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Abstract. In this paper we explore pseudo-random number generation
on the IBM 4758 Secure Crypto Coprocessor. In particular we com-
pare several variants of Gennaro’s provably secure generator, proposed
at Crypto 2000, with more standard techniques based on the SHA-1 com-
pression function. Our results show how the presence of hardware support
for modular multiplication and exponentiation affects these algorithms.

1 Introduction

The use of cryptographic techniques is a key element of modern e-business ap-
plications. Such applications use cryptography in a variety of ways to protect
the privacy and confidentiality of data, to ensure the integrity of data, and to
provide user accountability through digital signature techniques.

The security of cryptographic algorithms in real life applications, however
relies mostly on two main assumptions:

1. that the secret keys used in the algorithms have not been compromised,
2. that the code executing the algorithms is really performing the tasks that it

is supposed to.

Thus, in real life there is a concrete need to address these issues: the physical
security of the keys and the code used in cryptographic algorithms. This is
why most of the time, the keys are stored in a secure, protected memory device
which is not easily tampered with. Similarly the code must be run in a protected
environment. One answer to these issues is to use a secure coprocessor.

A secure coprocessor is a device that offloads computationally intensive cryp-
tographic processes from the hosting server, and performs sensitive tasks unsuit-
able for less secure general purpose computers. Depending on the applications,
it may be a special-purpose computational engine (say a hardware RSA chip), or
it may be more useful to have a general-purpose computing environment. Such
a device must withstand physical and logical attacks; it must run the programs
that it is supposed to, unmolested. The host server should be able to (remotely)
distinguish between the real device and a possible impersonation. The coproces-
sor must remain secure even if adversaries carry out destructive analysis of one
or more devices.
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An important class of secure coprocessors are the so-called field programmable
ones, which allow the user to write custom software for the device, which then
loads it under some controlled condition and subsequently runs it.

In this paper we consider the IBM 4758 PCI Secure Crypto Coprocessor,
which is an example of such a field programmable device [12]. The IBM 4758 is
the only programmable device on the market which has been certified at FIPS
140-1 Level 4, the highest security classification for a commercial cryptographic
device [8]. We elaborate more on the technical specifications of the IBM 4758 in
Section 2.

We report the implementation results, on the IBM 4758, of a random number
generator recently proposed at CRYPTO’2000 [5].

1.1 The Problem of Pseudo-random Bit Generation

Many, if not all, cryptographic algorithms rely on the availability of truly random
bits. However perfect randomness is a scarce resource. Fortunately for almost all
cryptographic applications, it is sufficient to use pseudo-random bits, i.e. sources
of randomness that “look” sufficiently random to the adversary.

This notion can be made more formal. The concept of cryptographically
strong pseudo-random bit generators (PRBG) was introduced in papers by Blum
and Micali [3] and Yao [14]. Informally a PRBG is cryptographically strong if it
passes all polynomial-time statistical tests or, in other words, if the distribution
of sequences output by the generator cannot be distinguished from truly random
sequences by any polynomial-time judge.

A PRBG is called provably secure, if its security can be reduced to a well-
established conjectured hard problem (like factoring or computing discrete log-
arithms.)

[5] assumes a variation of the Discrete Log Assumption. More specifically
it assumes that if solving the discrete log problem modulo an n-bit prime p is
hard even when the exponent is small (say only c bits long with c < n), then
the function f : {0, 1}c −→ Z∗

p defined as f(x) = gx mod p has strong pseudo-
randomness properties over Z∗

p . In particular it is possible to think of it as a
pseudo-random generator itself. By iterating the above function and outputting
the appropriate bits, an efficient pseudo-random bit generator is obtained. The
generator outputs n − c − 1 bits per iteration, which consists of a single expo-
nentiation with a c-bit exponent.

An attractive feature of this generator is that all the exponentiations are
computed over a fixed basis, and thus precomputation tables can be used to
speed them up.

Using typical parameters n = 1024 and c = 160 we obtain roughly 860
pseudo-random bits per 160-bit exponent exponentiations. Using the precompu-
tation scheme proposed in [7] one can show that such exponentiation will cost
on average roughly 40 multiplications, using a table of only 12 Kbytes. Thus we
obtain a rate of more than 21 pseudo-random bits per modular multiplication.
Different tradeoffs between memory and efficiency can be obtained.



Pseudo-random Numbers on the IBM 4758 Secure Crypto Coprocessor 95

1.2 Interesting Questions and Our Results

When we started this implementation project we had the following questions
which we thought were worth investigating:

– The IBM 4758, as many other crypto coprocessors, provides hardware sup-
port for modular math operations (modular multiplications and exponenti-
ations). How effective are precomputation techniques like [7] in the presence
of hardware support? Is the extra storage worth the potential gain in speed?

– The generator proposed in [5] is the fastest provably secure PRBG in the
literature, based on established number theoretic conjectures. It would be
interesting to know how it compares to other PRBGs whose security is as-
sumed “from scratch” since they are related to block ciphers and hash func-
tions. In particular it is interesting to see the results of this comparison in a
constrained computing environment like a secure coprocessor.

For the first question, we ran the algorithm with various settings of the [7]
precomputation scheme, as well as with no precomputation at all. In the latter
case, modular exponentiations were computed completely in hardware, while in
the former case the dedicated hardware was invoked only for modular multipli-
cations. Quite surprisingly we obtained timing results that showed no increase
in speed with the use of precomputation tables. Actually the algorithm was sub-
stantially slowed down. This seems to indicate that hardware support for mod-
ular exponentiations totally eliminates the need for precomputation schemes.

For the second question, we ran the [5] generator against an implementation
of a pseudo-random generator consistent with the ANSI X9.17 Key Management
standard1. This generator is based on repeated application of the hash function
SHA-1. The timing results show that it is still considerably more efficient than
our number theoretic construction (but, as mentioned above, this is at the cost of
not being able to be proven to be reducible to any (supposed) hard mathematical
problem).

2 The IBM 4758 Architecture

The IBM 4758 Secure Crypto Coprocessor is a hardware card, that plugs into
industry-standard PCI slots in personal computers and other systems that sup-
port the PCI bus. The Coprocessor secure processing environment contains a
486-compatible microcoprocessor, custom hardware to perform DES and public
key cryptographic algorithms, a secure clock/calendar, and a hardware random
number generator. See Figure 1 for a complete list of specifications.

It also has protective shields, sensors, and control circuitry to protect against
a wide variety of attacks against the system. More specifically the 4758 is pro-
tected against attacks involving probe penetration, power sequencing, radiation

1 In fact it is the implementation that is used by the card itself for pseudo-random
number generation.
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Features: Card type: PCI 32-bit Bus Master
Internal Processor: 486 99MHz
RAM: 4 Mbytes
ROM/FLASH: 4 Mbytes
Battery-backed RAM: 32 Kbytes

Crypto: DES: Hardware support
RSA, DSS: Software with hardware support

for 1024-bit modular math
Hashing: SHA-1 in hardware
Random numbers: Noise-based hardware RNG

Fig. 1. Features of the IBM 4758

and temperature manipulation, consistent with the FIPS 140-1 Level 4 Certifi-
cation. The basic element of the protective layer is a grid of conductors which
is monitored by circuitry that can detect changes in the properties of the con-
ductors. The conductors themselves are non-metallic and closely resemble the
material they are embedded in. This makes discovery, isolation and manipulation
all the more difficult. These grids are arranged in several layers and the sensing
circuitry can detect accidental connections between layers as well as changes
in an individual layer. The sensing grids are made of flexible material and are
wrapped around and attached to the secure processor package as if it were being
gift-wrapped. After the package is wrapped, it is embedded in a potting material
(which as mentioned closely resembles the conductors). Finally the entire pack-
age is enclosed in a grounded shield to reduce susceptibility to electromagnetic
interference and to reduce detectable electromagnetic emanations.

During the final manufacturing step, the Coprocessor generates a unique
public key pair, which is stored in the device. The tamper detection circuitry
is activated at this time and remains active throughout the useful life of the
Coprocessor, protecting this private key, as well as all other keys and sensitive
data. The Coprocessor public key is certified at the factory by a global IBM
private key and the certificate is retained in the Coprocessor. Subsequently, the
Coprocessor private key is used to sign the Coprocessor status responses which
in conjunction with the public key certificate, demonstrate that the Coprocessor
remains intact and is genuine.

From the time of manufacture, if the tamper sensors are ever triggered, the
Coprocessor zeroizes its critical keys, destroys its certification, and is rendered
inoperable.

2.1 Developing Applications for the 4758

The Coprocessor contains firmware to manage its specialized hardware and to
control loading of additional software. The card runs the IBM CP/Q embedded
operating system, which has been extended with device drivers and other features
specific to the Coprocessor. The resulting control program, CP/Q++, provides
the platform for application development. A complete custom application (like
our pseudorandom generator) can be built on the CP/Q++ environment.
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During development, the security features of the 4758 and the public key sig-
natures used to validate download requests are irrelevant, but enabling symbolic
debugging capability by adding a debug probe to CP/Q++ is essential. Prepar-
ing the 4758 for development is a one-time process. This step allows an external
party to identify a 4758 by means of the identification of the officer assigned
to the operating system layer. It is important in the overall picture of security
provided by a 4758, in that a card with debug capability cannot masquerade as
a secure card to the external world.

Application code is written in C, with one portion destined for the 4758 and
the other its partner on the host machine. The 4758-based software is cross-
compiled using supplied headers. After the normal link step, there are a few
additional steps:

1. translation from host-native executable format to the format accepted by the
CP/Q++ loader, as well as translating debug symbols to a format understood
by the symbolic debugger supplied with the Toolkit

2. packing the translated executable into a disk image for the read-only file
system within the 4758, used by CP/Q++

3. downloading the disk image

The last, download, step is a bit lengthy in that the 4758 must be rebooted in
order to open the hardware locks that protect flash to enable writing of code,
and the hardware is tested each time the 4758 is reset (essential parts of the
security architecture).

After development has completed, software can be deployed using any of the
host platforms for which a device driver is available (includes AIX, OS/2, Linux,
others). The development Toolkit is available for NT, with a version hosted in
Linux to appear shortly.

3 The New Pseudorandom Generator

In this section we briefly recall the [5] generator.

Number-Theoretic Preliminaries. Let p be a prime. We denote with n the
binary length of p. It is well known that Z∗

p = {x : 1 ≤ x ≤ p − 1} is a cyclic
group under multiplication mod p. Let g be a generator of Z∗

p . Thus the function

f : Zp−1 −→ Z∗
p

f(x) = gx mod p

is a permutation. The inverse of f (called the discrete logarithm function) is
conjectured to be a function hard to compute (the cryptographic relevance of
this conjecture first appears in the seminal paper by Diffie and Hellman [4]
on public-key cryptography). The best known algorithm to compute discrete
logarithms is the so-called index calculus method [1] which however runs in time
sub-exponential in n.
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In some applications (like the one we are going to describe in this paper)
it is important to speed up the computation of the function f(x) = gx. One
possible way to do this is to restrict its input to small values of x. Let c be a
integer which we can think as depending on n (c = c(n)). Assume now that we
are given y = gx mod p with x ≤ 2c. It appears to be reasonable to assume that
computing the discrete logarithm of y is still hard even if we know that x ≤ 2c.
Indeed the running time of the index-calculus method depends only on the size
n of the whole group. Depending on the size of c, different methods may actually
be more efficient. Indeed the so-called baby-step giant-step algorithm by Shanks
[6] or the rho and lambda algorithms by Pollard [10] can compute the discrete
log of y in O(2c/2) time. If one restricts the field to generic algorithms (i.e.
algorithms that can only perform group operations and cannot take advantage
of specific properties of the encoding of group elements) then Schnorr in [11]
proves that this is the best that can be done.

If the complete factorization of p−1 is known, then the running time of these
algorithms can be improved by using the Pohlig-Hellman decomposition [9]. This
is done by reducing the original discrete log problem, into several “smaller”
problems (one for each distinct prime factor in p− 1).

Van Oorschot and Wiener in [13] present a new method of combining the
Pollard lambda method with a partial Pohlig-Hellman decomposition. Their end
result is that for random primes, using short exponents is not secure. However
their attack can be avoided by restricting the moduli to be safe primes p (i.e. such
that p−1

2 is also a prime) since in this case the Polhig-Hellman decomposition is
useless.

Thus if we set c = ω(log n), there are no known polynomial time algorithms
that can compute the discrete log of y = gx mod p when x ≤ 2c and p is a
safe prime. One can explicitly assumed that no such efficient algorithm can
exist. This is called the Discrete Logarithm with Short c-Bit Exponents (c-DLSE)
Assumption and we will adopt it as the basis of our results as well.

Assumption 1 (c-DLSE) Let SPRIMES(n) be the set of n-bit safe primes
and let c be a quantity that grows faster than log n (i.e. c = ω(log n)). For every
probabilistic polynomial time Turing machine I, for every polynomial P (·) and
for sufficiently large n we have that

Pr



p← SPRIMES(n);
x← Rc;
I(p, g, gx, c) = x


 ≤ 1

P (n)

In practice, given today’s computing power and discrete-log computing al-
gorithms, it seems to be sufficient to set n = 1024 and c = 160. This implies a
“security level” of 280 (intended as work needed in order to “break” 160-DLSE).

3.1 The Algorithm

Consider the following function:

RGn,c : Zp−1 −→ Z∗
p RGn,c(s) = ĝ(s div 2n−c)gs1 mod p
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That is we consider modular exponentiation in Z∗
p with base g, but only after

zeroing the bits in positions 2, . . . , n− c of the input s (these bits are basically
ignored).

The function RG induces a distribution over Z∗
p in the usual way. We denote

it with RGn,c the following probability distribution over Z∗
p

ProbRGn,c [y] = Prob[y = RGn,c(s) ; s← Zp−1]

It is possible to prove (see [5]) that the distribution RGn,c is computationally in-
distinguishable from the uniform distribution over Z∗

p if the c-DLSE assumption
holds.

It is now straightforward to construct the new generator. The algorithm
receives as a seed a random element s in Zp−1 and then it iterates the function
RG on it. The pseudo-random bits outputted by the generator are the bits ignored
by the function RG. The output of the function RG will serve as the new input
for the next iteration.

In more detail, the algorithm IRGn,c (for Iterated-RG generator) works as
follows. Start with x(0) ∈R Zp−1. Set x(i) = RGn,c(x(i−1)). Set also r(i) =
x
(i)
2 , x

(i)
3 , . . . , x

(i)
n−c. The output of the generator will be r(0), r(1), . . . , r(k) where

k is the number of iterations (chosen such that k = poly(n) and k(n−c−1) > n).
Notice that this generator outputs n− c− 1 pseudo-random bits at the cost

of a modular exponentiation with a random c-bit exponent (i.e. the cost of the
computation of the function RG).

3.2 Efficiency Analysis

Let’s fix n = 1024 and c = 160. With these parameters we can safely assume
that the complexity of the best known algorithms to break c-DLSE is beyond
the reach of today’s computing capabilities.

We obtain 863 bits at the cost of roughly 240 multiplications, which yields
a rate of about 3.5 bits per modular multiplication. The most expensive part
of the computation of our generator is to compute ĝs mod p where s is a c-bit
value.

We can take advantage of the fact that the modular exponentiations are all
computed over the same basis ĝ. This feature allows us to precompute powers
of ĝ and store them in a table, and then use this values to compute fastly ĝs for
any s.

Lim and Lee [7] present flexible trade-offs between memory and computation
time to compute exponentiations over a fixed basis. Their approach is applicable
to our scheme as well. In short, the [7] precomputation scheme is governed by
two parameters h, v. The storage requirement is (2h − 1)v elements of the field.
The number of multiplications required to exponentiate to a c-bit exponent is⌈

c
h

⌉
+

⌈
c

hv

⌉− 2 in the worst case.
Using the choice of parameters for 160-bit exponents suggested in [7] we can

get roughly 40 multiplications with a table of only 12 Kbytes. This yields a
rate of more than 21 pseudo-random bits per multiplication. A large memory
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implementation (300 Kbytes) will yield a rate of roughly 43 pseudo-random bits
per multiplication.

4 Implementation Timing Results

We ran a C implementation of the above generator on the IBM 4758 card using
the implementation procedures described in Section 2.1. In particular this means
that we used the 4758 native hardware support for modular exponentiations and
modular multiplications.

We first ran 1024 iterations of the generator (i.e. an output of 863 Kbits)
without using precomputation tables. The task took approximately 4.75 sec-
onds, which implies a rate of 22.7 Kbytes/sec. Thus, for example, this is the
rate at which two secure coprocessors can securely encrypt data (via symmetric
encryption) under a strong mathematical guarantee of security.

We then ran the algorithm using the [7] precomputation scheme with var-
ious settings of the parameters h, v described above. The experimental results
confirmed the theoretical speed-ups between different choices of the parameters,
however they also demonstrated a major slowdown of the algorithm compared
to the case in which we computed the whole exponentiation in hardware.

The explanation is that the overhead of invoking in software the hardware
chip for modular multiplication several times, offset whatever gain we could
obtain in decreasing the number of multiplications by use of precomputation
tables.

The results are summarized in Figure 2.

(h, v) Storage (Kbytes) Time (sec)
– 0 4.75
(5,8) 32 79.33
(8,2) 64 68.4
(8,4) 128 57.21
(8,5) 160 55.10
(8,10) 320 50.82
(10,4) 512 46.41
(10,8) 1 Mbyte 42.57

Fig. 2. Timing Results

These can be compared to the SHA-1 based implementation, which took
1.22 seconds to produce a similar 863 Kbit block of pseudo-random data. This
implementation is written in highly optimised C code; in fact this is the code
that the CP/Q operating system itself uses to generate pseudo-random data.
However we do note that we ran the code as a standard “loaded-in” application,
just as the number theoretic generator was, to enable a fair comparison.

Another useful comparison is to the BBS generator (see [2]), where one ob-
tains at least 1 bit (and at most2) about 4 bits) of pesudorandom data from
2 This has to do with assumptions on the hardness of factoring; see [5] for more details.
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each modular squaring. Theoretically this should be similar to our exponenti-
ation method (see [5] for a more rigorous comparison), however the overhead
of calling the modular math hardware adversely affects this generator. In fact
it takes 2.3 seconds to generate just a 1Kbit block of data using this approach
(assuming one bit per exponentiation).

5 Conclusions

The results show that the SHA-1 based pseudorandom number generation is
still considerably faster than the one based on discrete logarithms. However the
difference, a factor of less than 4 on this hardware, may be considered not too
high a price to pay by some who wish to have a “provably secure”, rather than
a “seemingly secure” (i.e. one that has withstood cryptographic attack thus far)
system for pseudorandom number generation.

It should be stressed however that this result is strongly reliant on the fact
that the algorithms were tested on the IBM 4758 secure coprocessor, which
has support for hardware modular exponentiation. All of the software-based
exponentiation variants of [5] that we tried were considerably slower (another
factor of 10 to 20), even though they made use of hardware support for modular
multiplication, and used precomputed tables.

The discrepancy was even more significant with the BBS generator due to
the low output rate of the generator for each call to the modular math hard-
ware; it turned out to be between 100 and 400 times slower than the “pure
exponentiation” generator on this hardware.
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