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Abstract 

In [l] Matsumoto and Imai have developed a new public key scheme 
for enciphering or signing. (This scheme is completely different and should 
not be mistaken with another scheme of Matsumoto and Imai developed 
in 1983 and broken at Eurocrypt’84). 
No attacks have been published as yet for this scheme. However we will 
see in this paper that for almost all the keys almost each cleartext can be 
found from his ciphertext after only about man4 log n computations where 
m is the degree of the field K chosen, and where mn is the number of bits 
of the text. 
Moreover for absolutely all the keys that give a practical size for the mes- 
sages it will be possible to find almost all the cleartexts from the corre- 
sponding ciphertexts after a feasible computation. 
So the algorithm of [l] is insecure. 

1 Introduction 
In [l] Matsumoto and Imai have developed a new public key scheme. The aim 
of this paper is to see how this scheme can be attacked. 
For Crypto’95 this paper must be short. Also I have written an extended version 
of this paper which gives more proofs, details and examples than this short paper. 
I will be happy to give this extended version to anybody who wants it. 

2 A short description of the Matsumoto-Imai 
Algorithm 

2.1 A Mathematical Property 
Let K be a finite field of characteristic 2, and let q = 2” be the number of 
elements of K (for example K = GF(2) the field with 2 elements). Let LN be 
an extension field of degree N of K, and let €J be an integer. 

Then the function 

is a bijection if 1 + 2”’ is coprime with 2mN - 1. 
More precisely when f is a bijection f is easily invertible, and its inverse function 
f-l is such that f-l(s) = ztr, where h is the multiplicative inverse of 1 + 
modulo 2mN - I. 
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Let B be a basis of L N ,  then the expression of f in the basis B is : 

f ( x l ,  . . . , x N )  = ( P l ( z l , - . . , ~ N ) , * * .  , P N ( Z l , . * . , x N ) )  

where p l ,  . . . , p ~  are N polynomials in N variables of degree 2. The reason for 
this is that x I+ x and x w x2me are both linear functions, so f ( x )  = x . ~ ~ ~ ~  is 
a quadratic function and its components in the basis B have quadratic expres- 
sions. 
The polynomials p l ,  . . . , p ~  are found by choosing a “representation” of LN. 
Such a “representation” is typically given by the choice of an irreductible poly- 
nomial i ~ ( x )  over K, of degree N ,  so we can identify LN with K[x]/(i~(x)). 
It is then easy to find the polynomials p l ,  . . . ,PN. 

2.2 
The field K, with 2” elements, is public, Each message will have n . m  bits, 
where n is another public integer. 
n is split in n = nl + . . . + n d  with d integers nl,  . . . , n d .  Then with these integers 
we will need d extensions of K, L,,, . . . , L,, of degree respectively n1,. . . , n d .  
We will call “word” a value represented by some components of K. For exam- 
ple an element of &, 1 6 e < d ,  can be seen as a word of length n,. Some 
quadratic functions f l ,  . . . , f d  will be used, giving d words. These d words Will 
then be recombined in a word of length n. 

Description of the Matsumoto-Imai Algorithm 

The secrets items will be : 
1. Two afline bijections s and t from K” + K” (these affine bijections can be 
represented in a basis by polynomials of total degree 1 and with coefficients of 
the polynomials in K). 
2. The separation of n in d integers : n = nl + . . . + n d .  

3. The “representation” of the fields L,, , . . . , Lnd, These “representations” are 
given with the choice of d irreductible polynomials. We will denote by $e the 
isomorphism from Kn= to L,,* given by these representations, 1 5 e 5 d. 
4. Some integers 81, . . . , 8d such that 1 5 8, < n, and GCD(2e= + 1, 2mn* - 1) = 
1,l 6 e 5 d.  These integers Be give the quadratic functions f 1 ,  . . . , f d  as we have 
seen in paragraph 2.1. (with N = n , ) .  (GCD is the Greatest Common Divisor 
function). 

The enciphering is described in figure 1. (This figure must be read from the 
top to the bottom). The functions P I , .  . . , P d  are the function projections from 
K” to K”., and p is the concatenation function. 

The important point is that the composition of all these operations is still a 
quadratic function in its components in a basis. So this function can be given 
by n polynomials over K, (p l ,  . . . ,pn) (these polynomials give the ciphertext y 
from the cleartext x). 
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The public items are :
1. The field K of length 2m, and the length n of the messages.
2. The n polynomials (pi, . . . ,pn) in n variables over K.
So anyone can encipher a message.
Moreover to decipher is easy if the secret items are known : all the operations
given in figure 1 will then be easily inverted. For example the quadratic functions
/ . will be inverted by exponentiation x >->• xfte.

Note For various reasons (we explain these reasons in the extended version of
this paper) Matsumoto and Imai limit themselves to the choice of integers 9e and
ne such that there are some integers 4> re and bc such that ne = (2£e + l).2re

and 6e = 6e.2
r«, where 1 < be < le.

Figure 1:

Matsumoto-Imai Algorithm

Kn
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3 Complexity 
The complexity of the public transformation is in O(m2n3) and the complexity 
of the secret transformation is in O((mn)2(m + logn)), (cf.111). 

Remark The ma coefficient in this expression comes from the fact that a 
multiplication of two elements of K requires O(m2) basic computations, and an 
addition of two elements of K requires O( m )  basic computations. However when 
m is not too big (m 5 8 for example) we can store the table of the multiplication 
of two elements of K (and also the addition table if we want, but it is easy to 
compute addition in K without the table) and so computing the Matsumote 
Imai Algorithm will be about ma times quicker. 

4 Our notations 
Thoughout this paper (as in [l]), rn is the degree of the field K chosen, n is the 
number of components of K that we have in each message, and d is the number 
of integers in the secret split of n : n = nl + . . . + n d .  

Let e be an index, 1 5 e 5 d, and let x be the plaintext and y the ciphertext. 
In this paper we will also denote by Lne the extension field of degree n, over K, 
by a, the element of L,= affine in z, by be the element of L,= affine in y, and 
by 9, the secret parameter such that be = (So, with the notations of 
Figure 1 that we will not use any more, we have a, = $ne(,ue(s(z)))). Moreover 
in order to simplify the notations throughout this paper we will denote most of 
the time 8, by 9, a, by a, and be by b. 
Figure 1 becomes Figure 2 with these notations : 

X 

a 

Y 
Figure 2: Our notations for the Matsumoto-Imai Algorithm. b = a1+2me' is 

quadratic in a, a is affine in x and b is affine in y. 

5 A family of weak keys 
In this paragraph we will show that there are some weak keys in the Matsumoto- 
Imai algorithm. I t  does not seem that Matsumoto and Imai where aware of these 
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weak choices. However it is very easy to avoid these weak keys, so it’s not a very 
serious problem for the Matsumot+Imai Algorithm. (In the following para- 
graphs we will see much more serious problems). 

Let us again use the notations of paragraph 4, with 2 the plaintext, y the ci- 
phertext, a affine in 5, b affine in y, and b = u1+2me“ (1) (in a field Ln, of 
degree n, over K). 

The equation (1) can also be written : u = bhe, where he is the inverse multi- 
plicative of (1 + 
If Q is an integer, let us denote by HW(a) the number of 1 in the expression of 
a in base 2. (HW stands for “Hamming Weight in base 2”). 
Let xi be the bits of z and y, be the bits of 9, 1 5 i 5 mn. 
Each value yj, 1 5 j 5 n, has a quadratic expression in the values zi, 1 5 
i 5 n. Similary each value xj has an expression as a polynomial of degree 

sup HW(he)  in the values yi. So, in order to make this expression of the 

Xj, 1 5 j 5 n, as polynomials in the yi, 1 5 i 5 n, impractible, it is neces- 
sary for at least one variable e, that HW(he)  be not too small (for example 
HW(A,)  3 6 for at least one variable e). This fact was very clear from [l], 
but we will see now that in fact it is much better if for all variables e HW(he) 
is not too small (for example HW( he) 2 6 for all variables e) . 

modulo 2mne - 1. 

e, l<e<d 

Let us assume that this is not the case, i.e. that for one variable e, 1 5 e 5 d,  
H W ( A e )  is very small and : a = bKe 
Let ai be the bits of a and bi be bits of b in a basis, 1 5 i 5 nem. 
Since a is affine in 5, there are some values a l , , O  5 i 5 nm, such that 

(2). 

nm 

a1 = a10 + c ~ l * Z , .  
i= 1 

From (2) we know that a1 has a polynomial expression of total degree HW(he) 
in b ~ ,  . . . , bn,m. Since all these values b l ,  . . . , bnc, are affine in 91,. . . , ymm, a1 
has a polynomial expression of total degree HW(he) in 91,.  . . , Ynm. 
So there is a polynomial P of  total degree HW(he)  such that : 

nm 

“10 + c “ l i Z i  = %l, ’ ’ * 7 Ynm) (3). 
i= 1 

And it’s the same for a2, as , ,  . . , anem. So there is at least nem equations similar 
to (3), of degree 1 in the x i ,  and of total degree HW(h,) in the yi. So if for a 
particular e, HW(ti,) is very small, (say HW(tie) 5 4 for example) we will be 
able to find these n,m equations similar to (3) (and this even if there is another 
index f such that HW(h,) is very big). In order to  find these equations, we 
will simply write the most general form of such an equation of degree HW(he), 
and by generating some values for z and y from the public form, we will obtain 
some equations of degree 1 in the coefficients of the polynomials. 
After collecting sufficiently such equations by Gaussian reduction on these equa- 
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tions we will find the vectorial space of solution for the coefficients of the poly- 
nomials. So we will find at least ncm independent equations similar to (3). 

Now from these equations, when y is given, we have immediatly n,m equa- 
tions of degree one on the bits z, of the cleartext. This may be a very dangerous 
thing in some applications, and at least it allows the cryptanalyst to do the 
exhaustive search in 2("-"=)" instead of 2"'" on the cleartext. 

Conclusion : 
is not too small (say 2 6 for example). 

All the values n, and 8, must be chasen in order that HW(h,)  

6 Our first general attack on all the keys 
6.1 An example 
Let us use again the notations of paragraph 4, with z the plaintext, y the ci- 
phertext, a affine in z, b affine in y, and b = a1+2me. (We are looking at what 
happening in L,,, 1 5 e 5 d). 
In this example, we will assume that rn = 1 and B = 1 (the general case will be 
considered in paragraph 6.2). So 

b =  a3. (1).  

Let ( b l , .  . . , b",) be the representation of b in L,,, and let ( a l , .  . .,ane) be the 
representation of a in Lne. 
From (1) we see that all the b j ,  1 5 j 2 n,, have a quadratic expression in 
( a l ,  . . . ,an,), because b = a d ,  and a2 is linear (because here m = 1). 
However we would like to find a useful expression which gives the aj values from 
the bj values (instead of the bj values from aj values). 
The first idea is of course to write 

a =  bb (2), 

but in most cases HW( ti) is big so (2) gives an intractable expression for the aj 

values. So, what should be done ? 
Let us start again from (1) and multiply both terms of (1) by a. 
We obtain : 

b.a = a4. (3). 

The equation (3) gives n, equations of degree one on the b j  values and of degree 
one on the aj  values !! (because a4 is linear in a, because m = 1 here). 

Moreover for any b # 0, there are exactly two solutions of (3) : the solution 
a = 0, and the solution a = bh. So in a way with (3) we will lome one equation 
over GF(2) ,  but the important point is that this equation (3) will be useful even 
if the equation (2) is intractable. 
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a is affine in 2, 6 is affine in y, and a* is linear in a. 
So from equation (3), we know that there are some equations of the form : 

n n  n n 

i=l j=1 i= 1 i= l  

These equations are true for all the z, y, when x is the plaintext of y. Moreover 
if 6 = 0, there is only one solution for a of (3). So we must necessary have at 
least n, "formally" independent equations like (4). ("Formally" means here that 
the vectorial space of the solutions for the values ~ i , ,  ai, and 60 is at least ne)-  

However, for a given value y we can just say that we will have at least ne - 1 
independent equations (4) (and not n,) because (3) has two solutions in a when 
b f O .  

By choosing some values for z and computing the value y from z and the public 
form, and then by replacing these values xi and gi, 1 5 i 5 n in (4), we will 
obtain some equations of degree one in the na + n + n + 1 = (n + 1)2 variables 

In this way we are able to find quickly all the equations (4) (by Gaussian reduc- 
tions). Then, from a given y for which we want to find x, these equations give 
us some equations (at least n, - 1 independent equations) of degree one on the 
values 51, . . . , xn. So by Gaussian reduction, we are able to find n, - 1 variables 
ZI, . . . , z,,, from the others. 
Let us now see the general case. 

Ti j ,  ai,Pi and 80. 

6.2 The general case 
Let us again use the notations of paragraph 4. We have 

' (5 ) .  b = a  1+2m' 

By composition on each side of this equation with g : I I-+ z ~ ~ ~ - ~ ,  we obtain : 

pm0-1 - 2-0-1 - a2 

Now let us multiply each side by a.b. We obtain : 
2ame 

ah2"' = b.a . (6). 

Let ( a ~ ,  . . . ,an,) be the representation of a in Lne, and ( b l ,  . . . , bne) be the r e p  
resentation of b in Lne. (So all the ai and bi ,  1 5 i 5 n,, are elements of K). 
This equation ( 6 )  gives n, equations (not necessarily independent) of degree one 
on the bj values and of degree one on the aj values ! (because b I-+ barn' is linear, 
and a I+ uaame is linear, i.e. in a basis the n, components of barn' can be written 
as a polynomial of degree one in the components of 6, with coefficients of the 
polynomial in K = GF(2m)). 
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Moreover a is affine in z, and b is affine in y. So these n, equations ( (6 )  in 
a basis) when we write them in the components ("1,. . . ,zn) and (31,. . . , yn) of 
z and y give me equations of the form : 

n n 

i=l j=1 i= 1 i= 1 

These equations are true for all z, y when z is the plaintext of y. So by choosing 
some values for z and computing the value y from z and the public form, and 
then by replacing these values x, and yi, 1 ,< i 5 n, in (7), we will obtain some 
equations of degree one in the (n + 1)2 variables of GF(2") : rij, C Y I ,  pi and 60. 

By this way we are able to find quickly, by Gaussian reductions, all the equations 
(7). This is the Part 1 of our Attack. Maybe we will find some equations (7) 
which do not come from the equation (6) (because we found all the equations 
which have the general form of (7)), but the important point is that at least we 
will found all the equations (7) which come from (6). 
Part 2 of our attack : then, from a given y for which we want to find 2, these 
equations will give us some equations of degree one on the values 51, . . . , z,,. By 
Gaussian reduction these equations will allow us to find X variables 5 1 , .  . . , xn 
from the others, where X is the number of independent equations (7) in z1, . . . , z,, 
when PI, , , . , pn are replaced by the value we want. So, in order to evaluate the 
power of this attack, we have to evaluate A. This is what we will do now. 

Remark If n = 1 and 8, = 1 (and whatever the value of n,) when we will find 
all the equations (7) we will find all the equations which come from b2.u = b.u4 
and all the equations which come from b.u = u4, and these equations are not 
formally the same (because if b = 0 the first ones vanish, but not the second 
ones). For example, when n = 1, 0 = 1, and n, = 5 we have explicitely found 
all the equations (7). In this case we have found a vectorial space of solutions for 
the coefficients Ti j ,  a,, pi and 60 of dimension exactly 10. In that case b2.a = b.u4 
and b.u = u4 gives 10 equations. When we choose for y a given value, these 10 
equations will of course give us at most 5 independent equations, and if for this y 
we have b # 0, when they will give us exactly 4 independent equations (because 
we have exactly two solutions for u). 

6.3 Evaluation of X 
Theorem 6.3 For all the practiml keys and for most of the ciphertexts y, the 
number X of independent equations of degree one in 2 1 ,  . . . , xn that we d l  ob- 

tain from the equations (7) for this given y is A 2 C(ne - GCD(&, ne)) L. 

Moreover this shows that for a lot of secret keys for most of ciphertext we will 
have X 2 n - d. 

2n d 

3' 
e= 1 

For the proof of this Theorem, we will need three lemmas. 
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Lemma 1 Let L be a finite field with q elements. Let p be an integer, and let 
y be an element of L. Then the equation x p  = y has at most GCDCp, q - 1) 
solutions x .  

Proof of Lemma 1 

If y = 0, then x = 0 is the only solution, and a lemma 1 is true. 
So we can assume that y # 0. Then z = 0 is not solution, so we can assume  SO 
that x # 0, so x4-l = 1. 
Let p = GCD(p, q - 1). 
From Bezout Theorem we know that there are two integers CK and p such that 
q - p ( q - l ) = p .  so 

z P r y  3 x"P=g(a 
=+ x".(29-1)@ = 30 
=+ xP=y"'. 

In a field (commutative by definition) each equation of degree k has at most k 
solutions. So there is a t  most p solutions of x' = yo, and so there is at most p 
solutions of XP = y, as claimed. 

Lemma 2 For all integers rn, a and p we have : 

GCD(2mm - 1,2"'@ - 1) = 2rnGCD("1P) - 1, 

Proof of lemma 2 

0 Clearly GCD(2ma - 1, 2m@ - 1) > - 2mGCD("7P) - 1, because in 2ma - 1 and 
2"'@ - 1 we can put 2rnGCD(QJ?) - 1 in factor (use the formula x k  - 1 = 

0 Clearly also, we can assume that (Y > p by the symmetry of the hypothesis 

0 Now if I and y are two integers, and if /I is an integer such that x -  y.2" > 0,  

(I - 1)(&-1+ xk-2 + . . . + 5 + 1)). 

in lemma 2 and since when a = p lemma 2 is obvious. 

we have : 
G C D ( z , y )  = GCD(y,x -3.2''). 

So with x = 2mQ - l , y  = 2rnp - 1 and 2' = 2"("-@) we have : 

GCD(2ma: - 1, 2rnp - 1) = GCD(2mP - 1, 2rn("-P) - 1). (8). 

By iterating this technique, GCD(a, p) will appear in a way similar to the com- 
putation of GCD(a., p) by the euclidian algorithm so we will obtain:GCD(2"" - 

Lemma 3 In Lne (the field with 2""- elements) the equation (6) that we have 
written before : 
a.bZme = b.a22me (S), has at most 2mCCD(*7n*) solutions in a ,  for each given 
b # 0. 

1 , p P  - 1) < - 2 4 C D ( " , P )  - 1. 
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Proof of lemma 3 

When b # 0 this equation (6 )  has two families of solution a : 
1) a = 0. 
2) a such that : (a2me-1)2me+1 = (9). 

We know that the function g : t H zzme+l is a bijection in L,, (because by 
construction of the Matsumoto-Imai Algorithm fJ and ne are chosen in order to 
have this property). 
So a is solution of (9) if and only if : 

NOW from lemma 1 we know that this equation (lo), for a given b has at most 
GCD(2me - 1,2”’”, - 1) solutions a. 
So with lemma 2 we obtain that (9) has at most 2mGCD(e*n=) - 1 solutions in a. 
SO, by adding the solution a = 0, we obtain that : when b # 0, (6) has at most 
2mCCD(e+’e) solutions in a, as claimed. 

Corollary of lemma 3 

For a given b # 0, if we write the equation (6) in a basis on the components of a 
(i-e. with a representation of Ln0 as an extension of degree n, of GF(2m)) ,  then 
we d1 obtuin at least n, - GCD(0, n,) independent equations of degree one in 
the components of a. 

Proof of the corollary 

We have seen that the equations that we obtain are of degree one in the com- 
ponents of a.  Moreover these equations have at least one solution : a = 0, SO 

there is no contradiction in these equations. If A, is the number of independent 
equations, we will have exactly 2m(ne-xe) solutions. However from Lemma 3 we 
know that we have at most 2mGCD(e7”’) solutions. So A, 2 n, - GCD(0, n,), as 
claimed. 

Proof of theorem 6.3 

(Here exceptionally we will use the notations a,, be, and 8, for a, b and 0 because 
we will need the d values e, 1 5 e 5 d). 
Let y be a ciphertext such that for this y we have : 
ye, 1 5 e 5 d ,  be # 0. (so a, # o as well, since b, = aa+2mee 1. 

Note. For a given e, the probability that be = 0 is 1/2”’”=. So if mne is very 
small this probability may not be negligible. However if mn, is very small (for 
example if m = 1 and n, = 3) then a, = b$ with a very small ti,, so with a 
very small HW(h,), and we have seen in paragraph 5 that this gives very weak 
keys. (We have seen that h this case it is easy to “eliminate” the variables of 
the branch number e). 

~ 
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So we can assume that mn, is not so small, and so that “most” of the cipher- 
texts y will be such that Ve, 1 5 e s d, be # 0. (For very big d this may not be 
the case, but if n is of a reasonable size, then d cannot be too big and for most 
ciphertext y, Ve, 1 5 e I d, be # 0 as claimed). 

We have seen in paragraph 6.2 that in the equations (7) we will find at least 
all the equations which come from all the equations (6) when we write these 
equations with the components of x and y instead of u and b, and this for all 
the values of el 1 5 e 5 d.  

So from the Corollary of Lemma 3, we know that we will obtain at least c(ne - 
GCD(Be, ne)) independent equations of degree one in the components of x (for 
each given y such that Ve, be # 0 ) .  
So we have proved the first part of Theorem 6.3. 

d 

e= 1 

We will now need another lemma. 

Lemma 4 Ve, 1 <_ e 5 d, let Se = GCD(Be,ne), and let k, = ne/6e (ke is an 
integer because 6, divides ne). Then k, is always odd, and ke 2 3. 

Proof of lemma 4 

We know from the values chosen in [l] that we can write ne = a.2‘ and Be = P.2’ 
with a and p odd and s 2 T .  (This is also explain in the extended version of 
this paper). 
SO 6, = 2‘GCD(a, p), and k, = a/GCD(a,  p), with a and p odd. 
So ke is odd. Moreover Oe < n,, so S, < n,, so ke > 1, so ke  2 3. 

We can now finish the proof of Theorem 6.3. 

We have proved that X 3 C(ne - GCD(O,, n,)). 

2n 
SO from Lemma 4, x 2 C(n, - -1 = 5 En, = T. 
Moreover for a lot of secret keys GCD(B,,n,) = 1, and if that occurs we have 

r(n, - 1) = n - d ,  so x 2 n - d .  

d 

e= 1 
d d 

n e  2 
e= 1 3 

e= 1 

d 

e=l  

6.4 Improved Gaussian elimination 
Our attack, as we have described it, proceeds in two parts : 

Part 1. We find all the equations (7), and this has to be done once and for all. 
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Part 2. For a specific ciphertext y, we try to find z with the help of equations (7). 
So this has to be done each time we have another z to find from another 
Y-  

In Part 1 we have to do a Gaussian reduction on (n + 1)2 variables and about 
(n + 1)' equations of GF(2m). So in the most general case our Part 1 will have 
a complexity of at most m2.d. 
In most practical cases Part 1 will be dominant in time from Part 2. So it is 
worth improving Part 1. This is what we do in the extended version of this paper 
where we show that there is an Algorithm in O(m2n410gn) for Part 1 instead 
O(m2n6). (The idea is to choose some values of z in order to have a more easy 
Gaussian reduction). 

7 Our second general attack 
7.1 

In paragraph 6 our attack was based on the idea that if b = a1+2"e, then 
a.b2me = b.aaame ( 6 ) .  
In equation ( 6 )  a and b are on both sides. 
In this paragraph 7 we will now try to find some equations of the general form : 

a2.bu = bV 

Description of the second attack 

with HW(u)small and HW(v)  small. (Here a is only on one side of the equation). 

For this purpose we will not start from b = a1+2"e, but we will start from 
a = bhe. So we will have to evaluate the value of t ie.  

Theorem 7.1 Let 6 = mGCD(B,,ne), and let a and k be integers such that 
a6 = me,, and k6 = mn,. Let he be, as usual, the multiplicative inverse of 

Then : 1. k is odd and k 2 3.  

and : 2. he = 2"-' + x(-1)i.2Q6'-1. 

1 + 2me= modulo 2mn= - 1. 

k - 1  

i=l 

Proof 

k = ne/GCD(Be, me)  and from Lemma 4 of paragraph 6 we know that this value 
is odd and 2 3. So k is odd and k 2 3. 
NOW 1 - ZU6 + 22a6 + . . . + ( -2a6)(k-1) = (1 - ( -2*6)k)/( 1 + 2Q6).  
(Because this is a well know sum of a geometric series). 

So we have : 

L k6 P = 1 - (-1) (2 ) . 
i=l 
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So since k is odd, we have : 

) 
k- 1 

(1 P6 + E ( - 1 ) + P i  = 2 moddo - 1).  ( i= 1 

k- 1 

So 2"-' + ~ ( - l ) i . 2 f f 6 i - 1  is the multiplicative inverse of 1 + P e e  modulo 
~ 

i= 1 
2""= - 1, as claimed. 

From u2 = b2"= and Theorem 7.1 we have : 

(k--1)/2 (k- 1)/2 
a2.bu = bu, with Q = 2ffle=(2i-1) and v = 1 + 22m8ei. 

i= 1 i=l 

So HWm(u) = (k- 1)/2 and HWm(v) = (k+ 1)/2, where HW,(z) denotes the 
minimum number of terms when we write z as powers of 2". 
So the equation a2.bu = b", when we write it as n, equations in the components 
z: and yi gives ne equations of degree one in the z:, and of total degree (k+ 1)/2 
in the yi. 

Remark 
k. Strangely theses keys are the easiest keys in this paragraph 7. 

In paragraph 6 the most difficult keys were the keys with very small 

For example when k = 3 we will obtain n, equations of the general form : 

n n  n n  n n 

i=l j=i+l i=l i= 1 

Our attack will then still be in two Parts. 

Part 1. We will find all the equations (7) of paragraph 6 and also all the 
equations (9) (as usual by Gaussian reduction after computing some couples 
(z, y) from the public form). 

Part 2. Then for a given y we will put to the power 2m-1 the equations (9) 
2m-1 found. Since in K we have ( C X + ~ ) ~ " - '  = a! +p2m-' and since x:- = zi, the 

equations (9) will give us like this equations of degree one in the Xi. Therefore 
we will use both equations (7) and (9). 

Note 1. Here, when k = 3, the Gaussian reduction for Part 1 is in m2n6 
(instead of m2n410gn), so Part 1 takes more time with this attack. However 
Part 2 will be quicker because for all b # 0, there is only one solution in a to 
a2.bu = b". Since Part 1 has to be done only once we see that k = 3 is not a 
good choice. 
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Note 2. Another solution would have been to write all the equations (9) on 
the bits. However the complexity for Part 1 when k = 3 would then have been 
in O(m6n6) instead of ~ ( r n W ) .  

7.2 An example of attack 
In [l] p. 435 we know that an implementation with rn = 8 and n = 32 has 
been done. We know nothing about the secret keys chosen. Whatever the 
value of the secret key we will be able to find a cleartext from a ciphertext of 
this implementation after at most 232 computations, and much less most of the 
time, with our attacks of paragraph 6 and 7. (More details are given about this 
example in the extended version of this paper). 

8 Further Improvements 
If for some index e, mn, is not too big (for example if mn, 5 32), then we 
have found that it is possible to further improve our attacks. We will do more 
computations to be done once and for all but less to be done for each message. 
We have no room here to explain these improvements in details but the idea is to 
use the fact that for some values of the xi the number of independent equations 
(7) in the y, decreases suddenly. This comes from the fact that when a = 0 our 
equations (6) of paragraph 6 becomes 0 = 0. So these values of the xi give useful 
information that allow us when mn, is not too big to “separate” the variables. 
(More details are given about this in the extended version of this paper). 

9 Conclusion 
In this paper we have seen’that the scheme of [l] is insecure. Whatever the 
value of the keys we are able to find easily most of the cleartexts from their 
ciphertexts, a t  least for texts of reasonable size. Some different schemes based 
on similar ideas may be much more difficult to break. However the choice of the 
secret keys and the choice of these variations will have to be done with great 
care. 
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