Efficient Implementation
of “Large” Stream Cipher Systems

Palash Sarkar! and Subhamoy Maitra?

! Centre for Applied Cryptographic Research
Department of Combinatorics and Optimization, University of Waterloo,
200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
psarkar@Qcacr.math.uwaterloo.ca
2 Computer & Statistical Service Centre, Indian Statistical Institute
203, B.T. Road, Calcutta 700 035, India
subho@isical.ac.in

Abstract. A standard model of stream cipher combines the outputs of
several independent Linear Feedback Shift Register (LFSR) sequences
using a nonlinear Boolean function to produce the key stream. Here we
present a low cost hardware architecture for such secret-key cryptosys-
tems using a relatively large number of LFSRs. We propose implemen-
tation of the LFSRs using Cellular Automata in VLSI. This provides a
regular and uniform two dimensional array of flip flops with only local
interconnections. The main bottleneck in the implementation of stream
ciphers using a relatively large number of LFSRs is the implementation
of the combining Boolean function. We show that this bottleneck can be
removed and it is feasible to implement “large” cryptographically secure
Boolean functions using a reconfigurable pipelined architecture.
Keywords : Stream Ciphers, Boolean functions, Linear Feedback Shift
Registers, Cellular Automata, Reconfigurable Hardware, Pipelined Ar-
chitecture.

1 Introduction

In the most common model of stream ciphers, the outputs of several independent
Linear Feedback Shift Registers (LFSRs) are combined using a nonlinear Boolean
function (see Figure[lla). The initial conditions of the LFSRs constitute the secret
key of the system. In Figure[Ib we provide an example of an LFSR. Here the
recurrence relation is b,, = b,,_2®b,,_5 D b,,_g. The initial condition in the LFSR
is bsbyb3babiby. After the first step, the output of the system is the bit by and
the new bit bg = by ® by @ bg. See [3] for more details about LFSR. In such a
system, n bits from the n different LFSR’s are generated at each clock. These
n bits are provided as n input values to the combining function. That is, the
LFSRs provide the input bit streams X7, Xo, ..., X, to the combining Boolean
function f. The output of the combining function is the key stream (K) which
is XORed with the message stream (M) to obtain the cipher stream (C').

The combining Boolean functions must possess certain cryptographic prop-
erties for the overall system to be secure. Design of proper Boolean function have

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 319-832 2001.
(© Springer-Verlag Berlin Heidelberg 2001

320 P. Sarkar and S. Maitra

LFSR{—
M
Xa
LFSR, f L —»C
LFSR
(a) LFSR based encryption scheme (b) LFSR : One step evolution

Fig. 1. Stream Cipher System

received a lot of attention in recent times as evidenced by the papers [48IT0J12].
This has answered many theoretical questions on the design of Boolean functions
for stream cipher applications. It is now time to turn to the implementation issues
of such Boolean functions and their actual use in stream cipher cryptography.

LFSR based stream cipher systems are usually implemented using a Boolean
function on a small number of variables, typically 8 to 10. The main reason being
the difficulty in efficiently implementing a Boolean function on a large number of
variables (say 20 or more variables). However, if one were to use such a function
with properly selected parameters, then none of the currently known attacks
would have even a remote chance of success.

The VLSI area used in implementing stream cipher systems have two com-
ponents.

1. The area used to implement the LFSRs.
2. The area used to implement the Boolean function.

Suppose the system uses an n-input Boolean function and (for simplicity) assume
the length of all the LFSRs are same (say L). Then the area used to implement
the LFSRs is proportional to L x n while the area used to implement the Boolean
function can be proportional to 2. Consequently, while the area required by the
LFSRs increase linearly with n, the area required by the Boolean function can
be exponential in n. Thus, by increasing the number of inputs to the Boolean
function, the main hurdle would be in implementing the Boolean function and
not the LFSRs.

Let us compute some real parameters to get a feel of the problem. Suppose
a 32-variable combining function is used where the length of the LFSRs is 64
bits long on average (shortly we will discuss why we will not use equal length
LFSRs). Then the number of flip-flops required to implement the LFSRs is
only 2048, while a direct implementation of the Boolean function can require
area proportional to 232. The key size of such an LFSR system is estimated as
follows. The secret key of the system are the initial states of the LFSRs and

Efficient Implementation of “Large” Stream Cipher Systems 321

hence account for 32 x 64 = 2048 key bits. While this is a large key, it should be
noted that currently RSA systems are also being advocated with 2048 bit keys.

In this paper we tackle the implementation issue of Boolean functions on
a large number of variables. (Here we consider a Boolean function on 24 or
more variables to be a “large” one.) There is no general purpose implementation
method and implementation is dependent on the specific design of the Boolean
function. We present an algorithm and hardware description of the recursive
construction method presented in [4]. The functions in [4] are built recursively.
Thus a function F' of n variables is built up from a function h of k variables. It
is important to note that, if we use a function h which is optimum with respect
to the parameters algebraic degree, order of resiliency and nonlinearity, then the
function F is also optimum with respect to these parameters [9]. We describe
an algorithm which uses the function h as a black box (an oracle) and computes
the output of F' on an n-bit input in time linear in n — k. The space required by
the algorithm is O(1) plus the space required to implement h.

In an LFSR based stream cipher system, an n-bit input is provided to the
function at each clock cycle. Thus our algorithm cannot be directly translated
into a hardware circuit. Instead we use a regular pipelined architecture to map
the algorithm to hardware. The pipeline takes n — k cycles to fill up and after
that, it can handle an n-bit input at each clock cycle. There are n — k stages
to the pipeline which are all similar to each other providing a uniform design.
Implementation of each stage can be done by a circuit or look up table of constant
size. The total space required to implement F'is the space required to implement
h plus an additional O(n — k) size circuit. Usually the number of variables k of
the function h will be significantly less than the number of variables n of the
function F', and in our system space required to implement F' is of the same
order as the space required to implement h. This makes it feasible to implement
functions of 24 or more variables with nominal cost.

An important parameter is the linear complexity of the generated key se-
quence. To obtain the maximum possible linear complexity of the key sequence,
we need to use LFSRs whose lengths are coprime to each other [I]. Thus the
LFSRs are going to be of different lengths. A direct implementation of such
different length LFSRs is going to produce a very irregular VLSI structure. To
obtain a more regular structure, we suggest the use of a uniform two dimensional
array of flip flops connected in a suitable fashion. Some of the flip flops in the
two dimensional array will not functional. This is the price to pay for obtaining
uniformity in the design.

Now consider implementing the different length LFSRs on this two dimen-
sional structure. Each LFSR must have a large number of tap cells to resist
cryptanalytic attacks [I5]. Further, each of the LFSRs are going to have a long
feedback connection. Thus the overall connection pattern on the two dimensional
array is going to be highly irregular. This is also considered to be a disadvantage
in VLSI implementation.

Here we suggest the use of cellular automata (CA) to replace the LFSRs.
The class of CA we suggest are algebraically equivalent to LFSRs. Hence the

322 P. Sarkar and S. Maitra

B

Fig. 2. A (90, 150,90, 150) CA

security of the system is not affected by this change. The advantage would be
that a CA based design would provide a uniform and regular structure with only
local interconnections, which is very attractive from VLSI point of view. CA
based architectures have been proposed for many traditional LFSR applications
(see [2]).

In Section[Z, we briefly outline the necessary details of CA required to replace
LFSRs in stream cipher cryptography. The cryptographically useful Boolean
functions from [4[9J6] are described in Section[3. We summarize the main points
and gloss over the cryptographic properties since our purpose here is to discuss
the implementation of these functions. The actual algorithm and hardware de-
scription is presented in Section @l Finally we conclude with some remarks on
future work in Section [5

2 Cellular Automata

A cellular automaton is a finite array of cells, where each cell can store a bit
of information. The collection of values of the cells constitute the global state
of the CA, whereas the state of a cell is called its local state. The CA evolves
globally in discrete time steps, with the state of each cell changing at each time
step. The change is affected by the values of the two neighbouring cells and also
optionally itself. This is pictorially depicted in Figure 2l The cell at the left end
does not have a left neighbour and one at the right end does not have a right
neighbour. If the next state of a cell depends on its two neighbours and itself,
then the cell is said to follow rule 150. If the next state of the cell depends only
on its two neighbours and not on itself then it is said to follow rule 90. (See [16]
for an explanation and nomenclature of CA rules). A CA having cells which use
only rules 90 and 150 is called a 90/150 CA. In the rest of the discussion we
will be interested in only 90/150 CA. The next state evolution of a CA can be
totally described by a tridiagonal matrix as follows. Consider a 4-cell CA with
rules (90,150, 90, 150) (see Figure B). If the current state is (xo, z1, T2, x3), then
the next state (yo, y1, Y2, ys) is given by

0100

1110
($0,$179«"2,$3) 0101 = (yo7y1,’yzyy3)~

0011

Efficient Implementation of “Large” Stream Cipher Systems 323

Fig. 3. STD for the CA in Figure 2.

Thus starting from an initial configuration, the CA evolves in discrete time
state under the action of the state transition matrix. See Figure [3] for the next
state behaviour of the (90, 150,90, 150) CA. The initial configuration is loaded
in parallel into the CA cells. In our setup this initial configuration is the secret
key for the CA being used. The output of the CA can be taken as the output
of any particular cell of the CA. The sequence generated by any cell is same as
any other cell except for a circular shift in the sequence. Note that unlike the
LFSRs the amount of shift between two consecutive cells may be more than 1.

The tridiagonal matrix which governs the behaviour of the CA is called the
state transition matrix. It is known [2] that if the characteristic polynomial of this
matriz is primitive over GF(2) then an n-cell CA will cycle through all the possi-
ble 2™ — 1 non null states. The characteristic polynomial of the (90, 150, 90, 150)
CA is 2* +x+1, which is primitive over GF(2) and hence the CA cycles through
all the non zero states as shown in Figure Bl The output sequence of the CA is
completely determined by the characteristic polynomial of the state transition
matrix. This is the basis for replacing LFSRs by CA.

Given a primitive polynomial it is easy to design an LFSR which has this
polynomial as its connection polynomial. On the other hand the design method
for CA is not straightforward. One approach is to form the companion matrix
and then use the Lanczos tridiagonalization over GF(2). This approach has been
carried out in [II]. However, a simpler and a more elegant algorithm has been
presented by Tezuka and Fushimi [I3]. The matter that interests us here is the
fact that given any primitive polynomial it is possible to design a CA whose state
transition matrixz has this primitive polynomial as its characteristic polynomial.

Following the above discussion it is clear that the use of CA does not alter
the stream cipher system in any essential way and hence the security of the
system remains unaltered. The only advantage to be gained is the simplicity
in VLSI implementation. The use of CA over LFSR has been suggested for
several advantages in VLSI design. The local connection structure of CA makes
it a regular and cascadable architecture. On the other hand, the long feedback
connection of LFSRs introduce delays and is also undesirable from a VLSI layout
point of view (see [2]). Also see [7] for a survey on CA.

324 P. Sarkar and S. Maitra

2.1 CA Based Implementation

As mentioned in the Section [l the main difficulties in the implementation of the
LFSRs are the following.

1. To have the maximum linear complexity, the LFSR lengths need to be pair-
wise relatively prime. A direct implementation would have to use registers
of different lengths resulting in a non uniform structure.

2. The connection pattern for an LFSR is highly irregular. The tap points of
an LFSR are in general not regularly placed. In addition, the number of
taps in the LFSR must be high to resist against certain types of attacks [15].
Further, an LFSR has a long feedback connection and the length of this
feedback connection can be equal to the length of the LFSR.

Thus a direct implementation of the LFSRs leads to an irregular and non
uniform design. This is considered to be a distinct disadvantage in VLSI imple-
mentation. We discuss how the above problems can be tackled.

To tackle the first problem, we suggest the use of a two dimensional array
n x L of flip flops, where n is the number of inputs to the Boolean function and L
is the maximum degree of a connection polynomial (say 128). In each row of this
structure, the connection pattern for a single polynomial is implemented. Thus
in each row, some of the flip flops will not be functional. The cost incurred due to
this would be offset by the design advantage in using a uniform two dimensional
array.

The solution to the second problem is to use 90/150 CA to implement the
LFSRs. Corresponding to a primitive polynomial we will be able to get the
corresponding 90/150 CA using the algorithm provided in [T3]. Each cell in such
a CA will be connected to its left and right neighbours. Further if the rule for
the cell is 150, then it will also be connected to itself. Thus all connections are
local and regular. Also the long feedback connection of the LFSR is eliminated.

In the two dimensional array of flip flops, for each row, the number of flip
flops used is equal to the length of the corresponding CA. The outputs of all
the CA are taken in a bit slice manner from one end (say the right end) of the
two dimensional array. In this case the non functional flip flops will be towards
the left end. Thus the overall design is a two dimensional array of flip flops with
only local connections and the output is provided in a bit slice manner by the
rightmost column of the two dimensional array. Such a structure will be simple
to implement in VLSI and will also provide easy reconfigurability using standard
structures like FPGA.

3 Cryptographically Useful Boolean Functions

We present a brief overview of the various cryptographic properties that a
Boolean function must satisfy in order to be used for stream cipher systems.
Since our purpose in this paper is implementation, we briefly mention the prop-
erties. For more detailed definitions we refer to [4/8].

Efficient Implementation of “Large” Stream Cipher Systems 325

An n-variable function is said to be balanced if the output column of its
truth table has equal number of zeros as ones. It is said to be m-resilient, if
the probability of the output being one is half even if atmost m of the inputs
are fixed to constant values. The algebraic normal form of a Boolean function is
its canonical sum of products representation as a multivariate polynomial over
GF(2). The degree of the polynomial is called the algebraic degree or simply
degree of the function. Functions of degree atmost one are called affine functions.
Given a Boolean function, its nonlinearity is its Hamming distance to the set of
affine function, i.e., its Hamming distance to its best affine approximation.

A method of designing cryptographically useful Boolean functions is to start
from an initial good function and recursively build up the desired function. Sev-
eral such recursive methods have been proposed [412]. The method proposed
in [M] is simple, though it does not always result in the best function. The reason
being the use of an unbalanced, highly nonlinear initial function which was not
optimized with respect to nonlinearity, algebraic degree and order of resiliency.
However, for a suitable initial function, the method of [4] produces optimized
functions. These initial functions have to belong to one of the saturated sequences
discussed in [9]. For example, if we use a 7-variable, 2-resilient, degree 4, nonlin-
earity 56 function [6], then the resulting sequence of functions constructed using
the method of [4] are the best possible with respect to nonlinearity, algebraic de-
gree and order of resiliency. Thus we restrict ourselves to implementation of the
recursive method of [4], noting that the initial function A must be an optimized
function with respect to nonlinearity, algebraic degree and order of resiliency.

Suppose an n-variable function F(X,,...,X;) is to be used in the stream
cipher system. Following the method of [4], this F' is represented by a sequence
(h,S1,...,5t), where h is the initial function of k variables Xj,...,X; and
S;’s are the recursive operators used to build up the function F. Each S; €
{Q, R} x {r,c,rc}, where the action of S; is described as follows. Let Fy = h
and F; be the function produced after application of S;. Suppose S; = (¥;, 73),
where ¥; € {Q, R} and 7; € {r, ¢, rc}.

If ¥; = @ then,
Fi(Xigr, Xige—1,- 0, Xpg1, Xy oo, X1)

= (10 X)) Fica(Xigr—1,- s Xpog1, X, ..., X0)
OXik(a® F1(b® Xigh—1,-- -, 0B Xpoy 1,00 Xp, ..., 0D X7)).

If W, — R, then
Fi(Xigr, Xigk—1,+ 0, Xpg1, Xy oo, X1)

=(1® Xigp—1)Fi1(Xign, Xigr—2- s Xog1, Xy oo, X1)
OXith-1(0 D F_1(b® Xigp, 0D Xiyp—2..., 0D Xpoy1,0 D X, ..., 0D X1)).

The value of 7; determine the values of a and b in the following manner. If 7, = r,
thena=0,b=1.If , =¢,thena=1,b=0 and if 7; = rc, then a = b= 1.

It is important to note that at each step either 7, € {r,c} or 7; € {re,c}.
This is required to increase the order of resiliency by 1 at each step (see [4]).

326 P. Sarkar and S. Maitra

The actual set of possible values for 7; is determined recursively as follows. If
the order of resiliency of h is even then 71 € {r,c}, else 11 € {rc,c}. In general,
if the order of resiliency of F;_; is even then 7; € {r,c}, else 7; € {¢,rc}.

In this paper, we will solely be concerned with the implementation of F
as represented by the sequence (h, St,...,S;). For cryptographic properties we
refer the reader to [4l0]. Note that n = k + ¢, and F = F;. If h has the order
of resiliency mq, then F' has the order of resiliency m = my + t. The algebraic
degree of I and h are same and the nonlinearity of F' is 2¢ times the nonlinearity
of h.

4 Boolean Function Implementation

In this section we provide algorithms and hardware for resilient functions on
large number of input variables. The algorithm we present needs one step for
initialization and then ¢ steps in loop to generate the output. For LFSR based
stream ciphers, the LFSRs output one bit at each clock and hence an n-bit
input is presented to the non linear combining function at each clock. Thus an
algorithm which takes more that one clock cycle to compute the output of the
Boolean function will introduce delays into the system leading to a degradation of
performance. We solve this problem by using a pipelined architecture to map the
algorithm to hardware. The pipeline takes ¢ clock cycles to fill up and from then
on provides a bit of output at each clock cycle. The total delay for obtaining
all the key bits is ¢ clock cycles instead of a delay of ¢ clock cycles for each
key bit. Thus the pipeline ensures that there is no effective degradation in the
performance of the system.

4.1 Algorithm

We present an algorithm to compute the output of a function F on an n-bit
input (X,,..., Xg+1, Xky.--, X1). The function F is represented by
(h(Xg,...,X1),51,...,Sn—k), where h is presented as a black box and can be
implemented either by a combinational circuit or by a look up table. The algo-
rithm requires both time and space linear in m.

Let F be represented by (h, S1, ..., Sn—x), where h is a function of k variables.
Define Fy = h and F; to be a function represented by (h,Si,...,S;). Then
F,,_;, = F. We will refer to the recursive definition of F; provided in Section Bl
First we present an inefficient but obvious algorithm to compute F; = F,,_j =
F(X,,...,X1) based on the recursive definition in Section @l
recCompute(F;(X;tp, ..., X1))

1. if (¢ = 0) return h(Xg,..., X1);
if (% = Q) {X = Xiyws}
celse {X = X1 Xigpno1 = X }
if (X = 0) return recCompute(F;—1(Xitk—1,---,X1));

. else
if (1; = ¢) return 1 @ recCompute(F;—1(X;15-1,-..,X1));

o UL WD

Efficient Implementation of “Large” Stream Cipher Systems 327

7. if (1; = ¢) return recCompute(F;—1(1 ® X;45-1,...,1 D X3);
8. if (1; = re) return 1 @ recCompute(1 ® Fi—1(X;45-1,...,1 B X1);
9. end if
end
Steps 2 and 3 of the above algorithm interchanges the variables X; ; and
Xitk—1 if ¥; = R. The rest of the algorithm works according to the recursive
definition of F;. Note that the recursive approach is top down, i.e., it starts
processing the variable X, first and then descends to lower numbered variables.
It is easy to see that the algorithm takes time O(t). However, the stack depth of
the algorithm is also O(t), which is undesirable. Hence we map it to an iterative
algorithm. There are a few key observations to do this.

1. There is no need to carry the variables Xj_;,..., X; through the algorithm.
If &, = Q, then let Y = X}, else Y = Xpy1. Set vg = A(Y, Xp—1,...,X1)
and v1 = (1 ®Y,1® Xg_1,...,1® X;). Then we will ultimately have to
output v; or 1 @ v;, depending on the variables X,,,..., X.

2. At each recursive call, depending on the value of 7; we either complement
the input or the output or both. Thus at each stage it is sufficient to record
whether the input/output of the next evaluation has to be complemented.
This is managed by two bit variables a and b. The variable a records whether
the output needs to be complemented and the variable b records whether the
input needs to be complemented.

Based on these observations, we next present the algorithm computeTD(.),
which converts the recursive algorithm recCompute() to an iterative algorithm.
computeTD(X,, ..., X1) {
if (U1 =Q) then Y = Xy;
if (U1 = R) then Y = Xj.1q;
Vg = h(Y,kal,...,Xl); V] = h(]. EBY,].@kal,...,l@Xl);
a=0;b=0;
for i =t downto 1 do {
(1) if (¥; = Q) then X = X;1y;
(2*) if (Wl = R) then { X = Xi+k—1;Xi+k—1 = Xi—i—k; }
if (b® X =1) then {
if (;=c) thena=a® 1;
if (;=r)thenb=0® 1,
if (;=rc)then {fa=a®1l;0=0d1; }
}
}
return a @ vyp;

Based on the previous discussion, we get the following result.

Theorem 1. The algorithm computeT D(X,,...,X1) correctly computes
F(X,,...,X1) in O(t) time.

328 P. Sarkar and S. Maitra

Wy,
b= 71’;:11 7¥_l722, 7U?11,
4 3 4 3
Xn— Xn—
Xn—:—> . t . 2 X1
e P f
\ #1 #2 e FH# #t
Xp Lyt TS S S | S
. Vo, Vo, Vo, Vo, Vo,
X; AR jn U1, V1, V1, V1,
1/ { a, a, a, a,
1, 71— b b b b
xx Initial Stage x Final Stage

Fig. 4. Pipelined Implementation of computeT D(.)

4.2 Hardware Implementation of computeT D(.)

Here we show how very low cost pipelined hardware can be developed where the
output of F' on successive tuples of n-bit input is available at each clock pulse
after initial ¢ clocks, i.e., starting from (¢ 4+ 1)-th clock.

In the hardware description, we will be manipulating ¥, 7; as binary values.
To do this we need to describe how they will be encoded as bits. If ¥; = @, then
this is encoded by putting ¥; = 0. If ¥; = R, then this is encoded by putting
¥, = 1. If 7, = ¢, then this is always coded by putting 7; = 1. On the other hand
7, = 0 codes 7; = r or 7; = rc according as i Z mj; mod 2 or i = my mod 2,
where my is the order of resiliency of the initial function h (see Section [3)).

The pipeline has ¢ stages numbered #1 to #t (see Figure[d]). Stage #i stores
the current values of Xy, ..., X;,—;4+1. The two bits vy and v, are present at each
stage along with the two other work bits a and b.

The initial stage (Figure [Ba) of the algorithm performs the computation
required to get the values vy, v;. For this the function h needs to be evaluated
twice. We are assuming that each evaluation of the function h takes one clock
cycle and hence h is implemented either as a look up table or by a small depth
computational circuit.

The intermediate stages of the pipeline perform the task of variable inter-
change and updation of the bits a and b (see Figure Bb). The bits vg,v; are
carried forward unchanged. If ¥; = R the value of X, and X;;,_1 should be
properly interchanged for the next stage as in lines (1*) and (2*) of the algo-
rithm. The 2 x 1 multiplexer ensures that the output is X as required by the
algorithm. If X and b are unequal, then the two & gates are activated, other-
wise a and b are carried forward unchanged to the next stage. If 7, = 0, then
7; represents r or rc¢ and the input has to be complemented. The & of (X & b)
and 7; ensures this. If 7, = 1, then 7; is ¢ and the output certainly needs to be
complemented. Also if ; = 0 but represents rc, then also the output needs to be
complemented. But 7; can represent rc only if i — m; = 0 mod 2. The value of
the function const(i) is (¢ — m1 + 1) mod 2, and the combination of the or and
& gate ensures that a is updated as required.

Efficient Implementation of “Large” Stream Cipher Systems 329

Y a
Xetr2 1 %, o vo—{2 x 1—>$9—>f
X, 4MUX h o vy —s| MUX
- :
wl Xl —y Tb
(a) Initial Stage (¢) Final Stage
COWSt@ a (stage 1)
—>éLB—>a (stage i +1) (stage i) (stagei+1)
Xitk =9 %1 Xi+k—ﬁ2X1J.k1
Xitn_1s MUX Xipn o MUX[07
Ty, TW-

Fig. 5. Components of Top Down Architecture

The final stage (Figure Bk) is simple. Depending on the value of b, it outputs
either vg or v and a is simply EXORed with the output of the 2 x 1 multiplexer.

The whole circuit operates as follows. At each clock, stage #i forwards the
values of the variables to the next stage and updates the values of work bits
a,b for the next stage. The values vy and vy are forwarded unchanged. It is
important to understand the need for generation of vy, v; at the first stage and
carrying them through all the ¢ stages. We need these two bits only at the end
for the final circuit (Figure [Bk). However, the values of vg, v1 are generated from
the variables X7 to Xj41. It is more efficient to carry two bits vy, v; through the
t stages instead of carrying the k+1 bits X, ..., Xi41. Since there are ¢ stages,
the whole pipeline takes t clock cycles to be completely filled up. Hence the first
output appears at (¢ 4+ 1)-th clock and consequently a bit of output appears at
each clock.

We use both the rising and falling edge of the clock. Each stage stores two
buffers, one input and another output (see Figure[6]). At the leading edge the val-
ues of the input buffer registers of stage #i are latched to the output buffer reg-
isters of the same stage. The signals Xk, ..., X;1r_2 and vg, v; go directly from
input buffer to output buffer. The other three signals X;,_1, a,b are generated
through the inbuilt combinational circuit (Figure Eb) from X;ix, X;yr—1,a,b
and ¥;, 7;. That is, the stage C in Figure [l contains the circuit of Figure Bk. At
the falling edge of the clock, the output buffer registers of stage #1 are latched to
the input buffer registers of the stage #(i+ 1). The inbuilt combinational circuit
being small enough, it is justified to consider that the delay of the circuit is much
less than the clock width and hence there is no problem in using both the leading
and falling edge of the clock in the hardware. The inbuilt combinational circuit
blocks in this architecture can also be implemented using small lookup table.

Note that the Boolean function is reconfigurable. If we can load a new set
of values for (¥, 7%),...,(¥1,71), then the function F' will change, keeping the
cryptographic parameters same. This will help in accessing the elements of a large

330 P. Sarkar and S. Maitra

Stage ¢ Stage i + 1

I O : I O I : Input Buffer
: 3 3 : C' : Inbuilt Circuit
| |] O : Output Buffer

Fig. 6. Input Output Latching for Intermediate Stages

set of Boolean functions with minimum possible change, changing the pattern
of 2t bit values.

We also address the issue of synchronization at this point. The same kind of
system will be available to both the sender and receiver. Once both sides start
with a specific key, the first output comes after a delay of ¢ clock cycles, i.e.,
starting from the (¢ + 1)-th clock. Now consider the case when the key of the
system is going to be changed. In that case, when the new key is loaded, then the
pipeline will contain some data generated from the earlier key. The data coming
from the next key will be operational after ¢ clock cycles after it is loaded in the
LFSRs. This is the same case in both the sender and receiver end. Hence, there
is no additional requirement for synchronization in this setup.

4.3 A Specific Example

Consider the implementation of a function F' on 24 variables. We take the initial
function h to be a 16-variable function, with order of resiliency 8, algebraic
degree 7 and nonlinearity 2! — 2% [6]. The function & is optimized with respect
to the parameters considered here. Now we use a pipeline of 8 levels to get
the 24-variable function F' with order of resiliency 16, algebraic degree 7, and
nonlinearity 222 — 217, These are also a set of best possible parameters. The
user has an option of selecting 2 x 8 = 16 bits for (¥g, 73),. .., (¥1,71), to get
a fairly wide range (2!¢) of choices for F. Further, it is possible to design a
suitable architecture so that the values of these 16 bits can be programmable
and the design can be implemented using an FPGA structure. Thus it is possible
to design a reconfigurable structure which can be programmed to implement
any one of the 2'6 possible 24-variable Boolean functions F. The VLSI area
required to implement the reconfigurable structure is rougly equal to the VLSI
area required to implement the 16-variable initial function h. An overall delay
of only 8 clock cycles is introduced in the system due to the pipeline. Note that
the delay is a constant 8 clock cycles and is independent of the length of the key
stream.

In this system, we will have 24 different LESRs. We implement the LFSRs
by CA. Depending on the requirement of the total key size, we need to choose
the length of the CAs, where the lengths of any two CAs are coprime. Let us
consider the maximum length of an CA will be less than 128. As a specific

Efficient Implementation of “Large” Stream Cipher Systems 331

example, consider that the lengths will be the following values :
41,43,47,53,57,59,61,67,71,73,74 = 2 x 37,77 = 7 x 11,79,83,89,93 = 3 x
31,97,101,103,107,109,113,115 = 5 x 23,119. The total summation of these
lengths, i.e., the key size of the system is 1931. Since the resiliency of F' is 16,
the first affine function to which F' will have non zero correlation must be non
degenerate on 17 variables. Hence, the best possible correlation attack will need
estimating an equivalent polynomial of length x from the cipher text or the key
sequence. Let x be the sum of the first 17 values in the above sequence. Here
x = 1164, and hence any known attack is infeasible. It is also important to note
that the connection polynomial of the equivalent LFSR is the product of the
connection polynomials of the individual LFSRs.

The two dimesional array of flip flops required to implement the CAs is going
to be an 24 x 128 array. Thus the total number of flip flops is going to be 3072.
Out of these only 1931 are going to be used. This is a small trade off to obtain
a uniform design. Also note that this number of flip flops are going to be non
functional irrespective of whether CA or LFSR is used. The use of CA ensures
that the connection structure of the array is going to be uniform.

5 Conclusion

In this paper we have proposed LFSR systems employing large Boolean func-
tions. We have described hardware implementation of large Boolean functions
constructed using the recursive method of [4], with optimized function as an
initial one [9]. The main point we have tried to make is that LFSR systems
employing large Boolean functions are feasible to implement in hardware. We
provide a reconfigurable pipelined architecture for the large Boolean function
and propose the use of cellular automata for a regular VLSI structure of differ-
ent length LFSRs. Given the known attacks (see [14] and the references in this
paper) and the current advancement of the computer systems, it is improbable
that this kind of system will be vulnerable in near future. To the best of our
knowledge this is the first effort to consider this problem. Several questions re-
main as to the best possible implementation and the implementation of Boolean
functions constructed using other recursive methods. We feel these can be pos-
sible future research topics.

References

1. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Number
561 in Lecture Notes in Computer Science. Springer-Verlag, 1991.

2. P. P. Chaudhuri. Additive cellular automata: theory and applications, volume 1.
IEEE Press, NJ, 1997.

3. S. W. Golomb. Shift Register Sequences. Aegean Park Press, 1982.

4. S. Maitra and P. Sarkar. Highly nonlinear resilient functions optimizing Siegen-
thaler’s inequality. In Advances in Cryptology - CRYPTO’99, number 1666 in
Lecture Notes in Computer Science, pages 198-215. Springer Verlag, August 1999.

332

5.

6.

10.

11.

12.

13.

14.

15.

16.

P. Sarkar and S. Maitra

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

E. Pasalic, S. Maitra, T. Johansson and P. Sarkar. New constructions of resilent
and correlation immune boolean functions achieving upper bounds on nonlinearity.
In Proceedings of the Workshop on Cryptography and Coding Theory, Paris, 2001.
P. Sarkar. A brief history of cellular automata. ACM Computing Surveys Volume
32, Issue 1 (2000), Pages 80-107.

P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions with impor-
tant cryptographic properties. In Advances in Cryptology - EUROCRYPT 2000,
number 1807 in Lecture Notes in Computer Science, pages 491-512. Springer Ver-
lag, 2000.

P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient boolean
functions. In Advances in Cryptology - CRYPTO 2000, number 1880 in Lecture
Notes in Computer Science, pages 515-532. Springer Verlag, 2000.

J. Seberry, X. M. Zhang, and Y. Zheng. On constructions and nonlinearity of corre-
lation immune Boolean functions. In Advances in Cryptology - EUROCRYPT 983,
pages 181-199. Springer-Verlag, 1994.

M. Serra and T. Slater. A Lanczos algorithm in a finite field and its applications.
Journal of Combinatorial Mathematics and Combinatorial Computing, 1990.

Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlin-
earity. Proceedings of INDOCRYPT 2000, volume 1977 of LNCS, pages 19-30.

S. Tezuka and M. Fushimi. A method of designing cellular automata as pseudo-
random number generators for built-in self-test for VLSI. In Finite Fields: Theory,
Applications and Algorithms, Contemporary Mathematics, AMS, pages 363367,
1994.

T. Johansson and F. Jonsson. Fast Correlation Attacks through Reconstruction of
Linear Polynomials. Proceedings of CRYPTO 2000, volume 1880 of LNCS, pages
300-315.

W. Meier and O. Stafflebach. Fast correlation attacks on certain stream ciphers.
Journal of Cryptology, 1:159-176, 1989.

S. Wolfram. Theory and applications of cellular automata: including selected pa-
pers 1983-1986. World Scientific, NJ, 1986.

	1 Introduction
	2 Cellular Automata
	2.1 CA Based Implementation

	3 Cryptographically Useful Boolean Functions
	4 Boolean Function Implementation
	4.1 Algorithm
	4.2 Hardware Implementation of computeTD(.)
	4.3 A Specific Example

	5 Conclusion
	References

