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José M. B. Dias and José M. N. Leitão
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Abstract. The 2D absolute phase estimation problem, in interferomet-
ric applications, is to infer absolute phase (not simply modulo-2π) from
incomplete, noisy, and modulo-2π image observations. This is known
to be a hard problem as the observation mechanism is nonlinear. In
this paper we adopt the Bayesian approach. The observation density is
2π-periodic and accounts for the observation noise; the a priori proba-
bility of the absolute phase is modeled by a first order noncausal Gauss

Markov random field (GMRF) tailored to smooth absolute phase images.
We propose an iterative scheme for the computation of the maximum a

posteriori probability (MAP) estimate. Each iteration embodies a dis-
crete optimization step (Z-step), implemented by network programming
techniques, and an iterative conditional modes (ICM) step (π-step). Ac-
cordingly, we name the algorithm ZπM, where letter M stands for max-
imization. A set of experimental results, comparing the proposed algo-
rithm with other techniques, illustrates the effectiveness of the proposed
method.

1 Introduction

In many classes of imaging techniques involving wave propagation, there is need
for estimating absolute phase from incomplete, noisy, and modulo-2π observa-
tions, as the absolute phase is related with some physical entity of interest. Some
relevant examples are [1] synthetic aperture radar, synthetic aperture sonar,
magnetic resonance imaging systems, optical interferometry, and diffraction to-
mography.

In all the applications above referred the observed data relates with the ab-
solute phase in a nonlinear and noisy way; the nonlinearity is sinusoidal and
it is closely related with the wave propagation phenomena involved in the ac-
quisition process; noise is introduced both by the acquisition process and by
the electronic equipment. Therefore, the absolute phase should be inferred (un-

wrapped in the interfermetric jargon) from noisy and modulo-2π observations
(the so-called principal phase values or interferogram).

⋆ This work was supported by the Fundação para a Ciência e Tecnologia, under the
project POSI/34071/CPS/2000.



Broadly speaking, absolute phase estimation methods can be classified into
four major classes: path following methods, minimum-norm methods, Bayesian
and regularization methods, and parametric models. Thesis [2] and paper [3]
provide a comprehensive account of these methods.

The mainstream of absolute phase estimation research in interferometry takes
a two step approach: in the first step, a filtered interferogram is inferred from
noisy images; in the second step, the phase is unwrapped by determining the 2π
multiples. Path following and minimum-norm schemes are representative of this
approach (see [1] for comprehensive description of these methods). The main
drawback of these methods is that the filtering process destroys the modulo-2π
information in areas of high phase rate.

In a quite different vein, and recognizing that the absolute phase estimation
is an ill-posed problem, papers [4], [5], [6], [7] have adopted the regularization
framework to impose smoothness on the solution. The same objective has been
pursued in papers [8], [9], [10], [11] by adopting a Bayesian viewpoint. Papers
[8], [9] apply a nonlinear recursive filtering technique to determine the absolute
phase. Paper [10] considers an InSAR (interferometric synthetic aperture radar)
observation model taking into account not only the image absolute phase, but
also the backscattering coefficient and the correlation factor images, which are
jointly recovered from InSAR image pairs. Paper [11] proposes a fractal based
prior and the simulated annealing scheme to compute the absolute phase image.

Parametric models constrain the absolute phase to belong to a given para-
metric model. Works [12], [13] have adopted low order polynomials. These ap-
proaches yields good results if the low order polynomials represent accurately
the absolute phase. However, in practical applications the entire phase func-
tion cannot be approximated by a single 2-D polynomial model. To circumvent
model mismatches, work [12] proposes a partition of the observed field where
each partition element has its own model.

1.1 Proposed Approach

We adopt the Bayesian viewpoint. The likelihood function, which models the
observation mechanism given the absolute phase, is 2π-periodic and accounts
for the interferometric noise. The a priori probability of the absolute phase is
modeled by a first order noncausal Gauss Markov random field (GMRF) [14],
[15] tailored to smooth fields.

Papers [8], [9], [10] have also followed a Bayesian approach to absolute phase
estimation. The prior therein used was a first order causal GMRF. Taking advan-
tage of this prior and using the reduced order model (ROM) [16] approximation
of the GMRF, the absolute was estimated with a nonlinear recursive filtering
technique. Compared with the present approach, the main difference concerns
the prior: we use a first order noncausal GMRF prior. In terms of estimation,
the noncausal prior has implicit a batch perspective, where the absolute phase
estimate at each site is based on the complete observed image. This is in con-
trast with the recursive filtering technique [8], [9], [10], where the absolute phase



estimate of a given site is inferred only from past (in the lexicographic sense)
observed data.

To the computation of the MAP estimate, we propose an iterative proce-
dure with two steps per iteration: the first step, termed Z-step, maximizes the
posterior density with respect to the field of 2π phase multiples; the second
step, termed π-step, maximizes the posterior density with respect to the phase
principal values. Z-step is a discrete optimization problem solved by network
programming techniques. π-step is a continuous optimization problem solved
approximately by the iterated conditional modes (ICM) [17] scheme. We term
our algorithm ZπM, where the letter M stands for maximization.

The paper is organized as follows. Section 2 introduces the observation model,
the first order noncausal GMRF prior, and the posteriori density. Section 3
elaborates on the estimation procedure. Namely, we derive solutions for the Z-
step and for the π-step. Section 4 presents results.

2 Adopted Models

2.1 Observation Model

The complex envelop of the signal read by the receiver from a given site is given
by

x = e−jφ + n, (1)

where φ is the phase to be estimated and n is complex zero-mean circular
Gaussian noise. Model (1), adopted in papers [8] and [9], applies, for example,
to laser interferometry [18].

Defining σ2
n ≡ E[|n|2], the probability density function1 of x is (see, e.g., [19,

ch. 3])

px|φ(x|φ) =
1

πσ2
n

exp

{
−

∣∣x− e−jφ
∣∣2

σ2
n

}
. (2)

Developing the quadratic form in (2), one is led to

px|φ(x|φ) = ceλ cos(φ− η), (3)

where c = c(x, σn) and

η = arg(x) (4)

λ =
|x|

σ2
n

. (5)

The likelihood function px|φ(x|φ) is 2π-periodic with respect to φ with max-
ima at φ = 2πk+ η, for k ∈ Z (Z denotes the integer set). Thus η is a maximum

1 For compactness, lowercase letters will denote random variables and their values as
well.



likelihood estimate of φ. The peakiness of the maxima of (3), controlled by pa-
rameter λ, is an indication of how trustful data is.

The observation model (1) does not apply to applications exhibiting speckle
noise such as synthetic apertura radar and synthetic aperture sonar. We have
shown in [10], however, that the observation model of these applications leads
to an observation density with the same formal structure given by formula (3).

Let φ ≡ {φij | (i, j) ∈ Z} and x ≡ {xij | (i, j) ∈ Z} denote the absolute phase
and complex amplitude associated to sites Z ≡ {(i, j)| i, j = 1, . . . , N} (we
assume without lack of generality that images are squared). Assuming that the
components of x are conditionally independent,

px|φ(x|φ) =
∏

ij∈Z

pxij|φij
(xij |φij). (6)

The conditional independence assumption is valid if the resolution cells as-
sociated to any pair of pixels are disjoint. Usually this is a good approximation,
since the point spread function of the imaging systems is only slightly larger than
the corresponding inter-pixel distance (see [20]).

2.2 Prior Model

Image φ is assumed to be smooth. Gauss-Markov random fields [14], [15] are both
mathematically and computationally suitable for representing local interactions,
namely to impose smoothness. We take the first order noncausal GMRF

pφ(φ) ∝ exp




−
µ

2

∑

ij∈Z1

(∆φhij)
2 + (∆φvij)

2




 , (7)

where ∆φhij ≡ (φij −φi,j−1), ∆φ
v
ij ≡ (φij −φi−1,j), Z1 ≡ {(i, j)| i, j = 2, . . . , N},

and µ−1 means the variance of increments ∆φhij and ∆φvij .

2.3 Posterior Density

Invoking the Bayes rule, we obtain the posterior probability density function of
φ, given x, as

pφ|x(φ|x) ∝ px|φ(x|φ)pφ(φ), (8)

where the factors not depending on φ were discarded. Introducing (6) and (7)
into (8), we obtain

pφ|x(φ|x) ∝ e

∑

ij∈Z

λij cos(φij − ηij) −
µ

2

∑

ij∈Z1

(∆φhij)
2 + (∆φvij)

2

. (9)

The posterior distribution (9) is assumed to contain all information one needs

to compute the absolute phase estimate φ̂.



3 Estimation Procedure

The MAP criterion is adopted for computing φ̂. Accordingly,

φ̂MAP = arg max
φ

pφ|x(φ|x). (10)

Due to the periodic structure of px|φ(x|φ), computing the MAP solution leads
to a huge non-convex optimization problem, with unbearable computation bur-
den. Instead of computing the exact estimate φ̂MAP , we resort to a suboptimal
scheme that delivers nearly optimal estimates, with a far less computational
load.

Let the absolute phase φij be uniquely decomposed as

φij = ψij + 2πkij , (11)

where kij = ⌊(φij + π)/(2π)⌋ ∈ Z is the so-called wrap-count component of φij ,
and ψij ∈ [−π, π[ is the principal value of φij . The MAP estimate (10) can be
rewritten in terms of ψ ≡ {ψij | (i, j) ∈ Z} and k ≡ {kij | (i, j) ∈ Z} as

(ψ̂MAP , k̂MAP ) = arg max
ψ,k

pφ|x(ψ + 2πk|x) (12)

= arg

{
max
ψ

{
max

k

pφ|x(ψ + 2πk|x)

}}
. (13)

Instead of computing (13), we propose a procedure that successively and iter-

atively maximizes pφ|x(ψ+ 2πk|x) with respect to k ∈ Z
N2

and ψ ∈ [−π, π[N
2

.
We term this maximization on the sets Z and [−π, π[ as the ZπM algorithm;
Fig. 1 shows the corresponding pseudo-code.

Initialization: bψ(0)
= η

For t = 1, 2, . . . ,

Unwrapping step:bk(t) = arg max
k

pφ|x,l(ψ
(t−1) + 2πk|x) (14)

Smoothing step:bψ(t)
= arg max

ψ
pφ|x,l

(ψ + 2πk
(t)|x) (15)

Termination test:

If [pφ|x,l(bφ(t)
|x) − pφ|x,l(bφ(t−1)

|x)] < ξ

break loop for

Fig. 1. ZπM Algorithm.

The ZπM algorithm is greedy, since the posterior density pφ|x(φ|x) can not
decrease in each step of the each iteration. Thus, the stationary points of the



couple (14)-(15) correspond to local maxima of pφ|x(φ|x). Nevertheless, the pro-
posed method yields systematically good results, as we will show in next section.

The unwrapping step (14) finds the maximum of the posterior density pφ|x(φ|x)
on a mesh obtained by discretizing each coordinate φij according to (11). The

first estimate k̂(1) delivered by the unwrapping step is based on the maximum
likelihood estimate η ≡ {ηij | (i, j) ∈ Z}. Smoothing is implemented by the π-
step (15). This is in contrast with the scheme followed by most phase unwrapping
algorithms, where the phase is estimated with basis on on a smooth version of
η, under the assumption that the phase φ is constant within windows of given
size. This assumption leads to strong errors in areas of high phase rate.

3.1 Z-Step

Since the logarithm is strictly increasing and cos(ψij + 2πkij − ηij) does not
depend on kij , solving the maximization step (14) is equivalent to solve

k̂ = argmin
k

E(k|ψ), (16)

where the energy E(k|ψ) is given by

E(k|ψ) ≡
∑

ij∈Z1

(∆φhij)
2 + (∆φvij)

2, (17)

with

∆φhij = [2π(kij − ki,j−1) −∆ψhij ] (18)

∆φvij = [2π(kij − ki−1,j) −∆ψvij ], (19)

and ∆ψhij = ψi,j−1 − ψij and ∆ψvij = ψi−1,j − ψij .
A simple but lengthy manipulation of equation (17) allows us to write

̂̄k = arg min
k̄∈ZN2

(k̄ − k̄0)
TA(k̄ − k̄0), (20)

where the column vector k̄ is the column by column stacking of matrix k, ma-
trix A is nonnegative block Toeplitz and symmetric, and vector k0 depends on
∆ψhij and ∆ψvij . For nonnegative symmetric matrices A, the integer least square
problem (20) is known as the nearest lattice vector problem and it is NP-hard
[21]. It arises, for example, in highly accurate positioning by Global Positionning
System (GPS) [22], [23]. Works [24], [21], [22] propose suboptimal polynomial
time algorithms for finding an approximatly nearest lattice solution.

In our case, energy E(k|ψ) is a sum of quadratic functions of (kij − ki−1,j)
and (kij − ki,j−1). This is a special case of a nearest lattice vector problem, for
which we propose a network programming algorithm that finds the exact solution
in polynomial time. The algorithm is inspired in the Flyn’s minimum disconti-
nuity approach [25], which minimizes the sum of |⌊∆φhij + π⌋| and |⌊∆φvij + π⌋|,



where ⌊x⌋ denotes the hightest integer lower than x. Flyn’s objective function
is, therefore, quite different from ours. However, both objective functions are
the sum of first order click potentials depending only on ∆φhij , and ∆φvij . This
structural similarity allows us to adapt Flyn’s ideas to our problem.

The following lemma assures that if the minimum of E(k|ψ) is not yet
reached, then there exists a binary image δk (i.e., the elements of δk are all
0 or 1) such that E(k + δk|ψ) < E(k|ψ).

Lemma 1 Let k1 and k2 be two wrap-count images such that

E(k2|ψ) < E(k1|ψ). (21)

Then, there exists a binary image δk such that

E(k1 + δk|ψ) < E(k1|ψ). (22)

Proof. See [26].

According to Lemma 1, we can iteratively compute ki = ki−1 + δk, where δk ∈

{0, 1}N
2

minimizes E(ki−1 + δk|ψ), until the the minimum energy is reached.
Each minimization is a discrete optimization problem that can be exactly solved
in polynomial time by using network programming techniques such as maximum
flow [27] or minimum cut [28]. We note however that, in the iterative scheme just
described, it is not necessary to compute the exact minimizer of E(ki−1 + δk|ψ)
with respect to δk, but only a binary image δk that decreases E(ki−1 + δk|ψ).
Based on this fact we propose an efficient algorithm that iteratively search for
improving binary images δk.

The following lemma, presented and proofed in the appendix of [25], assures
that if there exists an improving binary image δk [i.e., E(k + δk|ψ) < E(k|ψ)],
then there exists another improving binary image δl such that the sets S1(δl) ≡
{(i, j) ∈ Z | δlij = 1} and S0(δl) ≡ {(i, j) ∈ Z | δlij = 0} are both connected
in the first order neighborhood sense; i.e., given two sites s1 and sn of S1 (S0),
there exists a sequence of first order neighbors, all in S1 (S0), that begins in s1
and ends in sn. We call images δl with this property, binary partitions of Z.

Lemma 2 Suppose that there exits a binary image δk such that

E(k + δk|ψ) < E(k|ψ).

Then there exists a binary partition of Z, δl, such that

E(k + δl|ψ) < E(k|ψ).

Proof. See Lemma 2 in the appendix of [25].

Flyn’s central idea is to search for improving binary partitions δl [termed in [25]
an elementary operation (EO)]. Once δl is found the wrap-count image k is up-
dated to k+δl. If no EO is possible then, according to Lemma 2, energy E(k|ψ)



0

0 0 0 0 0

0

0

0

0

0

00

006.100

1.2

3.10

0.5

3.54.26.78.0

8.0

8.0 8.1 7.2

6.6

6.54.02.8

6.20
(1)

(2)

(3)

Fig. 2. Auxiliary graph to implement Flyn’s algorithm (squared nodes) interleaved
with phase sites (circled and crossed nodes). A leftward (rightward) edge indicates an
unit increment of the wrap-count below (above) the edge. A downward (upward) edge
indicates an unit increment of the wrap-count right (left) to the edge.

can not be decreased by any binary image increment of the actual argument k.
Thus, by Lemma 1, E(k|ψ) has reached its minimum.

To check if a given binary partition δl improves the energy, one has to com-
pute only those click potentials of E(k|ψ) containing sites on both sets S1(δl)
and S0(δl); i.e., one has to compute click potentials of E(k|ψ) only along loops
(this is still true on the boundary of Z by taking zero potentials). The Flyn’s
algorithm uses graph theory techniques to represent and generate EOs. Figure 2
shows an auxiliary graph, whose nodes are interleaved with the phase sites. The
edges sign which wrap-counts are to be incremented: a leftward (rightward) edge
indicates an unit increment of the wrap-count below (above) the edge. A down-
ward (upward) edge indicates a unit increment of the wrap-count right (left) to
the edge. The algorithm works by creating and extending paths made of directed
edges. When a path is extended to form a loop, the algorithm performs an EO,
removes the loop from the collection of paths and resumes the path extension.

Assume that the array of auxiliary nodes has indexes in the set {(i, j) | i, j =
1, . . . , N + 1}. Define the cost of an edge δV (i, j; i′, j′) between the first order
neighbors (i′, j′) and (i, j) as E(k|ψ)−E(k+δk|ψ), where δk is the wrap-count
increment induced by the edge. With this definitions and having in attention the
structure of E(k|ψ) [see (17)], we are led to

δV (i, j; i, j − 1) = −4π(π +∆φvi,j−1)h̄i,j−1

δV (i, j − 1; i, j) = −4π(π −∆φvi,j−1)h̄i,j−1

δV (i− 1, j; i, j) = −4π(π +∆φhi−1,j)v̄i−1,j

δV (i, j; i− 1, j) = −4π(π −∆φhi−1,j)v̄i−1,j .



The values of boundary edges are defined to be zero; i.e., δV (1, j) = δV (N +
1, j) = δV (i, 1) = δV (i, N + 1) = 0.

Figure 2 represents the state of the graph at a given instant. Assuming that
there are no loops, the set of edges defines a given number of trees. The value of
each node, V (i, j), is the sum of edge values corresponding to the path between
the node and the tree root. In Figure 2 there are two trees. We stress that the
node values are real numbers, whereas in the Flyn’s algorithm they are integers.
The reason is that our energy E(k|ψ) takes values in the non-negative reals
while the Flyn’s energy takes values on the positive integers.

The basic step of Flyn’s algorithm is to revise the set of paths by adding a
new edge. An edge from (i, j) to a first order neighbor (i′, j′), if not presented,
is added if

∆V ≡ V (i, j) + δV (i, j; i′, j′) − V (i′, j′) > 0.

If ∆V ≤ 0 then the new path to (i′, j′) would have a negative or zero value or
would fail to improve an existing path. If the edge is added the set of paths is
revised in one of the three possible ways (a minor modification of [25]): 1) edge
addition, 2) edge replacement, and 3) edge completion.

The dashed edges in Fig. 2 illustrate graph revision of type 1, 2, and 3. For
a more detailed example, see Flyn’s paper [25].

The algorithm alternates between type 1 and type 2 revisions until a loop
is found, performing then a type 3 revision. If for any attempt of edge addition
∆V ≤ 0, then no loop completion is possible and, according to Lemma 2 and
Lemma 1, the algorithm terminates.

Flyn’s algorithm [25] and Costantini’s [29] algorithm are equivalent, as they
minimize the L1 norm. Costantini has shown that L1 minimization is equivalent
to finding the minimum cost flow on a given directed network. Minimum cost
flow is a graph problem for which there exists efficient solutions (see, e.g. [30]).
We do not implement our Z-step using Costantini’s solution because the graph
can not be used with Lp norm for p 6= 1.

Another alternative to implement the Z-step might be the discrete optimiza-
tion scheme proposed in [31]. Authors of this paper claim that their approach,
based on the maximum flow algorithm applied to a suitable graph, minimizes
any energy function in which the smoothness term is convex and involves only
pairs of neighboring pixels. However, the graph for a given convex smoothness
function is not presented in [31].

3.2 Smoothing Step

The smoothing step (15) amounts to compute ψ̂ given by

ψ̂ = arg max
ψ∈[−π,π[N2

∑

ij∈Z

λij cos(φij − ηij) −
µ

2

∑

ij∈Z1

(∆φhij)
2 + (∆φvij)

2, (23)

where φij = 2πkij+ψij . The function to be maximized in (23) is not convex due

to terms λij cos(φij −ηij). Computing ψ̂ is therefore a hard problem. Herein, we



adopt the ICM approach [14], which, in spite of being suboptimal, yields good
results for the problem at hand.

ICM is a coordinatewise ascent technique where all coordinates are visited
according to a given schedule. After some simple algebraic manipulation of the
objective function (23), we conclude that its maximum with respect to ψij is
given by

ψ̂ij = arg max
ψij∈[−π,π[

{
βij cos(ψij − ηij) − (ψij − ψ̄ij)

2
}
, (24)

where

βij =
λij
2µ

(25)

ψ̄ij = φ̄ij − 2πkij (26)

φ̄ij =
φi−1,j + φi,j−1 + φi+1,j + φi,j+1

4
. (27)

There are no closed form solutions for maximization (24), since it involves

transcendent and power functions. We compute ψ̂ij using a simple two-resolution

numeric method. First we search ψ̂ij in the set {πi/M | i = −M, . . . ,M − 1}.
Next we refine the search by using the set {πi0/M+πi/M2 | i = −M, . . . ,M−1},
where πi0/M is the result of the first search. We have used M = 20, which leads
to the maximum error of π/(20)2.

Phase estimate ψ̂ij depends in a nonlinear way on data ηij and on the mean
weighted phase ψ̄ij . The balance between these two components is controlled

by parameter βij . Assuming that |ψ̂ij − ηij | ≪ π, then cos(ψij − ηij) is well
approximated by the quadratic form 1− (ψij−ηij)

2/2, thus leading to the linear
approximation

ψ̂ij ≃
βijηij + 2ψ̄ij
βij + 2

. (28)

Reintroducing (28) in the above condition, one gets |ψ̄ij −ηij | ≪ 2π/(βij +2). If
this condition is not met, the solution becomes highly nonlinear on ηij and ψ̄ij :

as |ψ̄ij − ηij | increases, at some point the phase ψ̂ij becomes thresholded to ±π,
being therefore independent of the observed data ηij .

Concerning computer complexity the Z-step is, by far, the most demanding
one, using a number of floating point operations very close to the Flyn’s min-
imum discontinuity algorithm. Since the proposed scheme needs roughly four
Z-steps, is has, approximately 4 times the Flyn’s minimum discontinuity algo-
rithm complexity. To our knowledge there is no formula for the Flyn’s algorithm
complexity (see remarks about complexity in [25]). Nevertheless, we have found,
empirically, a complexity of approximately O(N3) for the Z-step.

4 Experimental Results

The algorithm derived in the previous sections is now applied to synthetic data.
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Fig. 3. Interfergram (η-image) of a Gaussian elevation of height 14π rad and standard
deviations σi = 10 and σj = 15 pixels. The noise variance is σn = 1.05.

Figure 3 displays the interferogram (η = {ηij} image) generated according
to density (2) with noise variance σn = 1.05. The absolute phase image φ is
a Gaussian elevation of height 14π rad and standard deviations σi = 10 and
σj = 15 pixels. The magnitude of the phase difference φi,j+1 − φij takes the
maximum value of 2.5 and is greater than 2 in many sites. On the other hand
a noise variance of σn = 1.05 implies a standard deviation the maximum likeli-
hood estimate ηij of 0.91. This figure is computed with basis on the density of
η obtained from the joint density (2). In these conditions, the task of absolute
phase estimation is extremely hard, as the interferogram exhibits a large number
of inconsistencies; i.e., the observed image η is not consistent with the assump-
tion of absolute phase differences less than π in a large number of sites. In the
unwrapping jargon the interferogram is said to have a lot of residues.
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Fig. 4. Phase estimate bφ(t)
; (a) t = 1; (b) t = 10 .



The smoothness parameter was set to µ = 1/0.82, thus modelling phase
images with phase differences (horizontal and vertical) of standard deviation
0.8. This value is too large for most of the true absolute phase image φ and too
small for sites in the neighborhood of sites (i = −45, j = 50) and (i = 55, j = 50)
(where the magnitude of the phase difference has its largest value). Nevertheless,
the ZπM algorithm yields good results as it can be read from Fig. 4; Fig. 4(a)

shows the phase estimate φ̂
(1)

and Fig. 4(b) shows the phase estimate φ̂
(10)

.

Figure 5 plots the logarithm of the posterior density ln pφ|x(φ̂
(t)
|x) and the L2

norm of the estimation error ‖φ̂−φ‖2 ≡ N−2
∑
ij(φ̂ij −φij)

2 as function of the
iteration t. The four non-integers ticked between two consecutive integers refer
to four consecutive ICM sweeps, implementing the π-step of the ZπM algorithm.

Notice that the larger increment in ln pφ|x(φ̂
(t)
|x) happens in both steps of the

first iteration. For t ≥ 2 only the Z-step produces noticeable increments in the
posterior density. These increments are however possible due to the very small
increments produced by the smoothing steep. For t > 4 there is practically no
improvement in the estimates.
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Fig. 5. Evolution of the logarithm of the posterior density ln pφ|x(bφ(t)
|x) and of the

L2 norm of the estimation error as function of the iteration t. Z-steps coincide with
integers, whereas ICM sweeps implementing π-step are assigned to the non-integer part
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To rank ZπM algorithm, we have applied the following phase unwrapping
algorithms to the present problem:

– Path following type: Golstein’s branch cut (GBC) [32]; quality guided
(QG) [33], [34]; and mask cut (MC) [35]

– Minimum norm type: Flyn’s minimum discontinuity (FMD) [25]; weighted
least-square (WLS) [36], [37]; and L0 norm (L0N) (see [1, ch. 5.5])

– Bayesian type: recursive nonlinear filters [9] and [10] (NLF).

Path following and minimum norm algorithms were implemented with the code
supplied in the book [1], using the following settings: GBC (-dipole yes); QG,



MC, (-mode min var -tsize 3); and WLS (-mode min var -tsize 3, -thresh yes).
We have used the unweighted versions of the FMD and L0N algorithms.

Table 1. L2 norm of the estimation errors of ZπM and other unwrapping algorithms.
The left column plots results based of the the maximum likelihood estimate of η using
a 3× 3 rectangular window; the right column plots results based on the non-smooth η
given by (4).

‖bφ − φ‖2

Algorithm Smooth η Non-smooth η

ZπM – 0.1
GBC 48.0 7.0
QG 10.0 2.2
MC 40.8 28.6
FMD 22.4 3.4
WLS 8.8 3.5
L0N 24.1 2.6
NLF – 40.1

Table 1 displays the L2 norm of the estimation error ||φ̂ − φ||2 for each of
the classic algorithm referred above. Results on the left column area based on
the maximum likelihood estimate of η given by (4), using a 3 × 3 rectangular
window. Results on the right column are based on the interferogram η without
any smoothing. Apart from the proposed ZπM scheme, all the algorithms have
produced poor results, some of them catastrophic. The reasons depend on the
class of algorithms and are are basically the following:

– in the path following and minimum norm methods the noise filtering is the
first processing steep and is disconnected from the phase unwrapping process.
The noise filtering assumes the phase to be constant within given windows.
In data sets as the one at hand, this assumption is catastrophic, even using
small windows. On the other hand, if the smoothing steep is not applied,
even if algorithm is able to infer most of the 2π multiples, the observation
noise is fully present in estimated phase

– the recursive nonlinear approaches [9] and [10] fails basically because they
use only the past observed data, in the lexicographic sense, to infer the
absolute phase.

5 Concluding Remarks

The paper presented an effective approach to absolute phase estimation in inter-
ferometric appliactions. The Bayesian standpoint was adopted. The likelihood
function, which models the observation mechanism given the absolute phase, is
2π-periodic and accounts for interferometric noise. The a priori probability of the
absolute phase is a noncausal first order Gauss Markov random field (GMRF).



We proposed an iterative procedure, with two steps per iteration, for the
computation of the maximum a posteriory probability MAP estimate. The first
step, termed Z-step, maximizes the posterior density with respect to the 2π
phase multiples; the second step, termed π-step, maximizes the posterior den-
sity with respect to the phase principal values. The Z-step is a discrete opti-
mization problem solved exactly by network programming techniques inspired
by Flyn’s minimum discontinuity algorithm [25]. The π-step is a continuous opti-
mization problem solved approximately by the iterated conditional modes (ICM)
procedure. We call the proposed algorithm ZπM, where the letter M stands for
maximization.

The ZπM algorithm, resulting from a Bayesian approach, accounts for the
observation noise in a model based fashion. More specifically, the observation
mechanism takes into account electronic and decorrelation noises. This is a cru-
cial feature that underlies the advantage of the ZπM algorithm over path fol-
lowing and minimum-norm schemes, mainly in regions where the phase rate is
close to π. In fact, these schemes split the absolute phase estimation problem
into two separate steps: in the first step the noise in the interferogram is filtered
by applying low-pass filtering; in the second step, termed phase unwrapping, the
2π phase multiples are computed. For high phase rate regions, the application
of first step makes it impossible to recover the absolute phase, as the principal
values estimates are of poor quality. This is in contrast with the ZπM algorithm,
where the first step, the Z-step, is an unwrapping applied over the observed
interferogram.

To evaluate the performance of the ZπM algorithm, a Gaussian shaped sur-
face whit high phase rate, and 0dB of signal to noise ratio was considered. We
have compared the computed estimates with those provided by the best path
following and minimum-norm schemes, namely the Golstein’s branch cut, the
quality guided, the Flyn’s minimum discontinuity, the weighted least-square,
and the L0 norm. The proposed algorithm yields good results, performing bet-
ter and in some cases much better than the s technique just referred.

Concerning computer complexity, the ZπM algorithm takes, approximately, a
number of floating point operations proportional to the 1.5 power of the number
of pixels . By far, the Z-step is the most demanding one, using a number of float-
ing point operations very close to the Flyn’s minimum discontinuity algorithm.
Since the proposed scheme needs roughly four Z-steps, is has, approximately 4
times the Flyn’s minimum discontinuity algorithm complexity.

Concerning future developments, we foresee the integration of the principal
phase values in the posterior density as a major research direction. If this goal
would be attained then the wrapp-count image would be the only unknown of
the obtained posterior density and, most important, there would be no need
for iterativeness in estimating the wrapp-count image. After obtaining this im-
age, the principal phase values could be obtained using the π-step of the ZπM
algorithm.
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