Skip to main content

Accurate, Transparent, and Compact Fuzzy Models for Function Approximation and Dynamic Modeling through Multi-objective Evolutionary Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1993))

Included in the following conference series:

Abstract

Evolutionary algorithms to design fuzzy rules from data for systems modeling have received much attention in recent literature. Many approaches are able to find highly accurate fuzzy models. However, these models often contain many rules and are not transparent. Therefore, we propose several objectives dealing with transparency and compactness besides the standard accuracy objective. These objectives are used to find multiple Pareto-optimal solutions with a multi-objective evolutionary algorithm in a single run. Attractive models with respect to compactness, transparency and accuracy are the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Valente de Oliveira. Semantic constraints for membership function optimization. IEEE Transactions on Fuzzy Systems, 19(1):128–138, 1999.

    Google Scholar 

  2. M. Setnes, R. Babuška, and H. B. Verbruggen. Rule-based modeling: Precision and transparency. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications & Reviews, 28:165–169, 1998.

    Article  Google Scholar 

  3. H. Pomares, I. Rojas, J. Ortega, J. Gonzalez, and A. Prieto. A systematic approach to a self-generating fuzzy rule-table for function approximation. IEEE Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, 30(3):431–447, 2000.

    Article  Google Scholar 

  4. Y. Jin. Fuzzy modeling of high-dimensional systems. IEEE Transactions on Fuzzy Systems: Complexity Reduction and Interpretability Improvement., 8:212–221, 2000.

    Google Scholar 

  5. O. Cordón and F. Herrera. A proposal for improving the accuracy of linguistic modeling. IEEE Transactions on Fuzzy Systems, 8(3):335–344, 2000.

    Article  Google Scholar 

  6. T.A. Johansen, R. Shorten, and R. Murray-Smith. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 8(3):297–313, 2000.

    Article  Google Scholar 

  7. J. Biethahn and V. Nissen (eds). Evolutionary Algorithms in Management Applications. Springer-Verlag Berlin Heidelberg, 1995.

    MATH  Google Scholar 

  8. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.

    Google Scholar 

  9. C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

    Article  Google Scholar 

  10. J. Horn and N. Nafpliotis. Multiobjective optimization using the niched pareto genetic algorithm. IlliEAL Report No. 93005, July 1993.

    Google Scholar 

  11. N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1995.

    Article  Google Scholar 

  12. C.-H. Wang, T.-P. Hong, and S.-S. Tseng. Integrating fuzzy knowledge by genetic algorithms. Fuzzy Sets and Systems, 2(4):138–149, 1998.

    Google Scholar 

  13. H. Ishibuchi, T. Nakashima, and T. Murata. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, 29(5):601–618, 1999.

    Article  Google Scholar 

  14. L.O. Hall, I.B. Özyurt, and J.C. Bezdek. Clustering with genetically optimized approach. IEEE Transactions on Evolutionary Computing, 3(2):103–112, 1999.

    Article  Google Scholar 

  15. H.-S. Hwang. Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(6):791–802, 1998.

    Article  Google Scholar 

  16. A.F. Gómez-Skarmeta and F. Jiménez. Fuzzy modeling with hibrid systems. Fuzzy Sets and Systems, 104:199–208, 1999.

    Article  Google Scholar 

  17. I. Jagielska, C. Matthews, and T. Whitfort. An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems. Neurocomputing, 24:37–54, 1999.

    Article  MATH  Google Scholar 

  18. M. Russo. FuGeNeSys — a fuzzy genetic neural system for fuzzy modeling. IEEE Transactions on Fuzzy Systems, 6(3):373–388, 1998.

    Article  Google Scholar 

  19. S. Mitra and Y. Hayashi. Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks, 11(3):748–768, 2000.

    Article  Google Scholar 

  20. A.F. Gómez-Skarmeta, F. Jiménez, and J. Ibánez. Pareto-optimality in fuzzy modelling. In EUFIT’98, pages 694–700, Aachen, Alemania, 1998.

    Google Scholar 

  21. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applicationto modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15:116–132, 1985.

    MATH  Google Scholar 

  22. M. Setnes, R. Babuška, U. Kaymak, and H.R. van Nauta Lemke. Simlilarity measures in fuzzy rule simplification. IEEE Transaction on Systems, Man and Cyber netics, Part B: Cybernetics, 28(3):376–386, 1999.

    Article  Google Scholar 

  23. F. Jiménez, J.L. Verdegay, and A.F. Gómez-Skarmeta. Evolutionary techniques for constrained multiobjective optimization problems. In Genetic and Evolutionary Computation Conference (GECCO-99), Workshop on Multi-Criterion Optimization Using Evolutionary Methods, pages 115–116, Orlando, Florida, USA, 1999.

    Google Scholar 

  24. L. Wang and J. Yen. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets and Systems, 101:353–362, 1999.

    Article  MathSciNet  Google Scholar 

  25. J. Yen and L. Wang. Application of statistical information criteria for optimal fuzzy model construction. IEEE Transactions on Fuzzy Systems, 6(3):362–371, 1998.

    Article  Google Scholar 

  26. H. Roubos and M. Setnes. Compact fuzzy models through complexity reduction and evolutionary optimization. In proceedings 9th IEEE Conference on Fuzzy System, pages 762–767, San Antonio, USA, May 7-10, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiménez1, F., Gómez-Skarmeta, A.F., Roubos, H., Babuška, R. (2001). Accurate, Transparent, and Compact Fuzzy Models for Function Approximation and Dynamic Modeling through Multi-objective Evolutionary Optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds) Evolutionary Multi-Criterion Optimization. EMO 2001. Lecture Notes in Computer Science, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44719-9_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-44719-9_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41745-3

  • Online ISBN: 978-3-540-44719-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics