A New Low Complexity Parallel Multiplier
for a Class of Finite Fields

Manuel Leone

Telecom Italia Lab,
via G. Reiss Romoli 274, 10148 Torino, Italy
manuel.leone@tilab.com

Abstract. In this paper a new low complexity parallel multiplier for
characteristic two finite fields GF(2™) is proposed. In particular our
multiplier works with field elements represented through both Canonical
Basis and Type I Optimal Normal Basis (ONB), provided that the irre-
ducible polynomial generating the field is an All One Polynomial (AOP).
The main advantage of the scheme is the resulting space complexity, sig-
nificantly lower than the one provided by the other fast parallel multipli-
ers currently available in the open literature and belonging to the same
class.

1 Introduction

Finite fields have recently attracted a lot of attention due to the increasing
number of cryptography and coding theory applications that require high per-
formance finite field capabilities ([9]). Several new architectures have been pro-
posed in order to fulfill the constraints imposed by specific purposes ([2I8]10]).
Although different solutions can be compared from several points of view, time
complexity and space complexity are, usually, the two most important parame-
ters. The former is defined as the elapsed time between input and output of the
circuit implementing the multiplier, and it is usually expressed as a function of
the field degree m, the delay of an AND gate T4 and the delay of an XOR gate
T'x. The latter, on the contrary, is defined as the pair of numbers X4 and Y,
of AND and XOR gates used respectively. Although a manifest improvement in
space complexity over the best known algorithm is still possible, because of an
achievable asymptotic space complexity given by O(m log, mlog,log, m) ([I]),
these two parameters are characterized by an evident trade off. In fact, reducing
the number of gates causes, in general, a corresponding increase in the execution
time. So, if performance is the most critical parameter, we can accept a greater
space complexity, in exchange for a reduction of the corresponding time delay.
Conversely, in other applications such as those based on smart cards, mobile
phones, or other portable devices, a reduced space complexity is often the most
important design aspect.

Because of these reasons we will focus on a special class of fast multipliers,
characterized by a generator of type AOP, which can take advantage of the trade
off between time and space complexity to achieve a space complexity significantly

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 160-[[70, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

A New Low Complexity Parallel Multiplier for a Class of Finite Fields 161

lower than those offered by the traditional bit-parallel multipliers of the same
class ([3/415J6//7]), with a small increase in the corresponding time delay. In other
words, a limited rise in the time complexity is accepted in order to obtain a more
consistent reduction in the corresponding circuit area.

Therefore the paper is organized as follows: section two introduces some use-
ful preliminaries; section three provides an architectural description of the mul-
tiplier when the field elements are represented through a Canonical Basis, while
section four focuses on Type I ONB representations. The last section summarizes
the results obtained and draws some conclusions.

2 Preliminaries

Characteristic two finite fields GF(2™) provide a plethora of methods to repre-
sent field elements according to their particular application. Specifically, the
two most classical schemes reported in literature are Canonical Basis (also
called Standard Basis) and Optimal Normal Basis, though other strategies have
recently been proposed ([2]). The former represents the generic field element
a € GF(2™) through the m-bit vector (ag,a1,...,am—1) with respect to the set
(1,a,02,...,a™ 1), where « is the root of an irreducible polynomial of degree

m over GF(2), which corresponds to the expansion a(a) = Z?igl a;a’. On the

contrary, the latter specializes the set as (v,72,... ’7277171)7 where v is now the
root of an N-polynomial of degree m over GF(2). In this case the expansion is
therefore given by a(y) = Z?:Ol a;y? (for more information see [9]).

In order to reduce the complexity of the field multiplication special classes
of irreducible polynomials have been suggested ([7], [10]). Among them, the
AOP generators have been shown to be particularly interesting. An AOP is a
polynomial characterized by the form p(x) = 1+ 2 + 2? + ... + 2™, which is
irreducible if and only if m + 1 is prime and 2 is primitive modulo m + 1 ([9]).
For instance, for m < 100 there are thirteen useful values: 2, 4, 10, 12, 18, 28,
36, 52, 58, 60, 66, 82, and 100. Moreover, each N-polynomial generating a Type
I ONB is also an AOP ([9]). For this reason in the following we will focus on
AOPs, discussing the advantages of this class in the context of both Canonical
Basis and Type I ONB representations.

3 Canonical Basis

Let p(z) = 1+ 2 + 22 + ... + 2™ an irreducible polynomial over GF(2™), and
let a(a) and b(«) be two elements of GF(2™), represented through the m-tuples
(ag,ai,...,am—1) and (bg,by,...,bm—1), with respect to the root a of p(z).
Our goal is the computation of the field element (co,c1, ..., ¢n—1) given by the
product ¢(a) = a(a) - b(a) € GF(2™). This product can be computed in two
different phases:

1. computation of the ordinary product of two polynomials ¢(z) = a(x) - b(z)
over GF(2)
2. computation of the field product ¢(z) € GF(2™) as c¢(z) = £(z) mod p(x)

162 M. Leone

3.1 Multiplication of Polynomials over GF(2)

First, we observe that the degrees of the polynomials a(x) and b(x) are both
< m — 1, therefore the degree of the polynomial ¢(x) will be, in turn, < 2m — 2.
Formally we have:

0(x) = a(x) - b(x) = o + b+ lox® + ... 4 Loy, _ox®™ 2 (1)

This polynomial can be computed by means of a divide-and-conquer approach
originally proposed to increase the speed of integer multiplications ([11]). Ac-
tually this strategy, which we will slightly improve and extend respect to the
results obtained in [§], in turn reminiscent of the Karatsuba-Ofman algorithm,
has been also successfully applied in case of trinomial generators ([12]).

More precisely, let us to observe that in this context m is surely even, thanks
to the sufficient conditions that make p(x) irreducible. Therefore we can assume
m = 2N. As a consequence the polynomials a(z) and b(x) can be rewritten as
a(z) = A(z) + 2V B(z) and b(z) = C(z) + 2V D(z) respectively, where

A(z) = ag + a1z + asr® + ... +ay_1zN !
N-1

B(r) =ay +any12 + aN+2I2 +...+asny_1"
and analogously

C(x) = by + by +byx?® + ... +by_zV !

D(JZ) =by + bN-‘,—l-jU + bN+21’2 + ...+ sz_lfol

Therefore, the product ¢(x) can be computed as
() = a(z)-b(z) = A(z)C(2) + 2V [B(z)C(2) + A(z) D(z)] + 2N B(x) D(x) (2)

which, introducing the following auxiliary polynomials

we can also express as
U(z) = Pac(w) +a" [Patp(w) Porp(x) + Pac(z) + Ppp(2)]+2*" Ppp(a) (3)

Eq.(@) compute the product a(x) - b(x) by means of three multiplications
of polynomials of degree N — 1, together with shifts and “lettings-down” of «
powers. Specifically, the architectural structure of the multiplier can be organized
as follows:

— two circuits, composed of N XOR gates each, for the parallel computation
of A(z) + B(z) and C(z) + D(x)

A New Low Complexity Parallel Multiplier for a Class of Finite Fields 163

— three circuits, composed by N2 AND and (N —1)? XOR gates each, for the
parallel computation of A(x)-C(x), B(z)-D(x), and [A(z) + B(z)] - [C(x) +
D(z)]; the XOR tree depth is [logy(N — 1)], provided that the polynomials
involved have at most degree N

— one circuit, composed of 2N —1 XOR gates, for the computation of A(z)C(x)

+ B(z)D(x)

one circuit, composed of 2N —1 XOR gates, for the computation of [A(z)C(z)

+ B(2)D(z)] + [A(z) + B(2)][C(x) + D(x)]

— one circuit, composed of 2N — 2 XOR gates, for the computation of £(z)
by means of the eq.[B]), where each term, at this point, has been already
pre-computed

As far as the time complexity is concerned, it should be noted that the
overall circuit is able to produce the output £(x) according to a time delay of
Ta 4+ Tx([logo(N —1)] 4+ 3). In fact, after a period of time equal to Tx, the
intermediate values A(x) + B(x) and C(x) + D(z) will be available; therefore,
when other T4 + Tx ([logo(N — 1)] + 1) seconds have elapsed, the circuit will
have also computed [A(z) + B(z)] - [C(x) + D(z)], B(x)D(x), A(z)C(z) and
A(z)C(z)+ B(z)D(x), while waiting for other Tx seconds, also the computation
of the term A(z)C(x)+B(x)D(x)+[A(x)+B(x)]-[C(x)+D(x)] will be completed.
Therefore the result £(x), which now needs other Tx seconds to be reached, just
requires a time complexity equal to T4 + Tx ([logy(N — 1)] + 3).

The overall characteristics of the algorithm, whose details have been pre-
sented in Table [are respectively:

X =3N? =2m
Y =3N?2+2N -1 =2m*+m—1 (4)
0" =Ta+ Tx([logy(N —1)]+3) = TA + Tx ([logy(m — 2)] + 2)

CA&

which can be compared with those provided by a direct parallel multiplication

X =m?
Y =m?—-2m+1 (5)
0" =Ta+ Tx([logy(m —1)])

It is evident how the former strategy exchanges a part of its time complexity
in order to gain a % 3 factor in the corresponding number of gates.

Anyway, the values in [{) can be also further manipulated and expressed as
(see also Table

(ZW)m = 3(Z)ms2 (6)
(Z%)m = 3(Ex) my2 +4m — 4 (7)
(@) = (0")my2 +3Tx (8)

where (C)q represents the complexity C' of the multiplier, i.e. X', X% and ©’,
when the polynomials in input have degree at most d — 1, that is d coefficients.

Eq.@), (@), and (8) show that the product of two polynomials of degree
< m —1 can be performed by means of three multiplications of two polynomials

164 M. Leone

Table 1. Time and space complexity to multiply polynomials over GF(2).

Operation YalXx] Register Size
A(z) + B(z) N Tx N

C(z) + D(x) N N

A(z)C(z) NZ[(N —1)?|Ta + Tx[logy(N — 1)][2N — 1
B(z)D(z) N2|(N -1)2 2N —1
(A(z) + B(z))(C(z) + D(z)) [[N?|(N —1)* 2N —1
A(z)C(x) + B(z)D(x) 2N —1 2N —1
A(z)C(z) + B(z)D(z)+ 2N -1 |Tx 2N —1
+(A(z) + B(2))(C(z) + D(z)) 2N —1

(z) 2N — 2 |Tx AN —1

of degree equal (at most) to about the half the original ones, plus a little overhead
needed to combine the partial results and to obtain the final output. Moreover
these three multiplications can be computed in a parallel way, and this is the
reason why within the time complexity (B) does not appear the factor 3, present,
in contrast, in (@) and ([@). It should be also pointed out that this additional
overhead is relatively small, being limited to 4m — 4 XOR gates in () and
characterized by an additional time delay equal to 3Tx in (B).

Moreover, provided that also m/2 is even, this strategy can be further ap-
plied, in order to gain a further reduction in the gate count. For instance, as-
suming that m is a power of 2, after k iterations we will obtain:

(S = 355 o
(Z)m = 35 (T)yar +8m(3/2)% = 1] — 23 — 1) (9)
(0)n = (6")nyar +3KTx

These results show a clear trade off between time and space complexity.
Therefore, to significantly reduce the number of gates we have to increase the
corresponding number of iterations, although, as a side-effect, the time delay
of the multiplier will also rise, just linearly in the same number of iterations.
Of course, an interesting question is: how much can we iterate the algorithm,
provided that we want to reduce the space complexity as much as possible? It
is easy to see that the optimal stop condition for this recursion is m/2% = 4, a
value for which a parallel and direct multiplication is more advantageous over
the recursive scheme. In fact, iterating the algorithm we obtain (X’;)4 = 12 and
(X%)a = 15, from which (Xfn7) = (X)) a+ (2%)4 = 27, while (0')y = Ta+4Tx .
On the contrary, using a direct strategy we have (X’;)s = 16 and (X%)s = 9,
from which (X%o7) = (X)) a+ (X%)a = 25, while (©')4 = Ta +2Tx. Therefore,
taking into account this stop condition, the corresponding complexities, in case
of m = 2¢, will be:

(X))m = 16 - 3losam=2

X)m = 8m - [(3/2)l082m=2 _ 1] 4 7. 3logam=2 4 9 10
X

(@) =Ta+ Tx(3logym —4)

A New Low Complexity Parallel Multiplier for a Class of Finite Fields 165

Table 2. Comparing different polynomial multipliers over GF(2).

Scheme || X4 Yx Xror o

Direct ||m? m? —2m + 1 2m? —2m + 1 Ta + Tx [logy(m — 1)]
m = 256 /65,536 65,025 130,561 Ta + 8Tx

m = 1024||1,048,576 |1,046,529 2,095,105 Ta +10Tx

m = 2048/4,194,304 |4,190,209 8,384,513 Ta + 11Ty

Paar ([8])[|m'523 6m°e23 —8m + 2 [Tm!°82% —8m +2 [T + 3Tx log, m

m = 256 |6,561 37,320 43,881 Ta + 24Tx

m = 1024||59,049 346,104 405,153 Ta + 30T

m = 2048||177,147 1,046,500 1,223,647 Ta + 33Tx

Proposed [[16 - 3782 ™~ 2[8m[(2)"82 ™2 — 1][8m[(2)"82 ™2 — 1][Ta + Tx (3log, m — 4)

47 310g2 m—2 +2 423 . 310g2 m—2 +2

m = 256 ||11,664 26,385 38,049 Ta +20Tx
m = 1024(/104,976 247,689 352,665 Ta + 26T
m = 2048||314,928 751,255 1,066,183 Ta+29Tx

which slightly improves the results reached in [§]. For a quantitative comparison
see also Table P] where it should be clear how our scheme pays a greater number
of AND gates, if compared with [§], but in order to reduce both the overall
number of gates Yo and the time complexity 6.

Now we have to generalize the previous results, in order to make the scheme
suitable for generating AOPs. In fact, it is possible to employ the same strategy
also when m is not a power of 2. To make the design very modular, we do not
optimize the structure of the multiplier distinguishing the two cases, m even
and odd, as done in [12]. In contrast, we simply expand the circuit registers to
handle, at each step, polynomials of odd degree, that is with an even number
of coeflicients. As a consequence the following generalization can be derived and
used to multiply polynomials of any degree (m > 4):

())m = 16 - 3Mos2 m]—2
(D) =4+ I ™17 5i[m] 4 7. llogam]=2 4 9 (11)
(0)m =Ta+Tx(3[logym] —4)

At the end of this first phase, the circuit outputs the coefficients of the
product polynomial £(z), that is the bit vector ({y,%1,...,¢lam—2). The sub-

sequent step will be the computation of field element ¢(x) as the remainder
c(x) =4(x) mod p(x).

3.2 Reduction Phase

Let £(z) = (fo,41,...,Lam—2) the polynomial given by the ordinary product of
a(z) and b(x). The current phase prescribes the computation of field element
c(xz) = a(x) - b(x) € GF(2™) as the remainder of the polynomial division of £(x)
by the generator polynomial p(z). To speed up this computation it is possible
to take advantage of the structure of the generator p(z). Thanks to the regular

166 M. Leone

form of this polynomial it is easy to express the coefficients of the field element
¢; in terms of coefficients ¢;. Specifically, it can be shown that the field element
c(z) = (co, €1, - - -, Cm—1) can be computed as

£i+€m+gm+i+1 ifi=0,1,...,m—3
¢ =< o+, ifi=m-—2
b1+ b, ifi=m-—1

Of course this step can be accomplished according to a time complexity equal
to (@"),, = 2Tx, while the relating space complexity is given by (X%), =
2m — 2.

As a consequence, the characteristics of the overall multiplier taking in input

the two bit vectors (ag,a1,...,am—1) and (bg,b1,...,bym—1) and producing, at
the output of the circuit, the product element (cq,cq,...,¢n-1), will be given
by:

(EA)m = (Zh)m + (Eﬁ)m =16 - 3[logm1=2

(Zx)m = (T)m + () =4 S50 "1 03] 4 7. 3l =2 4o

(O)m = (O + (") = T4+ Tx(3[logy m] — 2)

(12)

It should be noted that the final space complexities are notably lower than
those currently available in literature and belonging to the same class ([3I6/7]).
For a direct comparison see also Table [3] where it is evident how our scheme
does exchange time complexity in order to gain a more consistent reduction
in both the number of AND and XOR gates. Moreover, this gain grows as m
grows. For instance, if m = 226, our multiplier provides a factor reduction,
in the overall gate count, equal to 2.7, with respect to the best method ([3]),
paying a corresponding time expansion factor of 2. On the other hand, in case of
m = 2026, the area reduction factor becomes 7.7, while the corresponding time
expansion rises only up to 2.36.

As an example, in Figure [l is reported the scheme of the overall multiplier,
when the generating polynomial is p(z) = 1+ 2+ 22 + 2% + 2* + 25 + 26 + 27 +
2% + 2% + 210, In this case the two inputs a(x) and b(x) have been rewritten as
a(z) = A(z) + 2°B(x) and b(x) = C(x) + 2° D(z) respectively, where

A(z) = ap + a1z + asx? + asx® + agxt

B(z) = a5 + agx + a7z + agz® + agz®

and analogously

C(.’L‘) =by+bix + b2x2 + bgl‘g + b4.’1?4
D(x) = bs + bgx + byx? + bga® 4 box?

Therefore, the field element c(z) = a(x) - b(x) € GF(2!°) can be computed
by means of three multiplication circuits for polynomials of degree 4, to obtain
(A+B)-(C+ D), A-C and B- D, plus some XOR gates, needed to recombine
partial results (block Recombination), and to perform the reduction phase (block

A New Low Complexity Parallel Multiplier for a Class of Finite Fields 167

Table 3. Comparing different Canonical Basis multipliers with generating AOPs.

Scheme XA Yx C)]
Ttoh-Tsujii [7] [|[m* +2m +1 |[m? +2m Ta + Tx [logy m + logy(m + 2)]
m = 226 51,529 51,528 Ta +16Tx
m = 1018 1,038,361 1,038,360 Ta + 20T
m = 2026 4,108,729 4,108,728 Ta +22Tx
Hasan et al. [5]||m? m? +m — 2 Ta + Tx([logg(m — 1) +m)
m = 226 51,076 51,300 Ta + 234Tx
m = 1018 1,036,324 1,037,340 Ta +1028Tx
m = 2026 4,104,676 4,106,700 Ta +2037Tx
Kog-Sunar [3] [[m? m? —1 Ta + Tx([logy(m —1)] + 2)
m = 226 51,076 51,075 Ta+10Tx
m = 1018 1,036,324 1,036,323 Ta+12Tx
m = 2026 4,104,676 4,104,675 Ta + 13Tx
Proposed 16 - 3Mos2ml=214 . ZZE(?Q mI=S i [571|Ta + Tx (3[logy m] — 2)
47 - 3Mes2m1=2 4 o
m = 226 11,664 25,635 T + 22T
m = 1018 104,976 249,627 Ta+ 28Tx
m = 2026 314,928 754,365 Ta+31Tx

Reduction Phase). To make fully modular the circuit design (which could be an
advantage, especially if m > 10), we do not directly deal with these polynomials
of degree 4. Instead we extend these polynomials by a single bit, in order to
obtain polynomials of degree 5. This provides us with the possibility to further
iterate the algorithm and to directly employ modules architecturally equivalent
to the previous ones. In fact, each of these three products can be computed, in
turn, by means of other three multiplication circuits for polynomials of degree 2,
for the parallel computation of (A’ + B’)-(C’' + D’), A’-C" and B’- D’, plus the
XOR gates needed for the recombination. Conversely, the latter 9 polynomial
multiplications are not further iterated, because of the lower time and space
complexities provided by a direct multiplication.

4 Type I Optimal Normal Basis

The previous scheme can be also adopted in case of Type I ONB, following the
smart strategy proposed in [3]. Specifically, let p(z) =1+ 2z + 2% + ...+ 2™ an
N-polynomial over GF(2™), and let a(vy) and b() be two elements of GF(2™),
represented through the m-bit vectors (ag,a1,...,am-1) and (b, b1, ..., bm—1),
with respect to the root v of p(z). Given that p(z) is also an AOP, the root
satisfies the property y™*! =1, in fact

xm,+1 + 1

z+1 (13)

pr)=1+x+2*+.. . +2™ =

168 M. Leone

A+B C+D A C D B

Direct Direct Direct Direct Direct Direct Direct Direct Direct
Mult Mult Mult Mult Mult Mult Mult Mult Mult
‘(A‘+B‘)(C‘+D‘) ‘ AC ‘ BD' ‘(A'+B‘)(C'+D‘) ‘ AC ‘ BD' ‘(A‘+B')(C‘+D‘) ‘ AC ‘ BD'
‘ Recombination (XOR) ‘ ‘ Recombination (XOR) ‘ ‘ Recombination (XOR) ‘
(A+B)(C+D) AC BD

‘ Recombination (XOR) ‘

‘ AC+X5[(A+B)(C+D)+AC+BD]+BD x1°

Reduction Phase (XOR)
i a(x)b(x)

Fig. 1. Multiplier for Canonical Basis over GF(2'°) with generating polynomial AOP.

As a consequence, the set

= (7,7, ...,7") (14)

can also be used as a basis for GF(2™). More precisely, (I4) is nothing but a
shifted version of the Canonical Basis, therefore the elements of GF(2™) repre-
sented in Type I ONB can be quickly converted in Canonical Basis, and vice-
versa, by means of a simple permutation of the components. In fact, thanks to
the relation y™*! = 1, we can write the conversion

a(y) = Tl e = T aly' (15)
by means of the permutation P defined as
i mod (mi1) = @i fori=0,1,...,m—1 (16)

Therefore, the elements to be multiplied in Type I ONB will be simply con-
verted in Canonical Basis, through the permutation P, before entering the mul-
tiplier. The output of the circuit, computed according to the complexities given

A New Low Complexity Parallel Multiplier for a Class of Finite Fields

Table 4. Comparing different Type I ONB multipliers.

169

Scheme XA Yx e

Massey-Omura [4][|m? 2m? — 2m Ta + Tx([logy(m — 1)] + 1)

m = 226 51,076 101,700 Ta+9Tx

m = 1018 1,036,324 2,070,612 Ta+11Tx

m = 2026 4,104,676 8,205,300 Ta+12Tx

Hasan et al. [6] [[m? m? —1 Ta+ Tx([logy(m —1)]+1)

m = 226 51,076 51,075 Ta +9Tx

m = 1018 1,036,324 1,036,323 Ta+11Tx

m = 2026 4,104,676 4,104,675 Ta+12Tx

Kog¢-Sunar [3] m? m? —1 Ta 4+ Tx([logy(m —1)] + 2)

m = 226 51,076 51,075 Ta+10Tx

m = 1018 1,036,324 1,036,323 Ta+12Tx

m = 2026 4,104,676 4,104,675 Ta + 13Tx

Proposed 16 - gllesami=214 . Zg’fz RREET [571|Ta + Tx (3[logy m] — 2)
47 3ﬂog2 m]—2 +2m

m = 226 11,664 25,635 T + 22T

m = 1018 104,976 249,627 Ta+ 28T

m = 2026 314,928 754,365 Ta+31Tx

in ({2 and still represented in Canonical Basis, will be restored in Normal Basis
thanks to the inverse permutation P~!. It should be noted that these two ad-
ditional permutations do not increase the overall time and space complexity of
the multiplier. In fact, P, and its inverse P~!, can be directly implemented by
wiring the fan-in and fan-out of the circuit, without modifying any complexity.
Therefore, our scheme is able to maintain the previously discussed gate count
reduction also in case of Type I ONB. This reduction is significant, especially
if compared with the one provided by the other fast parallel schemes currently
available in literature ([4J6)3]), as reported in Table @l Finally, also in this case
the gain factor becomes more consistent as soon as m grows, as previously seen
for Canonical Basis.

5 Conclusions

In this paper we have proposed a new low space complexity scheme for fast
parallel multiplication of field elements represented through both Canonical and
Type I Optimal Normal Bases. Specifically, the discussed strategy shows how
to avoid quadratic space complexity, paying only a limited increase in the cor-
responding time delay. As reported in Table Bl and [, the proposed scheme of-
fers a circuit complexity significantly lower compared to the other fast parallel
schemes present in the open literature ([3[4J5J6l/7]). This characteristic makes
the employment of this multiplier particularly suitable for applications charac-
terized by specific space constraints, such as those based on smart cards, token
hardware, mobile phones or other portable devices.

170

M. Leone

References

10.

11.

12.

. Aho A.V., Hopcroft J.E., Ullman J.D., “The Design and Analysis of Computer

Algorithms”, Addison-Wesley, Reading, Mass., 1975.

Drolet G., “A New Representation of Elements of Finite Fields GF'(2™) Yelding
Small Complexity Arithmetic Circuit”, IEEE Trans. on Computers, vol.47, pp.938-
946, 1998.

Ko¢ C.K., Sunar B., “Low Complexity Bit-Parallel Canonical and Normal Basis
Mutipliers for a Class of Finite Fields”, IEEE Trans. on Computers, vol.47, pp.353-
356, March 1998.

Omura J., Massey J., “Computational method and apparatus for finite field arith-
metic”, U.S. Patent Number 4,587,627, May 1986.

Hasan M.H., Wang M.Z., Bhargava V.K., “Modular construction of low complexity
parallel multipliers for a class of finite fields GF(2™)”, IEEE Trans. on Computers,
vol.41, no. 8, pp.962-971, August 1992.

. Hasan M.H., Wang M.Z., Bhargava V.K., “A modified Massey-Omura Multiplier

for a class of finite fields”, IEEE Trans. on Computers, vol.42, no. 10, pp.1278-
1280, October 1993.

Itho T., Tsujii S., “Structure of parallel multipliers for a class of Finite Fields
GF(2™)”, Information and Computation, vol.83, pp.21-40, 1989.

Paar C., “A new architecture for a parallel finite field multiplier with low com-
plexity based on composite fields”, IEEE Trans. on Computers, vol.45, no. 7,
pp.846-861, July 1996.

Menezes A.J., Blake 1., Gao X., Mullin R. Vanstone S. and Yaghoobian T., “Ap-
plications of Finite Fields”, Boston, MA: Kluwer Academic Publisher, 1993.
Mastrovito E.D., “VLSI Architectures for multiplication over finite field GF(2™)”,
In T. Mora, editor, Applied Algebra Algebraic Algorithms, and Error-Correcting
Codes, 6-th International Conference, AAECC-6, pp. 297-309, Roma, Italy, July
1988. New York, NY: Springer-Verlag.

Knuth D.E., “The art of the computing programming”, Vol.2: Seminumerical al-
gorithms, Adison-Wilsey, Reading, MA., 1969.

Elia M., Leone M. and Visentin C., “Low Complexity bit-parallel multipliers for
GF(2™) with generator polynomial 2™ +x* 417, Electronics Letters, Vol.35, No.7,
April 1999.

	1 Introduction
	2 Preliminaries
	3 Canonical Basis
	3.1 Multiplication of Polynomials over GF(2)
	3.2 Reduction Phase

	4 Type I Optimal Normal Basis
	5 Conclusions
	References

