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Abstract. We consider the security of message authentication code 
(MAC) algorithms, and the construction of MACs from fast hash func- 
tions. A new forgery attack applicable to all iterated MAC algorithms is 
described, the first known such attack requiring fewer operations than ex- 
haustive key search. Existing methods for constructing MACs from hash 
functions, including the secret prefix, secret suffix, and envelope meth- 
ods, are shown to be unsatisfactory. Motivated by the absence of a secure, 
fast MAC algorithm not based on encryption, a new generic construction 
(Mh-MAC) is proposed for transforming any secure hash function of 
the MD4-family into a secure MAC of equal or smaller bitlength and 
comparable speed. 

1 Introduction 

Hash functions play a fundamental role in modern cryptography. One main ap- 
plication is their use in conjunction with digital signature schemes; another is 
in conventional techniques for message authentication. In the latter, it is prefer- 
able that a hash function take as a distinct secondary input a secret key. Such 
hash functions, commonly known as message authentication codes (MACs), have 
received widespread use in practice for data integrity and data origin authenti- 
cation, e.g. in banking applications (see [7, 171). 

Compared to the extensive work on the design and analysis of hash functions, 
little attention has been given to the design of efficient MACs [22] (although see 
[2]). One apparent reason is that the first proposals for MAC algorithms were 
quickly turned into standards and proved adequate in practice. The first con- 
structions are based on the Cipher Block Chaining (CBC) and Cipher FeedBack 
(CFB) modes of a block cipher 114, 151. Most standards and applications use 
the CBC mode (CBC-MAC); theoretical support for this construction was given 
recently in [l]. Another proposal dating back to 1984 is the Message Authen- 
ticator Algorithm (MAA) [5,  6, 141, for which no significant weaknesses have 
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previously been identified. MAA is a current IS0 standard, and is relatively fast 
in software (about 40% slower than MD5). Its main disadvantage is that the 
result, being 32 bits, is considered unacceptably short for many applications. 
Recent research on authentication codes has resulted in very fast, scalable, and 
information theoretically secure constructions [lS, 19, 281, which require rela- 
tively short keys. The disadvantage is that a different key must be used for 
every message. If this is not acceptable, one can generate the key using a c ryp  
tographically strong pseuderandom string generator, but the resulting scheme 
is then (at most) computationally secure. 

Around 1991, Rivest proposed two very fast hash functions, namely MD4 
[24] and MD5 [25]. Later RIPEMD [23] and SHA [12] were introduced by other 
research groups. In software, these hash functions may be as much as one order of 
magnitude faster than DES. Several factors have motivated their adoption as the 
basis for MAC algorithms: system designers quickly realized that MACs based on 
these outperform other available options; the additional implementation effort 
required to use these as MACs is very small; and the fact that such MACs do 
not involve encryption algorithms has favorable export implications. Because of 
these factors, MAC constructions baaed on these hash functions were adopted 
in Kerberos [20] and SNMP [13] and are proposed for IPSEC [MI. 

In this paper, a new general attack is proposed which applies to all iterated 
MACs, including MAA and CBC-MAC. It is a birthday attack on known text- 
MAC pairs, which with a few additional chosen text-MAC pairs, allows MAC 
forgery. An extension of the attack is also given. The best previous general attack 
on MAC algorithms was an exhaustive search for the key. The new attack requires 
a number of known text-MAC pairs which is 0(2”12), where n is the bitlength 
of the internal memory (chaining variable) of the MAC algorithm. 

We then analyze three proposals for MAC algorithms based on hash func- 
tions: prepending a secret key to the message input of the hash function (secret 
prefix method), appending a secret key to  the input (secret suffix method), and 
combining both operations (envelope method). For the secret prefix and secret 
suffix method, a systematic analysis is given which generalizes the known at- 
tacks. For the envelope method, the new general attack applies and illustrates 
that the proof outline in [26] for the security of this method is incorrect. Our 
conclusion is that these approaches do not achieve the security level suggested 
by the size of the parameters. Moreover, some variants of these methods are 
susceptible to more serious attacks. 

In addition to the concerns this raises about these constructions for MAC 
algorithms from hash functions, the new attack calls into question the strength of 
MAA and CBC-MAC. This creates a need for a new fast MAC algorithm offering 
security substantially better than those which succumb to attacks requiring on 
the order of 232 known or chosen text-MAC pairs. 

Motivated by the above reasons, and the lack of an acceptable, non-encryption 
based fast MAC algorithm providing more than 32-bit results, we propose a 
new generic construction (Mh-MAC), suitable for application to MDCfamiIy 
hash functions including MD5, RIPEMD, and SHA, and yielding comparable 
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throughput. The security of the proposed construction is also examined. 
The remainder of this paper is organized as follows. $2 reviews the definitions 

of a hash function and a MAC. $3 discusses the new general attack on MACs. $4 
analyzes three previous proposals for constructing a MAC based on a secure hash 
function. $5 describes and examines the new MAC construction. $6 concludes 
the paper. 

2 Definitions and Background 

Hash functions we functions that map bitstrings of arbitrary finite length into 
strings of fixed length. Given h and an input z, computing h(c )  must be easy. 
First we give definitions of hash functions which do not involve secret parame- 
ters. A one-way hash function must satisfy the following properties: 
- preimage resistance: it is computationally infeasible to find any input 

- second preimage resistance: it is computationally infeasible to find any 

For an ideal one-way hash function with an m-bit result, finding a preimage or a 
second preimage requires 0(2m) operations. A collision resistant hash function 
is a one-way hash function that satisfies an additional condition: 
- collision resistance: it is computationally infeasible to find a collision, i.e. 

For an ideal collision resistant hash function with an m-bit result, no attack 
finding a collision betters a birthday or square root attack of 0(2m/a) operations. 

A MAC is a hash function with a secondary input, the secret key K .  Given 
h,  an input 2, and the secret key K ,  computing h(z )  must be easy. (Note K here 
is assumed to be an implicit parameter of h ( z ) . )  The strongest condition one 
may impose on a MAC is that for someone who does not know the secret key, 
it be computationally infeasible to perform an existential forgery, i.e. to find an 
arbitrary message and its corresponding MAC. This should be contrasted to a 
selective forgery, where an opponent can determine the MAC for a message of 
his choice. For a practical attack, one often requires that the forgery is verifiable, 
which means that the MAC is correct with probability close to 1. Here we m- 
sume that the opponent is capable of performing a chosen text attack, i.e. may 
obtain MACs corresponding to a number of messages of his choice. We allow 
in fact a stronger notion, namely an adaptive chosen text attack, in which his 
requests may depend on the outcome of previous requests. To be meaningful, a 
forgery must be for a message different than any for which a MAC was previously 
obtained . 

For an ideal MAC, any method to find the key is as expensive as an ex- 
haustive search of 0(2k) operations for a k-bit key. The number of text-MAC 
pairs required for verification of such an attack is klm. An opponent who has 
identified the correct key can compute the MAC for any message (i.e. key re- 
covery allows selective forgery). If the opponent knows no text-MAC pairs, or if 
rn < k ,  his best strategy may be to simply guess the MAC corresponding to a 

which hashes to any pre-specified output. 

second input which has the same output as any specified input. 

two distinct inputs that hash to the same result. 
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chosen message; the probability of success is 1/2m. The disadvantage of a guess- 
ing attack is that it is not verifiable. A further desirable property of an ideal 
MAC is that finding a second preimage should require 0(2m) known text-MAC 
pairs. In some settings (e.g. multi-destination electronic mail [Zl])  it may be 
desirable that this requires 0(2m) off-line MAC computations even for someone 
who knows the key. 

Most hash functions, including MACs, are designed as iterative processes 
which hash inputs of arbitrary length by processing successive fixed-size b-bit 
blocks of the input. The input z is divided into t blocks $1 through 3:t. If the 
total length is not a multiple of b, the input is padded using an unambiguous 
padding rule. The hash function h can be described as follows: 

Ho = I V ;  Hj = f ( H , - i , ~ , ) ,  1 5 i 5 t h ( z )  = Ht . 
Here f is the cornpression funct ion of h,  and H, is the chaining variable between 
stage i - 1 and stage i with bitlength n (n >_ m). 

In the case of a MAC, one often applies an output transformation g to  Ht 
to obtain the hash-result, i.e. h ( z )  = g ( H t ) .  For example, in the CBC-MAC as 
specified in [14, 151 the output transformation g consists of selecting the leftmost 
rn bits. The secret key can be introduced in the I V ,  in the compression function 
f ,  and in the output transformation g .  

3 A New General Attack on MAC Algorithms 

We describe a new attack which is applicable to all iterated MACs. The param- 
eters depend only on the bitsize n of the chaining variables and on the bitsize rn 
of the hash-result. We first make no assumptions about the texts being hashed, 
and further below give an optimization in the case that texts have a common 
sequence of 6 trailing blocks. 

To facilitate Proposition 2 below, we first make two simple definitions fol- 
lowed by a lemma. Consider the pair (2,~’) with h(z )  = g ( H t )  and h ( d )  = 
g ( H i ) ,  where g is the output transformation as defined above. Given a collision 
h(z )  = h(z’), it may have arisen in one of two ways. An internal collision is said 
to have occurred if Ht = HI.  An external collision is said to have occurred if 
Ht # HI but g ( H t )  = g ( H ; ) .  

Lemmal. A n  internal collision f o r  an aterated MAC algorithm can be used to 
oblaan a verafiable MAC forgery with a chosen t e z t  at tack requiring only one 
requested MAC. 

Proof: For an internal collision (~,z ‘ ) ,  note h(l:IIy) = h ( d I l y )  for any 
single block y. Thus requesting a MAC for the single chosen text 3: 11 y, permits 

Note that this observation has been made independently by others including 
H. Krawczyk (e.g. see [18]). It follows that a security requirement for MACs 
is that it be infeasible for an adversary to find internal collisions (cf. collision 
resistance for hash functions). 

forgery - the MAC for z’ 11 y is the same (here 11 denotes concatenation). rn 
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Proposition2. Let h be an iterated MAC with n-bi t  chaining variable and m- 
bit result. A n  internal  coll ision f o r  h can be found using u known t e x t - M A C p a i r s  
and v chosen texts .  The  expected values for  u and v are as  follows: u = 1/2- 2"l' 
and' v = 0 if the oudput transformation g i s  a permutat ion;  otherwise,  v is 
approximately 2 . 2n-m + 2 [%I. 

Proof: If the number of known texts is T = fi an/', a single internal colli- 
sion is expected by the birthday paradox (note (',)/2" M 1).  If g is a permutation 
(e.g. the identity mapping), all collisions are internal and the results follows by 
Lemma 1.  If g behaves as a random function', (',)/2* M r2 /2 m+l = 2n-m ex- 
ternal collisions are expected and additional work is required - for a verifiable 
forgery - to distinguish the internal collision from the external collisions. (Note 
Lemma 1 requires internal collisions.) This may be done by appending a string y 
to  both elements of each collision pair and checking whether the corresponding 
MACs are equal. This requires 2( 1 + 2,-"') chosen text-MAC requests. For an 
internal collision both results will always be equal, while for an external collision 
this will be so with probability3 1/2m. Discard collision pairs corresponding to  
unequal MACs. The expected number of remaining collision pairs after this stage 
is 2n-2m external plus one internal (but these cannot yet be distinguished). If 
the (total) number of remaining collision pairs is 2 or more (e.g. n - 2m > 0), 
further external collisions must be discarded by appending a different y, and 
continuing in this manner until only a single collision remains; with high proba- 
bility this is an internal collision. This may require a small number of additional 
chosen texts and a total number 2 2"-" 2"/(2" - 1) + 2 [kl. 

Note that creating t MAC forgeries by this method requires one internal 
collision and t chosen-text MAC requests. The cost of this one internal collision 
is given by Proposition 2. 

The attack outlined in the proof of Proposition 2 yields an internal collision 
(2,~'). If z and z' have a common sequence of s trailing blocks and if the 
compression function f is a permutation (for fixed xi), the collision must occur 
at Ht--d, i.e. just before the common blocks. After deleting the 8 common blocks 
in 2 and x', one still has an internal collision. In this case the attack can be 
enhanced since this provides additional freedom in the choice of the forged text 
by Lemma 1. In particular, if z and 2' have the same length one can obtain a 
forgery on a text of that length. As a significant consequence, in this  case the 
at tack cannot be precluded by prepending the length of the input before the MAC 
calculation o r  b y  fixing the length of the input.  

If all the texts in the known text-MAC pairs of Proposition 2 have a common 
sequence of s trailing blocks, and if the compression function behaves as a random 

For this choice of u the probability of the attack failing is l/e; however, such failure 
can be detected in which case selecting additional known text-MAC pairs is required. 
By doubling the number of known text-MAC pairs the probability of failure decreases 
to l / e4 .  The same probabilities hold for the value u given in Proposition 4. 
This is formalized in the full paper. The effective random mapping is from n bits to 
rn bits; if the image is smaller, the collision probability increases. 
If y has i blocks, the probability increases by a factor a (see Lemma 3 with r = 2). 
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mapping, fewer known and chosen texts are required. In order to prove this we 
use a generalization of the birthday attack (proof to be given in the full paper): 

Lemma3. Let h be an iterated M A C  with n-bit chaining variable, a compression 
function j which behaves like a random junction (for fixed xi), and an output 
transformation g that is a permutation. Consider a set of r 2 2 distinct messages 
which have the last s blocks in  common, with ras = O(2"). The probability that 
the set contains at least two messages that collide under la is approximately 

(Note this reduces to the well known birthday attack for s = 0.) This lemma 
can be extended easily to the case where g is a random function. It yields an 
optimization of Proposition 2 as follows (proof to be given in the full paper): 

Proposition4. Let h be an iterated MAC with n-bit chaining variable, rn-bit 
result, a compression ftinction j which behaves like a random function (for fixed 
xi), and output transformation g .  A n  internal collision for  h can be found using 
u known text-MAC pairs, where each text has the same substring of s 2 0 trail- 
ing blocks, and v chosen texts. The expected values for  u and v are as follows: 
u = d m -  - 2"f2; v = 0 i f  g is a permutation or s + 1 2 2n-m+6 (the 
expected number of external collisions is suficiently small), and otherwise v is 
app roxim ate ly 

If we have an internal collision with s 2 1, the probability that it occurs 
before the last 20 blocks equals 1 - w/ (s  + 1). This event can be checked with 
a small number of additional chosen texts. Again the attack still works if one 
appends an arbitrary block y after the internal collision rather than at the end. 
This means that an attacker can replace or delete 20 5 s trailing blocks, and 
that the attack i s  applicable even if the input is of fixed length or i f  the length 
i s  prepended t o  the input (6. [l]). A non-verifiable version of the attack requires d ! .  2"f2 known texts and only a single chosen text, with success prob- 
ability approximately 1/(2n-m/(s + 1) + 1). 

Applying Proposition 4 to MAA, n = 64, rn = 32, and s 2 2 (since two 
key-dependent blocks are always appended). For s = 2, the attack of Lemma 1 
requires 0.82 - 232 known text-MAC pairs and 0.67 - 23a chosen text-MAC pairs. 
For s = 216+2 (corresponding to a fixed but arbitrary 256 Kbyte trailing block), 
Za4.5 known texts and 131 071 chosen texts are required. Note that the designer 
of MAA realized that its compression function not being a bijection might lead 
to weaknesses, motivating a special mode in [14] for messages longer than 1024 
bytes. However, it turns out that the above attack is applicable to this mode 
as well. This is the first attack on MAA (that we are aware of) which is more 
efficient than an exhaustive key search or guessing the MAC. 
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For CBC-MAC with rn = n = 64, Proposition 2 requires 232.5 known text- 
MAC pairs and one chosen text; for m = 32, about 233 additional chosen texts 
are required. The attack of Proposition 4 fails for CBC-MAC and CFB-MAC 
with maximal feedback, since for these the compression function is bijective on 
the chaining variable for fixed zj (e.g. Hi = f(Hj-1, zj) = E K ( H j - I  $ x i ) ,  where 
E K ( H ~ - ~ )  denotes the encryption of Hi-1 with key K). However, it does apply 
to CFB-MAC with feedback shorter than one block and to RIPE-MAC [23]. In 
§4 we discuss other specific schemes to which the attacks apply. Proposition 4 
answers in part an open question arising in the discussion of CBC-MAC [l] on 
whether a bijective compression function (for fixed input xi) allows stronger 
security claims. Note that Lemma 3 is of independent interest for parallelizing a 
collision search when the constraint is the number of hash function evaluations 
rather than the number of evaluations of the round function. 

4 Three Previous MACs Based on Hash Functions 

In this section we discuss the security of three proposals to construct a MAC 
based on a hash function: the secret prefix, secret suffix, and envelope methods. 

4.1 The Secret Prefix Method 

The secret prefix method consists of prepending a secret key h'l to the message 
z before the hashing operation: MAC(z) = h(Klllz) for h an unkeyed hash 
function. If the key consists of a complete block, this corresponds to a hash 
function with a secret IV.  This method was suggested for MD4 independently 
by Tsudik [26] and by the Internet Security and Privacy Working Group for use 
in the Simple Network Management Protocol (SNMP) [13]. In the 1980s this 
was already proposed for at least two other schemes (for example [3]). As has 
been pointed out in several papers, this MAC is insecure: a single text-MAC pair 
contains information essentially equivalent to the secret key, independent of its 
size. An attacker may append any blocks to the message and update the MAC 
accordingly, using the old MAC as the initial chaining variable for the update. 
The messages for which an attacker can compute the MAC are restricted to 
those having known texts as prefix, but this is only a very weak restriction. The 
appending attack may be precluded if only a subset of the hash output bits 
are used as the MAC (e.g. rn = n/2 a8 for MD2.5 below), or by prepending 
the length of the message before hashing [26]. However, relying on a prepended 
length for security appears to make additional demands on the properties of the 
hash function and the attack discussed following Proposition 4 still applies for 
s 2 1. Indeed, the compression function in MD4-based hash functions is of the 
form Hi = Es,(Hi-l) + Hi-1 ,  which behaves as a random function (for fixed 
zj); the addition here is modulo 232. 

A variation of the prefix method with MD5 is used in Kerberos V5, under 
the name MD2.5 [20]. The 128-bit key K1 is derived from a 56-bit DES key K 
by using DES as a keystream generator in Output Feedback Mode (OFB) with 
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IV = 0. The MAC consists of the leftmost 64 bits of the 128-bit hash-result. 
While the expansion does not thwart an exhaustive search for the DES key, it a p  
pears to provide some benefit. Moreover, revealing only 64 bits of the hash-result 
makes it hard to append one or more blocks and update the MAC. However, the 
attack of Proposition 4 still applies if s 2 1 and if we have an internal collision 
before the last block (w >_ 1). Also, it remains conceivable that one could append 
carefully chosen blocks at the end in such a way that the new MAC depends 
only on the 64 known bits, implying that choosing m < n imposes additional 
conditions on the hash function beyond those for which it waa designed or has 
yet been analyzed. An unfortunate additional drawback is that, while one ad- 
vantage of an MD5-based MAC over a DES-CBC MAC is avoidance of block 
ciphers and associated possible export issues, DES is nonetheless required for 
key expansion in MD2.5. Another concern is that a 56-bit key does not offer 
sufficient protection against an exhaustive key search [29]. 

4.2 The Secret Suffix Method 

A second proposal is to append a secret key K2 to the message: MAC(x) = 
h(zllK3). This approach, proposed for SNMP [13], is called the secret SUB. 
method in [26]. A concern with this method is that an off-line collision attack 
on the hash function may be used to obtain an internal collision; therefore by 
a birthday attack, finding a pair (z,3:') such that la(3:) = h ( d )  requires about 
0(2n/2) off-line operations. (Note that the candidates for the collision search can 
be chosen from a controlled set.) Lemma 1 may then be applied. Moreover, this 
method is weak if an (off-line) second preimage attack on the underlying hash 
function is feasible - given one known text-MAC pair, a second hash function 
preimage (for that text) allows an existential MAC forgery. If t text-MAC pairs 
are known, finding a MAC second preimage requires an/t rather than 2" off-line 
trials; here, if the length of the message is not appended, t is the total number of 
blocks rather than the number of messages. Finally, it should be noted that an 
attacker can remove the feedforward in the last iteration, since the the chaining 
variable entering this iteration can be computed using 3: only. 

4.3 The Envelope Method 

The envelope method [26] combines the prefix and suffix methods. One prepends 
a secret key K1 and appends a secret key Ir'z to the message input: MAC(z) = 
h ( K t ( ( z ( ( K z ) .  It is claimed in [26] (along with a sketch of proof) that a divide 
and conquer attack against K1 and Kz is not possible, and that breaking this 
method requires exhaustive search for a key of 121 + ka bits (with Ici = ( K i (  and 
It1 = n, the size of the chaining variable). We now show this statement is false. 

The approach suggested in $3 can be used in a divide and conquer key re- 
covery attack on K1 and Kz.  Once an attacker finds an internal collision for the 
chaining variables, he can perform an exhaustive search for Ir'l , eliminating all 
trial key values which do not yield a collision before the last block (i.e. an internal 
collision). This requires 2 k 1  off-line operations. Slightly more than kl/n internal 
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collisions are required to determine Kl uniquely [22]; if k1 = n, two collisions 
are certainly sufficient. After this, the envelope method is effectively reduced to 
the secret suffix method. Once K1 is determined, an exhaustive search can be 
used to find K2. This disproves the claim of [26]. Note that choosing Ii'l # Kz 
does not offer nearly as much additional security as one might think relative to 
IC1 = li'z (which provides Icl bits of security from exhaustive search); an attack 
on the former however does require a large number of known text-MAC pairs. 

The envelope method used with MD4-based hash functions is also subject 
to the forgery as discussed in $4.1; the MAC forgery possible by Proposition 4 
applies with rn = n = 128 (regardless of k i )  and s 2 1 (assume the last block 
consists of K2 only). For s = 216, 256.5 known text-MAC pairs are required and 
one chosen text. The result is that the security of this scheme is significantly less 
than that suggested by the key size kl + k z .  

Three MD5-based MAC proposals for the IPSEC working group are made in 
[18]: one is the envelope method with K1 = Kz and k l  = 128 (Kl  is padded to a 
complete block), the other two are MAC(z) = h(Klllh(li2llz)) and MAC(z) = 
h(Klllh(K1llz)) .  It is suggested that the best known attack on these schemes 
requires 264 chosen messages; however, Proposition 4 shows that 256.5 known 
text-MAC pairs are sufficient (if s = 216). Also, the second scheme is vulnerable 
to the divide and conquer attack described above. 

4.4 Summary of Results on the Three Previous Proposals 

The weaknesses of the three existing proposals discussed above are summarized 
in Table 1. Storage requirements (e.g. for known pairs) have been omitted, as 
well as the potential improvements due to common trailing blocks as discussed in 
$3. The tabulated values, corresponding to the best known attacks, give upper 
bounds on the security of these constructions. Depending on the parameters, 
finding a second preimage may be easier by first obtaining the key with an 
exhaustive search; this type of attack is not noted in the table. 

If the underlying hash function is collision resistant (implying n is sufficiently 
large), the figures in Table 1 (aside from the secret prefix method without ad- 
ditional precautions) indicate that the corresponding attacks are only certifica- 
tied - breaking these schemes is easier than breaking an ideal MAC with the 
same parameters, but the attacks are still not feasible in practice. In particular, 
the number of known or chosen texts required is much smaller than one would 
expect, and known texts can be replaced by off-line computations. It is however 
clear from Table 1 that if the hash function is only a one-way hash function (with 
n typically between 64 and 80 bits), then both the suffix and envelope methods 
are vulnerable as well. Also, it follows that in case of the envelope method kl 
must not be too small. 

Even if keys are chosen sufficiently large that'these attacks are computation- 
ally infeasible, one should keep in mind the attacks are independent of possible 
weaknesses of the hash function. More sophisticated attacks might be found 
which exploit such weaknesses. 
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Table 1. Security of 3 proposals to build r»-bit MACs (n = m) from hash functions.
"#MAC" is the number of known text-MAC pairs; "C" the number of chosen texts;
"#opn" the number of off-line compression function operations requiied for best known
attacks; t is the number of messages (or blocks) available to an attacker; k, fci, fa axe
key bitlengths.

key recovery

MAC forgery

2nd preim.

ideal MAC
(*)

#MAC #opn

m 2*

rsi 2*

2" 0

secret
(k

#MAC

1

1

t

prefix
0

#opn

01

1

2n/t

secret
(*

#MAC

1C

t

suffix
2)

#opn

2*3

2n/2

2n/t

envelope
(*i •+

#MAC

riidtS^

2" /2 '
5C+2"/2

2n/2

242

fa)
#opn

2*1+*2

1*1 _)_ 2 * 3

0
2fci f

0

fThis attack reduces the envelope method to the secret suffix method only.
{Information essentially equivalent to the secret key is known.

5 A New MAC Construction: MDx-MAC

From the previous section it may be concluded that extreme care must be ex-
ercised in constructing a MAC from a hash function. With this in mind, we
propose a new construction, with the following design goals:
1. The secret key should be involved at the beginning, at the end, and in every

iteration of the hash function (cf. MAA [5, 6, 14]).
2. The deviation from the original hash function should be minimal (to mini-

mize implementation effort and maximize on confidence previously gained).
3. The performance should be close to that of the hash function.
4. The additional memory requirements should be minimized (keeping smart

card implementations in mind).
5. The approach should be generic, i.e. should apply to any hash function based

on the same principles as MD4.
The new construction converts the hash function MDx into the MAC algorithm
MDx-MAC with a key K up to 128 bits in length. Here MDx may be any of
MD5, RIPEMD, SHA, or similar algorithms. (We omit MD4 itself from recom-
mendation because of weaknesses identified in [8] and [27].)

MZ>i-MAC uses three 16-byte constants To, T\, T2, which define three fur-
ther 96-byte constants UQ, U\, I]2 (see below). The first run-time step is key
expansion. If K is shorter than 128 bits, concatenate K to itself a sufficient
number of times, and select the leftmost 128 bits. Let MDx denote algorithm
MDx with both padding and appended length omitted. The 16-byte secret key
K is expanded to three 16-byte (or for SHA, 20-byte) subkeys Ko, K\, and K2:
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- 
for i := 0 t o  2 Ki := MDx(IC 11 U; 11 K )  

The lefmost 16 bytes of the derived key K1 are split into four 32-bit substrings 
denoted Kl[ i ]  (0 5 i 5 3). Also, only the leftmost 16 bytes of ICz are retained. 
Note for SHA, produces a 20-byte output versus 16 bytes for e.g. MD5. 

MDx-MAC is then obtained from MDx with modifications BS follows: 
1. The initial value IV of MDx is replaced by K O .  
2. Kl[i  mod 41 is added mod 232 to the constants which are used in round i of 

each iteration.of MDz." 
3. Following the block containing the padding and appended length aa defined 

by MDx (i.e. the last block after normal post-processing), an additional 
complete 64byte block is appended which has the following form: 

Kz II Ic, @ To II K2 €0 Tl II K2 @ T2 

4. The MAC result is the leftmost m bits of the hash value. In view of the 
attack of Proposition 4, rn = n/2 is recommended for most applications. 

The interpretation of strings as integers is defined to match that used in M D t .  
The computational overhead of the MAC construction is 6 block operations 

for the key expansion (2 for each Ki) ;  a single block operation is required for 
each 64 bytes of message. The additional storage requirements are 16 bytes for 
K ,  48 bytes for the T,, and 16 bytes for K 2 ;  KO may be computed when required, 
and K1 may be added immediately to the constants. Software implementations 
indicate MD5-MAC is 5-20% slower than MD5 (one factor is that the modified 
constants must be read from memory): on a 33 MHz 80486, MD5-MAC runs 
at 11.3 Mbit/s, while MD5 achieves 14.3 Mbit/s; on a HP 715-80, MD5-MAC 
runs at 43.6 Mbit/s compared to 46.9 Mbit/s for MD5. For RIPEMD and SHA, 
the performance difference is smaller since the modified constants can be stored 
in a register. Below we give the hex constants and three test vectors (2, 

MD5-MAC(z)) for hex key K = 00112233445566778899aabbccddeef f: 

TO: 97 ef 45 ac 29 Of 43 cd 45 7e Ib 55 lc 80 11 34 
TI: bl 77 ce 96 2e 72 8e 7c 5f 5a ab Oa 36 43 be 18 
T2: 9d 21 b4 21 bc 87 b9 4d a2 9d 27 bd c7 5b d7 c3 
('"I , lflef2375ccOe0844f98e7e81la34da8) 
( " abc I' , e8013cllf 7209d1328cOcaa04fd012a6) 
("abcdefghijklmnopqrstuwxyz", 9172867eb60017884c6fa8cc88ebe7c9) 

The 16-byte constants T, and 96-byte constants Ui are defined as follows. The 
definitionof Ti involves the 62-byteconstant R ='lab.. .yzAB.. .YZOl.. .89" and 
2-byte constants SO, S1, S2, where 5'; is the 16-bit string formed by repeating 
twice the 8-bit hexadecimal representation of i (e.g. 5'1 = 3131). 

for  i := 0 to 2 
for i := 0 t o  2 

:= m ( S i  11 R) (leftmost 16 bytes of) 

U; := Ti 11 Z'i+1II T i+2  11 Ti 11 Ti+1I I  T,+z 

' For RIPEMD the rounds in the two independent iterations are numbered 0-2 and 
3-5 respectively. For MD5 and SHA, the rounds are 0-3. 
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where the subscripts in Tj are taken modulo 3. The constants Ti and Uj are fixed 
for all time, given MDx. 

The idea of constructing the T; in this manner is to obtain “random” (in the 
sense of un-contrived) bit strings which are easy to compute if an implementation 
of MDx is available (a9 opposed to the constants fi and fi in MD4, and the 
sine constants in MD5). The U; are defined in terms of the T,, so that it suffices 
to store 48 bytes to define the three 96-byte strings Ui .  The key expansion makes 
use of two compression functions in order to preclude recovering A’ from any of 
the K;. (If only a single iteration were used, a cryptanalyst could remove the 
feedforward in MDx, which would reduce the strength.) The three derived keys 
K O ,  K1, and Kz are computed from K by applying a one-way function, implying 
that even if two of the three values are known, it is computationally infeasible 
to  compute the third. Also, the relation between these derived keys is hard to 
predict. While the mapping from I< to I<i is not bijective, the expected reduction 
in entropy for each Ki is negligible. 

The role of KO and K2 here is similar to  that of the secret keys h’l and 
KZ in the envelope method, but with the difference that a divide-and-conquer 
attack now provides no advantage. The intention is that the use of h’l in MDx- 
MAC provides additional protection over the envelope method in the case that 
weaknesses of the hash function become known. (Use of the iteration-invariant 
K1 is not very strong by itself: for MD5 and RIPEMD this is almost equivalent to 
an offset in each message block.) Finally, an exhaustive search for each of the K; 
is as hard as an exhaustive search for K .  An advantage of the overall approach 
is that it minimizes the difference between MDx and MDz-MAC, reducing the 
probability of introducing new weaknesses. 

If, a8 recommended, the bitsize of the chaining variable is equal to  twice that 
of the MAC (i.e. n = 2m), aforgery attack on the new scheme requires 0(2m/(s+ 
1)) chosen text-MAC pairs and 0 ( 2 m / J m )  known texts (Proposition 4), 
and thus MDx-MAC is better than the envelope method as given in [26] for which 
rn = n.  In addition, MDx-MAC does not succumb to the divide and conquer key 
search attack. Moreover, the key size of 128 bits gives a better idea of the actual 
strength of MDx-MAC than the 128+512=640 bits previously proposed for the 
envelope method. We believe the new scheme would also be stronger against 
attacks exploiting the internal structure of MDx.  Based on the above remarks, 
we state the following conjecture: 

Conjecture 1 If MDx is a secure hash function of the MD4-fanady, the best 
attacks on MDx-MAC are exhaustive (with respect to  key search), and the attack 
of Proposition 4 (with respect to  forgery). 

Although it was shown in [9] that the compression function of MD5 is not colli- 
sion resistant, we do not expect this results in a weakness of MD5-MAC. 

For SHA, a more natural construction might be to use a 160-bit key I<, 
construct subkeys K; of the same length, and make appropriate modifications. 
However, a 128-bit key appears adequate against all plausible key search attacks, 
and as defined (with n = 2m = 160), the forgery attack of Proposition 2 against 
SHA-MAC requires about 2’O chosen text-MAC pairs and 280 known texts. Note 
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that  the corresponding numbers of known and chosen texts for MD5-MAC and 
RIPEMD-MAC are about 264. 

6 Concluding Remarks 

The new forgery attack on iterated MACs requires 0(2”12)  known text-MAC 
pairs and 0(2”-”) chosen texts, where m is the bitlength of the hash-result and 
n is that of the chaining variable. A naive non-verifiable attack always succeeds 
with probability 2-k by guessing the k-bit key and computing the MAC, or 2-” 
by guessing the MAC. These attack scenarios differ, but nonetheless suggest 
using n = 2m = k. 

The new attack may pose a serious threat to  certain applications of CBC- 
MAC (e.g. when n = m = 64). Its implications for the security of MAA are also 
serious. There are disadvantages with MAC functions such as DES CBC-MAC 
built from block ciphers (including speed and exportability). The analysis of 
existing proposals indicates that one must exercise care in designing MACs based 
on hash functions. The new MAC construction addresses all of these concerns and 
appears to  be the first such proposal based on existing hash functions. It differs 
from previous such proposals in that it involves a secret key in each iteration of 
the hash function and yet is sufficiently generic to apply to any function of the 
MDPfamily. As with all new proposals, we caution that it would be imprudent 
to  employ the new MAC algorithm in practice prior to  adequate peer review. 
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