Skip to main content

Designing the Minimal Structure of Hidden Markov Model by Bisimulation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2134))

Abstract

Hidden Markov Models (HMMs) are an useful and widely utilized approach to the modeling of data sequences. One of the problems related to this technique is finding the optimal structure of the model, namely, its number of states. Although a lot of work has been carried out in the context of the model selection, few work address this specific problem, and heuristics rules are often used to define the model depending on the tackled application. In this paper, instead, we use the notion of probabilistic bisimulation to automatically and efficiently determine the minimal structure of HMM. Bisimulation allows to merge HMM states in order to obtain a minimal set that do not significantly affect model performances. The approach has been tested on DNA sequence modeling and 2D shape classification. Results are presented in function of reduction rates, classification performances, and noise sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabiner, L.R.: A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. of IEEE 77(2) (1989) 257–286.

    Article  Google Scholar 

  2. Baum, L.E., Petrie, T.E, Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Math. Statistics. 41(1) (1970) 164–171.

    Article  MathSciNet  MATH  Google Scholar 

  3. Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequality 3 (1970) 1–8.

    MathSciNet  Google Scholar 

  4. Veltman, S.R., Prasad, R.: Hidden Markov Models applied to on-line handwritten isolated character recognition. IEEE Trans. Image Proc., 3(3) (1994) 314–318.

    Article  MathSciNet  Google Scholar 

  5. Churchill, G.A.: Hidden Markov Chains and the analysis of genome structure. Computers & Chemistry 16 (1992) 107–115.

    Article  MATH  Google Scholar 

  6. Eickeler, S., Kosmala, A., Rigoll, G.: Hidden Markov Model based online gesture recognition. Proc. Int. Conf. on Pattern Recognition (ICPR) (1998) 1755–1757.

    Google Scholar 

  7. Jebara, T., Pentland, A.: Action Reaction Learning: Automatic Visual Analysis and Synthesis of interactive behavior. In 1st Intl. Conf. on Computer Vision Systems (ICVS’99) (1999).

    Google Scholar 

  8. Theodoridis, S., Koutroumbas, K.: Pattern recognition. Academic Press (1999).

    Google Scholar 

  9. He, Y., Kundu, A.: 2-D shape classification using Hidden Markov Model. IEEE Trans. Pattern Analysis Machine Intelligence. 13(11) (1991) 1172–1184.

    Article  Google Scholar 

  10. Figueiredo, M.A.T., Leitao, J.M.N., Jain, A.K.: On Fitting Mixture Models, in E. Hancock and M. Pellilo(Editors), Energy Minimization Methods in Computer Vision and Pattern Recognition, 54–69, Springer Verlag, 1999.

    Google Scholar 

  11. Stolcke, A., Omohundro, S.:Hidden Markov Model Induction by Bayesian Model Merging. Hanson, S.J., Cowan, J.D., Giles, C.L. eds. Advances in Neural Information Processing Systems 5 (1993) 11–18.

    Google Scholar 

  12. Brand, M.: An entropic estimator for structure discovery. Kearns, M.S., Solla, S.A., Cohn, D.A. eds. Advances in Neural Information Processing Systems 11 (1999).

    Google Scholar 

  13. Aczel, P.: Non-well-founded sets. Lecture Notes, Center for the Study of Language and Information 14 (1988).

    Google Scholar 

  14. Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding Bisimilarity and Similarity for Probabilistic Processes. J. Comp. and System Sciences 60 (1999) 187–231.

    Article  MathSciNet  Google Scholar 

  15. Dovier, A., Piazza, C., Policriti, A.: A Fast Bisimulation Algorithm. In proc. of 13th Conference on Computer Aided Verification, CAV’01, 2001. Paris, France.

    Google Scholar 

  16. Kanellakis, P.C., Smolka, S.A.: CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation, 86(1) (1990) 43–68.

    Article  MATH  MathSciNet  Google Scholar 

  17. Lisitsa, A., Sazanov, V.: Bounded Hyperset Theory and Web-like Data Bases. In 5th Kurt Gödel Colloquium. LNCS1289 (1997) 172–185.

    Google Scholar 

  18. Milner, R.: Operational and Algebraic Semantics of Concurrent Processes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science (1990).

    Google Scholar 

  19. Paige, R., Tarjan, R. E.: Three Partition refinement algorithms. SIAM Journal on Computing 16(6) (1987) 973–989.

    Article  MATH  MathSciNet  Google Scholar 

  20. VanBenthem, J.: Modal Correspondence Theory. PhD dissertation, Universiteit van Amsterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte Wetenschappen, (1978) 1–148.

    Google Scholar 

  21. Salzberg, S.L.: Gene discovery in DNA sequences. IEEE Intelligent Systems 14(6) (1999) 44–48.

    Article  Google Scholar 

  22. Salzberg, S.L., Searls, D., Kasif, S.: Computational methods in Molecular Biology. Elsevier Science (1998).

    Google Scholar 

  23. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Analysis Machine Intelligence 8(6) (1986) 679–698.

    Article  Google Scholar 

  24. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill (1995).

    Google Scholar 

  25. Roberts, S., Husmeier, D., Rezek, I., Penny, W.: Bayesian Approaches to gaussian mixture modelling, IEEE Trans. on P.A.M.I., 20(11) (1998) 1133–1142.

    Article  Google Scholar 

  26. Schwarz, G.: Estimating the dimension of a model, The Annals of Statistics, 6(2) (1978) 461–464.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bicego, M., Dovier, A., Murino, V. (2001). Designing the Minimal Structure of Hidden Markov Model by Bisimulation. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-44745-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42523-6

  • Online ISBN: 978-3-540-44745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics