High Performance Single-Chip FPGA
Rijndael Algorithm Implementations

Maire McLoone and J.V McCanny

DSiP™ Laboratories, School of Electrical and Electronic Engineering,
The Queen’s University of Belfast, Belfast BT9 SAH, Northern Ireland
Maire.McLoone@ee.qub.ac.uk, J.McCanny@ee.qub.ac.uk

Abstract. This paper describes high performance single-chip FPGA
implementations of the new Advanced Encryption Standard (AES) algorithm,
Rijndael. The designs are implemented on the Virtex-E FPGA family of
devices. FPGAs have proven to be very effective in implementing encryption
algorithms. They provide more flexibility than ASIC implementations and
produce higher data-rates than equivalent software implementations. A novel,
generic, parameterisable Rijndael encryptor core capable of supporting varying
key sizes is presented. The 192-bit key and 256-bit key designs run at data rates
of 5.8 Gbits/sec and 5.1 Gbits/sec respectively. The 128-bit key encryptor core
has a throughput of 7 Gbits/sec which is 3.5 times faster than similar existing
hardware designs and 21 times faster than known software implementations,
making it the fastest single-chip FPGA Rijndael encryptor core reported to date.
A fully pipelined single-chip 128-bit key Rijndael encryptor/decryptor core is
also presented. This design runs at a data rate of 3.2 Gbits/sec on a Xilinx
Virtex-E XCV3200E-8-CG1156 FPGA device. There are no known single-
chip FPGA implementations of an encryptor/decryptor Rijndael design.

Keywords: FPGA Implementation, AES, Rijndael, Encryption

1 Introduction

In September 1997 the National Institute of Standards and Technology (NIST) issued
a request for possible candidates for a new Advanced Encryption Standard (AES) to
replace the Data Encryption Standard (DES). In August 1998, 15 candidate
algorithms were selected and a year later, in August 1999 five finalists were
announced: MARS, RC6, Rijndael, Serpent and Twofish. On 02 October 2000, the
Rijndael algorithm [1], developed by Joan Daemen and Vincent Rijmen was selected
as the winner of the AES development race. In performance comparison studies
carried out on all five finalists [2,3,4,7], Rijndael proved to be one of the fastest and
most efficient algorithms. It is also easily implemented on a wide range of platforms
and is extendable to other key and block lengths.

In this paper two fully pipelined Rijndael algorithm designs are presented. The
designs are implemented using Xilinx Foundation Series 3.1i software on the Virtex-
E FPGA family of devices [5]. A fully pipelined Rijndael design requires
considerable memory, hence, its implementation is ideally suited to the Virtex-E and

C.K. Kog, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 65-76, 2001.
© Springer-Verlag Berlin Heidelberg 2001

66 M. McLoone and J.V McCanny

Virtex-E Extended Memory range of FPGAs, which contain devices with up to 280
RAM Blocks (BRAMSs). The first design presented is an encryption-only design
capable of supporting 128-bit, 192-bit and 256-bit keys. The 128-bit key design is
implemented on the XCV812E-8-BG560 device. The 192-bit and 256-bits are
implemented on XCV3200E-8-CG1156 devices, as they are too large to place on the
XCV812E device. The authors are not aware of any other Rijndael hardware design
capable of supporting varying key sizes. However, software designs do exist. The
fastest known software implementations of Rijndael are by Brian Gladman [6]. On a
933 MHz Pentium III processor, his 128-bit key design achieves a throughput of 325
Mbits/sec, the 192-bit key design runs at 275 Mbits/sec and the 256-bit key design at
236 Mbit/sec. Hardware implementations of a 128-bit key design do exist. An
implementation on a Virtex XCV1000 FPGA device by Gaj and Chodowiec [4]
achieved a data-rate of 331.5 Mbits/sec. Dandalis, Prasanna and Rolim [2] carried out
an implementation on a Xilinx Virtex device and achieved an encryption rate of 353
Mbits/sec. A partially unrolled design by Elbirt, Yip, Chetwynd and Paar [7] on the
Virtex XCV1000-BG560 FPGA performed at a data-rate of 1937.9 Mbits. The second
design [8] presented is capable of both encryption and decryption operations and is
implemented on an XCV3200E-8-CG1156 device. There are no known single-chip
FPGA implementations of the Rijndael algorithm, which perform both encryption and
decryption. However, Ichikawa, Kasuya and Matsui’s [3] implementation on a CMOS
ASIC achieves 1950 Mbits/sec. The encryptor/decryptor implementation by Weeks,
Bean, Rozylowicz and Ficke [9] performs at a rate of 5163 Mbits/sec on a CMOS
ASIC.

Section 2 of the paper provides a description of the Rijndael Algorithm. Section 3
outlines the design of the fully pipelined Rijndael implementations. Performance
results are given in section 4. Finally, concluding remarks are made in section 5.

2 Rijndael Algorithm

The Rijndael algorithm is an iterated block cipher. The block and key lengths can be
128, 192 or 256 bits. The NIST requested that the AES must implement a symmetric
block cipher with a block size of 128 bits, hence the variations of Rijndael which can
operate on larger block sizes will not be included in the actual standard. Rijndael also
has a variable number of iterations or ‘rounds”: 10, 12 and 14 when the key lengths
are 128, 192 and 256 respectively. The transformations in Rijndael consider the data
block as a 4 column rectangular array of 4-byte vectors or State, as shown in Fig. 1. A
128-bit plaintext consists of 16 bytes, By, B, By, B3, B4... Bys, Bys. Hence, By
becomes Py, B; becomes Py, B, becomes P,y ... B4 becomes Py; and so on. The
key is also considered to be a rectangular array of 4-byte vectors, the number of
columns, N,, of which is dependent on the key length. This is illustrated in Fig. 2. The
algorithm design consists of an initial data/key addition, nine, eleven or thirteen
rounds when the key length is 128-bits, 192-bits or 256-bits respectively and a final
round, which is a variation of the typical round. The Rijndael key schedule expands
the key entering the cipher so that a different sub-key or round key is created for each
algorithm iteration. An outline of Rijndael is shown in Fig. 3.

High Performance Single-Chip FPGA Rijndael Algorithm Implementations 67

N, =4 Ne=6 N, =8
Poo | Po | Poz | Pos Koo | Ko | Koz | Koz -KD_';I-RE' QE_K;@:_KD_?I
Pio | P11 | P12 | Pia Kio | Kig | K1z | Kis _K_1_4_| _R:; i K;-i_&;-i
Poo | Par | Paz | Pas Koo | Kor | Koz | Ko | Kox | Ko | Koe | Kov |
Pao | P31 | Paz | Paa Kao | Kot | Kaz | Kas _K_3_4_I_R;;: K3s-g K37i

Fig. 1. State Rectangular Array Fig. 2. Key Rectangular Array

Plain_b Cipher
Text | |Data/Key ™| Rnd] Rnd _>_> Rod [] Final _>Text
Key Addition 0 1 8 Rnd
Key
Schedule

Fig. 3. Outline of 128-bit Key Rijndael Encryption Algorithm

2.1 Rijndael Round

The Rijndael round comprises a ByteSub Transformation, a ShiftRow
Transformation, a MixColumn Transformation and a Round Key Addition. The
ByteSub transformation is the s-box of the Rijndael algorithm and operates on each of
the State bytes independently. The s-box is constructed by finding the multiplicative
inverse of each byte in GF(2%). An affine transformation is then applied, which
involves multiplying the result by a matrix and adding to the hexadecimal number
‘63’. In the ShiftRow transformation, the rows of the State are cyclically shifted to the
left. Row 0 is not shifted, row 1 is shifted 1 place, row 2 by 2 places and row 3 by 3
places. The MixColumn transformation operates on the columns of the State. Each
column is considered a polynomial over GF(2*) and multiplied modulo x*+7 with a
fixed polynomial c(x), where,

c(x) =03°x + 01’x* + “01’x + 02’ (1
Finally the State bytes and round-key bytes are XORed in Round Key Addition. A

typical Rijndael round is illustrated in Fig. 4. In the final round the MixColumn
transformation is excluded.

2.2 Key Schedule
The Rijndael key schedule consists of two parts: Key Expansion and Round Key

Selection. Key Expansion involves expanding the cipher key into a linear array of 4-
byte words, the length of which is determined by the data block length, N,, multiplied

68 M. McLoone and J.V McCanny

Round . Key | Round
R = e N | — ey

Input ByteSub ShiftRow MixCol Addition ,: Output

Round * i

Fig. 4. Rijndael Round

by the number of rounds, N, plus 1, i.e. N, * (N, + 1). The data block length, N, = 4.
When the key block length, N, = 4, 6 and 8, the number of rounds is 10, 12 and 14
respectively. Hence the lengths of the expanded key are as shown in Table 1.

Table 1. Length of Expanded Key for Varying Key Sizes

Data Block Length, N, 4 4 4
Key Block Length, V, 4 6 8
Number of Rounds, V, 10 12 14
Expanded Key Length 44 52 60

The first N, words of the expanded key contain the cipher key. When &, = 4 or 6,
each remaining word, W[i], is found by XORing the previous word, W[i-1] with the
word N, positions earlier, W[i-Ny]. For words in positions, which are a multiple of N,,
a transformation is applied to W[i-1] before it is XORed. This transformation involves
a cyclic shift of the bytes in the word. Each byte is passed through the Rijndael s-box
and the resulting word is XORed with a round constant. However, when N, = 8, an
additional transformation is applied. For words in positions, which are a multiple of
(N.i + 4), each byte of the word, W[i-1], is passed through the Rijndael s-box. The
round keys are selected from the expanded key. In a design with N, rounds, N, +1
round keys are required. For example a 10-round design requires 11 round keys.
Round key 0 is W[0] to W[3] and is utilized in the initial data/key addition, round key
1 is W[4] to W[7] and is used in round 0, round key 2 is W[8] to W[11] and used in
round 1 and so on. Finally, round key 10 is used in the final round.

2.3 Decryption

The decryption process in Rijndael is effectively the inverse of its encryption process.
It comprises an inverse of the final round, inverses of the rounds, followed by the
initial data/key addition. The data/key addition remains the same as it involves an
XOR operation, which is its own inverse. The inverse of the round is found by
inverting each of the transformations in the round. The inverse of ByteSub is obtained
by applying the inverse of the affine transformation and taking the multiplicative
inverse in GF(2%) of the result. In the inverse of the ShiftRow transformation, row 0 is

High Performance Single-Chip FPGA Rijndael Algorithm Implementations 69

not shifted, row 1 is now shifted 3 places, row 2 by 2 places and row 3 by 1 place.
The polynomial, c(x), used to transform the State columns in the inverse of
MixColumn is given by,

c(x) = OB’ + 0D’ + 09°x + 0F” 2)

Similarly to the data/key addition, Round Key addition is its own inverse. During
decryption, the key schedule does not change, however the round keys constructed are
now used in reverse order. For example, in a 10-round design, round key 0 is still
utilized in the initial data/key addition and round key 10 in the final round. However,
round key 1 is now used in round 8, round key 2 in round 7 and so on.

3 Design of Pipelined Rijndael Implementations

The Rijndael algorithm implementations presented in this paper are based on the
Electronic Codebook (ECB) mode. Although ECB mode is less secure than other
modes of operation, it is commonly used and its operation can be pipelined [10]. The
fully pipelined Rijndael implementation will also operate in Counter mode. Counter
mode is a simplification of Output Feedback (OFB) mode and it involves updating the
input plaintext block, P, as a counter, P;;; = P;+1, rather than using feedback. Hence,
the ciphertext block, C, is not required in order to encrypt plaintext block, P+1 [11].
Counter mode provides more security than ECB mode and operation in either mode
will achieve high throughputs.

A number of different architectures can be considered when designing encryption
algorithms [7]. These are described as follows. Iterative Looping (IL) is where only
one round is designed, hence for an n-round algorithm, #» iterations of that round are
carried out to perform an encryption. Loop Unrolling (LU) involves the unrolling of
multiple rounds. Pipelining (P) is achieved by replicating the round and placing
registers between each round to control the flow of data. A pipelined architecture
generally provides the highest throughput. Sub-Pipelining (SP) is carried out on a
partially pipelined design when the round is complex. It decreases the pipeline’s delay
between stages but increases the number of clock cycles required to perform an
encryption.

The Rijndael designs described in this paper are coded using VHDL and are fully
pipelined: the encryption design having ten, twelve or fourteen pipeline stages and the
encryption/decryption design having ten pipeline stages.

3.1 Design of Generic Rijndael Encryptor Core

The main consideration in both designs is the memory requirement. The Rijndael
s-box in the ByteSub transformation can be implemented as a look-up table (LUT) or
ROM. This proves a faster and more cost-effective method than implementing the
multiplicative inverse operation and affine transformation. Since the State bytes are
operated on individually, each Rijndael round requires sixteen 8-bit to 8-bit LUTs. In
the key schedule, LUTs can also be used, as words are passed through the s-box. The

70 M. McLoone and J.V McCanny

Virtex-E and Virtex-E Extended Memory range of FPGAs are utilized for
implementation as they contain devices with up to 280 Block SelectRAM (BRAM)
memories. A single BRAM can be configured into two single port 256 x 8-bit RAMs,
hence, eight BRAMs are used in each round. When the write enable of the RAM is
low (°0’), transitions on the write clock are ignored and data stored in the RAM is not
affected. Hence, if the RAM is initialized and both the input data and write enable
pins are held low then the RAM can be utilized as a ROM or LUT.

The ShiftRow transformation is simply hardwired as no logic is involved. The
MixColumn transformation can be written as a matrix multiplication as given in
Equation 3, with a 4-byte input, ay, a;, a,, a; and output, by, b;, b,, b;.

by 02 03 01 01][a
b| |01 02 03 o01a
by| ~ o1 o1 02 03||a, (3)
b, 03 01 01 02]|a;

The transformation is implemented by XORing the results of the multiplications in
GF(2%) in accordance with Equation (3), as illustrated in Fig. 5.

The flowchart in Fig. 6 outlines the various stages involved in the Rijndael key
schedule for key lengths of 128, 192 and 256-bits in length. N;, N, and N, represent
the key block length, the data block length and the number of rounds respectively.
The input to the key schedule is the cipher key and key block length and the outputs
are the Round keys. The Round keys are created as required, hence, Round key [0] is
available immediately, Round key [1] is created one clock cycle later and so on. The
various functions utilized in the key schedule are as follows:

Rem Function : Returns the remainder value in a division

SubByte Function : Operates on a 4-byte word and each byte is passed through
the Rijndael s-box
RotByte Function : Involves a cyclic shift to the left of the bytes in a 4-byte

word. For example, an input of xy,x;,x,x;, will produce the
output X1,X2,X3,X0.

: Returns a 4-byte vector, Rcon[i] = RC[i], ‘00°, ‘00°, ‘00’)
where the values of RCY[i] are outlined in Table 2.

Rcon Function

Table 2. Rijndael Key Schedule Round Constants

RC[1] =] RC[2] =] RC[3] =| RCH4] =| RC[5] =
‘01° 02’ “04° ‘08’ ‘10°

RC[6] =| RC[7] =| RC[8] =| RC[9] =| RC[I0] =
20° 40° 80° ‘1B’ 36°

High Performance Single-Chip FPGA Rijndael Algorithm Implementations 71

Input i ; ;
| ayn TR | Aagiyi3

‘j) Output

| Bagiy Py dein

il Pagipe | Baged

01«““ 02

A4(p) iy A4z A4(iy+3

M | o |
03 01—] o1

) —

Fig. 5. Design of MixColumn Transformation

When utilizing a 128-bit key, 40 words are created during expansion of the key and
every fourth word is passed through the s-box with each byte in the word being
transformed. Forty 8-bit to 8-bit LUTs and hence 20 BRAMs are required in its
implementation. Similarly, for a 192-bit key 16 BRAMs are required. With a 256-bit
key, 26 BRAMs are needed — 14 are utilized for words in positions which are a
multiple of 8 and a further 12 are used for words in positions which are a multiple of
(8.1 + 4) for 8<i<60.

Thus, in the overall 128-bit key design, a total of 100 ROMs are required, 80
ROMs are required for the 10 rounds and a further 20 for the key schedule. Similarly,
112 ROMS are required for the 192-bit design (96 for the 12 rounds and 16 for the
key schedule) and 138 for the 256-bit design (112 for the 14 rounds and 26 for the key
schedule).

3.2 Design of 128-bit Key Rijndael Encryptor/Decryptor Core

In the decryption operation, the inverse of the ByteSub transformation can also be
implemented as a LUT. However the values in this LUT are different to those
required for encryption. Therefore, it is necessary to accommodate for both
encryption and decryption. One method would involve doubling the number of
BRAMs utilized, however, this would prove costly on area. In the Rijndael

72

M. McLoone and J.V McCanny

WI0] to W[N—1]
= Cipher Key

— P Temp = W[i-1]

i=N,

v

YES
NO

i=i+1

R = RotByte(Temp)

v

S = SubByte(R)

v

T=8
XOR Rconli/Ny]

v

U = SubByte(Temp)

v

L 4 v
WIi] = W[i-Ni] Wil = W[i-Ni] WIi] = W[i-Ni]
XORT XOR Temp XORU

RoundKey(j) =
WI4j] to W[4j+3)]

=i

Fig. 6. Rijndael Key Schedule

High Performance Single-Chip FPGA Rijndael Algorithm Implementations 73

encryption/decryption design, this was overcome by the addition of two BRAMs,
which were utilized as ROMs, one containing the initialization values for the LUTs
required during encryption, the other containing the values for the LUTs required
during decryption. Therefore, instead of initializing each individual BRAM as a
ROM, when the design is set to encrypt, all the BRAMs are initialized with data read
from the ROM containing the values required for encryption. When the design is set
to decrypt, the BRAMs are initialized with data from the ROM containing the values
required for the decryption operation. This initialization procedure is outlined in
Fig. 7.

Round 0 Final Round
oEEE EEuE

HEEE EEEd

Encrypt
ROM

Decrypt
ROM

Enc/Dec=°1"

Fig. 7. Initialization of Block RAMs in Rijndael Design

The Inverse ShiftRow transformation is also hardwired. Multiplexors (MUXs)
select between the ShiftRow and Inverse ShiftRow wiring. Similarly to Fig. 5, the
Inverse MixColumn transformation can be implemented by XORing results of the
multiplications in GF(2*) and again, MUXs are used to select between the values
required for encryption and those required during decryption.

Since the encryptor/decryptor core design assumes a key length of 128 bits, the
design of the key schedule is a simplification of that shown in the flowchart illustrated
in Fig. 6. During decryption, the values of the LUTs utilized in the key schedule do
not change, hence, the LUTs can simply be implemented as ROMs. However, the
round keys are used in reverse order. The initialization process for either encryption
or decryption takes 256 clock cycles as the 256 values contained in each ROM are
read. Since the system clock for the encryption/decryption design is 25.3 MHz, this
corresponds to an initialization time of only 10 pus. When encrypting data, the keys are
produced as each round requires them, therefore, the encryption will take 10 clock
cycles corresponding to the 10 rounds when using a 128-bit key. The design assumes
that the same key is utilized during a session of data transfer. If decrypting data, the
initialization process will be as described above. However, initial decryption will take
20 clock cycles, 10 clock cycles for the required round keys to be constructed and a
further 10 corresponding to the 10 rounds. The overall 128-bit key
encryptor/decryptor design, therefore, requires 102 BRAMs.

74 M. McLoone and J.V McCanny

4 Performance Results

The Rijndael designs are implemented using Xilinx Foundation Series 3.1i software
and Synplify Pro V6.0 on Xilinx Virtex-E FPGA devices. Data blocks can be
accepted every clock cycle and after an initial delay the respective
encrypted/decrypted data blocks appear on consecutive clock cycles. The first design
implemented is the generic encryptor core, which supports 128-bit, 192-bit and 256-
bit keys. The performance results obtained for this implementation will be similar to
those of a design with only decryption capabilities. The main difference in the two
implementations would be the initial delay time as mentioned in section 3. The 128-
bit key encryption design implemented on the Virtex-E XCV812e-8bg560 device,
utilizes 2222 CLB slices (23%) and 100 BRAMs (35%). Of 10Bs 384 of 404 are
used. The design uses a system clock of 54.35 MHz and runs at a data-rate of 7
Gbits/sec (870 Mbytes/sec). This result proves faster than similar existing FPGA
implementations, as illustrated in Table 3 below. The implementations included in
the table are as outlined in section 1. The design is also the most efficient in terms of
CLB utilization although it must be remembered that the previous implementations
were limited in their use of device.

Table 3. Specifications of 128-bit Key Rijndael Encryption FPGA Implementations

T Device Are Through Throughput
ype a put /Area
(CLB (Mbits/s) (Mbits/s*Slic
Slices) es)
Gaj et al[4] IL XCV1 290 331.5 0.11
000 2
Dandalis et IL XCV1 567 353 0.06
al[2] 000 3
Elbirt et al[7] S XCV1 900 1940 0.22
P 000 4
McLoone et al P XCVs8l1 2222 6956 3.1
2E

Both the 192-bit and 256-bit key encryption designs are implemented on Virtex-E
XCV3200e-8-cgl156 devices, as they require a higher number of IOBs than that
available on the XCV812E device. The 192-bit key encryption design utilizes 2577
CLB slices (7%) and 112 BRAMs (53%). Of I0Bs 448 of 804 are used. The design
uses a system clock of 45.44 MHz and runs at a data-rate of 5.8 Gbits/sec (727
Mbytes/sec). The 256-bit key encryption utilizes 2995 CLB slices (9%) and 138
BRAMs (66%). Of IOBs 512 of 804 are used. The design uses a system clock of

High Performance Single-Chip FPGA Rijndael Algorithm Implementations 75

39.88 MHz and runs at a data-rate of 5 Gbits/sec (638 Mbytes/sec). There have been
no FPGA implementations of Rijndael designs capable of supporting 128-bit, 192-bit
and 256-bit keys published to date.

The second design implemented is the Rijndael encryptor/decryptor design. On the
Virtex-E XCV3200e-8-cgl 156 device, this design utilizes 7576 CLB slices (23%) and
102 BRAMs (49%). Of IOBs 385 of 804 are used. The design uses a system clock of
25.3 MHz and runs at a data-rate of 3239 Mbits/sec (405 Mbytes/sec). There are no
known similar single-chip FPGA encryptor/decryptor implementations. Also, the
results obtained compare very well with existing ASIC implementations, as illustrated
in Table 4 below.

Table 4. Specifications of Rijndael ASIC Implementations

Device Throughput

(Mbits/sec)
Ichikawa, Kasuya ,Matsui [3] CMOS 1950
Weeks, Bean, Rozylowicz, Ficke [8] CMOS 5163
McLoone, McCanny XCV3200E 3239

It is possible to enhance the performance figures of the two designs presented by
further optimization of the algorithm specific to the requirements of the FPGA device
on which the design is to be implemented. However, this would result in the design
being less easy to migrate to other devices and technologies.

5 Conclusions

To conclude, this paper describes high performance single-chip FPGA
implementations of the Rijndael algorithm. The generic, parameterisable encryption
design is the only hardware Rijndael encryption design that supports varying key
sizes, reported to date. When implemented, the 128-bit key encryption design
performs at a data-rate of 7 Gbits/sec, which is 3.5 times faster than similar existing
FPGA implementations and 21 times faster than software implementations. Previous
Rijndael encryption-only designs are implemented on Virtex XCV1000 devices,
which consist of only 32 BRAMs and therefore, cannot support a fully pipelined
Rijndael design. The Virtex-E and Virtex-E Extended Memory family of FPGAs,
however, contains up to 280 BRAMs and can easily accommodate large unrolled
designs. The encryptor/decryptor core runs at 3.2 Gbits/sec. This implementation not
only compares favorably with similar ASIC designs but is also the only known single-
chip FPGA Rijndael design capable of both encryption and decryption. Future work
will include parameterising the Rijndael encryption/decryption design so as it may
also accept varying key sizes. Rijndael is set to be approved by NIST and replace
DES as the Federal Information Processing Encryption Standard (FIPS) in the
summer of 2001. It will replace DES in applications such as IPSec protocols, the
Secure Socket Layer (SSL) protocol and in ATM cell encryption. In general,
hardware implementations of encryption algorithms and their associated key
schedules are physically secure, as they cannot easily be modified by an outside

76 M. McLoone and J.V McCanny

attacker. Also, the high speed Rijndael encryptor core and Rijndael
encryptor/decryptor core presented, should prove beneficial in applications where
speed is vital as with real-time communications such as satellite communications and
electronic financial transactions.

Acknowledgements

This research has been supported by Amphion Semiconductor Ltd. and by a
University Research Studentship, which incorporates funding by the European Social
Fund.

References

1. J. Daemen, V.Rijmen: The Rijndael Block Cipher: AES Proposal : First AES
Candidate Conference (AES1) : August 20-22, 1998

2. A. Dandalis, V.K. Prasanna, J.D.P. Rolim: A Comparative Study of Performance
of AES Candidates Using FPGAs: The Third Advanced Encryption Standard
(AES3) Candidate Conference, 13-14 April 2000, New York, USA.

3. T. Ichikawa, T. Kasuya, M. Matsui: Hardware Evaluation of the AES Finalists:
The Third Advanced Encryption Standard (AES3) Candidate Conference, 13-14
April 2000, New York, USA.

4. K. Gaj, P. Chodowiec: Comparison of the Hardware Performance of the AES
Candidates using Reconfigurable Hardware: The Third Advanced Encryption
Standard (AES3) Candidate Conference, 13-14 April 2000, New York, USA.

5. Xilinx Virtex™-E 1.8V Field Programmable Gate Arrays: URL:
http://www.xilinx.com: November 2000.

6. Brian Gladman: The AES Algorithm (Rijndael) in C and C++: URL:
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm: April
2001.

7. AlJ. Elbirt, W. Yip, B. Chetwynd, C. Paar: An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists:
The Third Advanced Encryption Standard (AES3) Candidate Conference, 13-14
April 2000, New York, USA.

8. M.McLoone, J.V. McCanny: Apparatus for Selectably Encrypting and
Decrypting Data: UK Patent Application No. 0107592.8: Filed March 2001.

9. B. Weeks, M. Bean, T. Rozylowicz, C. Ficke: Hardware Performance
Simulations of Round 2 Advanced Encryption Standard Algorithms: The Third
Advanced Encryption Standard (AES3) Candidate Conference, 13-14 April 2000,
New York, USA.

10. J.C.A Van Der Lubbe: Basic Methods of Cryptography: Cambridge University
Press, 1998

11. A.Menezes, P. Oorschot, S. Vanstone: Handbook of Applied Cryptography: CRC
Press, 1997

	1 Introduction
	2 Rijndael Algorithm
	2.1 Rijndael Round
	2.2 Key Schedule
	2.3 Decryption

	3 Design of Pipelined Rijndael Implementations
	3.1 Design of Generic Rijndael Encryptor Core
	3.2 Design of 128-bit Key Rijndael Encryptor/Decryptor Core

	4 Performance Results
	5 Conclusions
	Acknowledgements
	References

