ[n] the relative error between the exact cumula-
tive distribution Fµ[n](·) of Ti and that of the χ215-distribution is very large at
the (extreme) tails of both distributions. In the online test procedure described
in Sect. 5, however, the factor β is small and thus even an extremely large single
basis test value T̃j will not influence the history variable H̃j considerably unless
a total breakdown of the noise source has just occurred. For decision rule (C)
the totality of all basis test values up to this moment is essential while the prob-
ability that decision rule (B) stops the actual test suite depends essentially on
1 − (Fν[n](u) − Fν[n](t)) and, of course, on k. We recommend to choose t and u
that for the tolerable distributions ν[n] this probability is ≥ 10−3. In particular,
unlike as in Example 2, for ν[n] = µ[n] the deviation the approximate cumulative
distribution function of Ti from Fµ[n] will not influence pst considerably.

For general ν[n] we may approximate Fν[n] by an empirical cumulative distri-
bution function Fν[n]emp which we derive with a stochastic simulation (see, e.g.
[9], [5]). For this, we need a fast pseudorandom number generator with good sta-
tistical properties. (Unpredictability of the pseudorandom numbers is irrelevant
in this context.) A sound candidate is, for example, the recursive algorithm

xn+1 ≡ axn + 1 (mod 264), with a ≡ 1 (mod 4), a > 248, (12)

a so-called linear congruential generator. Setting vj := xj2−64 yields a sequence
of standard random numbers. The standard random numbers behave similarly
as realizations of iid random variables V1, V2, . . . which are equidistributed on the
unit interval [0, 1). From the standard random numbers one derives a sequence
B̃′
1, B̃

′
2, . . . which is viewed as a realization of B1, B2, . . .. (Example: Let the Bj

be iid binary random variables with Prob(Bj = 1) = 0.48. Then we set B̃′
j := 1 if

vj ≤ 0.48 and B̃′
j := 0 else.) We apply the basis test to B̃′

1, . . . , B̃
′
n and compute

the respective basis test value T̃ ′
1. Repeating this process K times (K ≥ 105) we

obtain an empirical cumulative distribution function Fν[n]emp which we use for
the initialization of the transition matrix Q. Due to Glivenko-Cantelli’s theorem
([6], 145) the absolute value supx∈IR |Fν[n](x) − Fν[n]emp(x)| should be small
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which is essential for decision criterion (C). Concerning decision rule (B), the
relative error |(1 − Fν[n](u) + Fν[n](t)) − (1 − Fν[n]emp(u) + Fν[n]emp(t))|/(1 −
Fν[n]emp(u) + Fν[n]emp(t)) should be small as 1 − Fµ[n](u) − Fµ[n](t) ≥ 10−3 for
typical choices of t and u. To obtain a reliable approximation of 1−Fν[n](65.0) for
the χ2-square test in Example 2, however, the parameter K had to be gigantic.

Remark 3. (i) Of course, Fν[n]emp is not exact. In principle, this could cause
a bad approximation of the exact probability pst. We gave reasons why this
should not be the case. Moreover, stochastic simulations support this opinion. If
the empirical distribution was derived twice (K = 106) for the same distribution
ν[n] the respective pst-values usually differed less than 1 per cent from their
arithmetical mean. This shows that the derived results are stable. In (ii) we give
a formal argumentation that decision rule (B) amplifies small relative errors no
more than by factor k.
(ii) The probability that at least k consecutive test values T̃1, T̃2, . . . , T̃N lie
outside [t, u] is about 1 − (1 − pk)N(1−p) where p temporarily stands for the
probability Prob(Ti /∈ [t,u]) (or Prob(round(Ti) /∈ [t, u]), resp.; cf. Remark 2) If
p′ denotes an approximation of p the relative error equals |(1− (1−pk)N(1−p))−
(1− (1− p′k)N(1−p′))|/(1− (1− p′k)N(1−p′)). If (Npk)2, (Np′k)2 � 1 the relative
error is about |(1 − p)pk − (1 − p′)p′k|/(1 − p′)p′k. If additionally p ≈ p′ (which
is likely, for example, if p ≥ 10−3 and K ≥ 105) this term further simplifies to
k|p− p′|/p′.

8 Examples

In Sect. 8 we discuss two examples. Especially, Example 3 provides an appropri-
ate solution for Example 2. The effect of the particular parameters is explained
in Sect. 9.

Example 3. We consider the same situation as in Example 2 (cf. Sect. 3). Due
to the construction of the noise source it may be assumed that the random vari-
ables B1, B2, . . . are iid but not necessarily equidistributed (cf. Remark 4(iii)).
Extensive statistical investigations of TRNG prototypes have confirmed this hy-
pothesis. For the intended applications it is absolutely acceptable (“tolerable”)
if Prob(Bj = 1) ∈ [0.49, 0.51]. Otherwise, a noise alarm should occur sooner or
later, depending on the “degree” of the statistical weaknesses of the das-random
numbers. If Prob(Bj = 1) < 0.475 or Prob(Bj = 1) > 0.525, however, a noise
alarm should occur soon. Recall that per TRNG about 530000 basis tests are
performed per year (cf. Example 2).

Proposed solution: Basis test: χ2-test on 128 four-bit blocks (i.e. n = 512). Fur-
ther, we use the parameter set N = 512, β = 1/64 (i.e. b = 6), c = 5, r = 0.0,
s = 200.0, k = 3, t = 0.0, u = 26.75, v = 13.0, w = 17.0, x = 3.

The values in Table 1 were derived on basis of empirical distribution functions
as described in Sect. 7 (K = 106). The right-hand column of Table 1 gives the
expected number of noise alarms per year. In particular, if Prob(Bj = 1) /∈
[0.475, 0.525] a noise alarm will occur after a few test suites.
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Table 1. Example 3: Expected number of noise alarms per year

Prob(Bj = 1) pst E
(
# noise alarms

year

)
0.500 0.0162 0.004
0.495 0.0184 0.006
0.490 0.0289 0.024
0.485 0.0745 0.396
0.480 0.2790 16.6
0.475 0.7470

Table 2. Example 4: Expected number of noise alarms per year

Prob(Bj = 1) pst E
(
# noise alarms

year

)
0.500 0.0151 0.00005
0.495 0.0180 0.00011
0.490 0.0349 0.0015
0.485 0.1096 0.1332
0.480 0.3866 14.5
0.475 0.8501

Remark 4. (i) The calculation of the basis test values requires no more than
integer multiplication and addition and, finally, a division by 8 = 23.
(ii) For c = 6 instead of c = 5 the pst-values are some percent larger as the
Markov process Z0, Z1, . . . is less “inert” (cf. Sect. 9).
(iii) For simplicity, in Examples 3 and 4 we assume that the random variables
B1, B2, . . . are iid. This, however, need not be the case for all types of random
noise sources. We point out that dependent random variables Bj can be handled
in the same way as iid ones. (Numerical example: Let the random variables
B1, B2, . . . be Markovian with Prob(Bj+1 = 1 | Bj = 0) = 0.490 and Prob(Bj+1 =
0 | Bj = 1) = 0.490. Using the same parameters as in Example 3 yields pst ≈
0.0243, and hence about 0.014 noise alarms are expected per year.) Of course,
if we drop the assumption that the Bj are iid we usually have to consider much
more distributions than listed in Table 1.

Example 4. We consider the same situation as in Example 3. However, due to
the intended application the expected number of noise alarms per year must
not larger than 0.0015 if the TRNG produces appropriate das random numbers.
(For example, the noise source could be part of a smart card which is used by
customers to execute e-commerce applications. If the TRNG causes a noise alarm
the smart card denies further service and has to be replaced by a new one.)

Proposed solution: Basis test: χ2-test on 128 four-bit blocks (i.e. n = 512).
Further, we use the parameter set N = 512, β = 1/64 (i.e. b = 6), c = 5, r = 0.0,
s = 200.0, k = 4, t = 0.0, u = 24.0, v = 13.125, w = 16.875, x = 4.
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Remark 5. Our online test procedure enables “controlled” testing. If “sound”
TRNGs generate das random numbers which themselves are appropriate for the
intended applications and if the mathematical model of the physical noise source
and thus that of the das random numbers is reliable (i.e., if we can be sure
that the (eventually TRNG-specific) distribution of the das random numbers
is contained in the assumed class of distributions) this usually makes a strong,
data-compressing (throughput-reducing!) mathematical follow-up treatment dis-
pensable. If also the reduced data-rate is sufficiently large for the intended ap-
plications, however, a data-compressing follow-up treatment may be used as an
additional security mechanism, even if this may not actually be necessary.

9 Fine-Tuning of the Parameter Set

If the basis test and the parameter set have been chosen suitably the online test
procedure should perfectly meet the particular requirements of the intended ap-
plications. In Sect. 7 we described how to compute pst and the expected number
of test suites until a noise alarm occurs. However, as the computation of pst is
time-consuming we cannot try thousands of randomly chosen parameter sets.
Below, we briefly describe the effect of particular parameters.

n: Unless it is too small the sample size n usually does not influence the dis-
tribution of the basis test variables Tj if ν[n] = µ[n] . If ν[n] �= µ[n], however,
increasing n often implies higher rejection rates. Example: Let T̃ := 2(B̃1 +
· · · + B̃n − 0.5n)/

√
n which merely considers the number of ones within the

sample. If the Bj are iid with Prob(Bj = 1) = p the central limit theorem

implies Prob(|T| > α) = 1 − Φ
(
α/

√
4p(1 − p) − √

n(p − 0.5)/
√

p(1 − p)
)

+

Φ
(
−α/√4p(1 − p) − √

n(p − 0.5)/
√

p(1 − p)
)

where Φ(·) denotes the cumula-
tive distribution function of the standard normal distribution. If α = 2.575 and
p = 0.48, for example, for n = 128 (resp., for n = 512) we obtain the probability
0.018 (resp., 0.048). If p = 0.5, however, this probability equals 0.01 for both,
n = 128 and n = 512.

N : Due to (10) it is reasonable to choose a power of 2 as this minimizes the num-
ber of matrix multiplications and thus the computation time. Furthe, it avoids
unnecessary round-off errors when computing the probability pst.

x: For small pst equation (11) is essentially determined by the term p−x
st . Thus, for

different pst-values increasing the parameter x amplifies the ratio of the expected
number of test suites till the first noise alarm occurs. (Example: If pst;1 = 2pst;2
it is p−3

st;1 = p−3
st;2/8 but p−4

st;1 = p−4
st;2/16.) This effect can be used to “separate”

the tolerable from the non-tolerable distributions.
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β: The smaller β := 2−b the smaller is the influence of single basis test values
on the history values H̃1, H̃2, . . ..

c: The history variables H0, H1, . . . may be interpreted as a “weighted” random
walk on [v, w]∩{. . . ,−2−c, 0, 2−c, 2·2−c, . . .} with absorbing state ∞. The smaller
c the more “inert” is this random walk and hence the smaller is pst. In particular,
H̃j �= H̃j−1 iff (1 − β)H̃j−1 + βT̃j /∈ H̃j−1 + [−2−c−1, 2−c−1) iff T̃j /∈ H̃j−1 +
β−1[−2−c−1, 2−c−1). We recommend to choose b, c ∈ {5, 6}. (Recall, however,
that the transition matrix Q has |Ω|2 = [k(2c(v − w) + 1) + 1]2 entries.).

10 Conclusions and Final Remarks

In this paper we proposed a new online test, or more precisely, a new online test
procedure for which it is practically feasible to determine the expected number of
noise alarms within a time interval, even if the tested random numbers are not in-
dependent and equidistributed. The system designer can vary a whole parameter
set and hence can fit the test to the very special requirements of the intended ap-
plications. In particular, this makes data-compressing (i.e. throughput-reducing)
mathematical follow-up treatments in many cases dispensable. Compared with
“ordinary” online tests the proposed online test procedure does only need a little
more memory, some additional lines of code and slightly more running time.
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