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Abstract. In this paper we analyse SAFER K-64 and show a weakness 
in the key schedule. It has the effect that for almost every key K, there 
exists at least one different key K’,  such that for many plaintexts the 
outputs after 6 rounds of encryption are equal. The output transforma- 
tion causes the ciphertexts to differ in one of the 8 bytes. Also, the same 
types of keys encrypt even more pairs of plaintexts different in one byte 
to ciphertexts different only in the same byte. This enables us to do a 
related-key chosen plaintext attack on SAFER K-64, which finds 8 bits 
of the key requiring from 2“ to about 2” chosen plaintexts. 
While our observations may have no greater impact on the security of 
SAFER K-64 when used for encryption in practice, it greatly reduces 
the security of the algorithm when used in hashing modes, which is il- 
lustrated. We give collisions for the well-known secure hash modes using 
a block cipher. Also we give a suggestion of how to improve the key 
schedule, such that our attacks are no longer possible. 

1 Introduction 

In [6] a new encryption algorithm, SAFER K-64, hereafter denoted SAFER, was 
proposed. Both the block and the key size is 64. The algorithm is an iterated 
cipher, such that encryption is done by iteratively applying the same function 
to the plaintext in a number of rounds. Finally an output transformation is 
applied to produce the ciphertext. For SAFER the suggested number of rounds 
is 6. Strong evidence has been given that SAFER is secure against differential 
cryptanalysis [q and against linear cryptanalysis [2]. In [ll] it was shown that 
by replacing the S-boxes in SAFER by random permutations, about 6% of the 
resulting ciphers can be broken faster than by exhaustive search. 

In this paper we analyse SAFER and show a weakness in the key schedule. It 
has the effect that for virtually every key K,  there exists at least one different key 
K * ,  such that for a non-negligible fraction of all plaintexts the outputs after 6 
rounds of encryption are equal. The output transformation causes the ciphertexts 
to  differ in one of the 8 bytes. These pairs of plaintexts and ciphertexts can be 
found in time from about 222 to 228 encryptions. All estimates of complexity in 
this paper are the number of 6 round SAFER encryptions. Two keys encrypting 
a plaintext into the same ciphertext is called a “key-collision” in the literature 
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and in [lo] a bruteforce key-collision attack on the DES was given, which can 
be applied to any block cipher. Given a plaintext P the method finds two keys 
for which the two encryptions of P are equal and requires about 232 operations 
for a 64 bit block cipher. 

What we have found for SAFER is much stronger. For (almost every) given 
key K there exists (at least) one other key I<*, different from K only in one 
byte, such that the encryption functions induced by the two keys encrypt from 
2a2 to 1.7 x 228 plaintexts the same way in the 6 rounds of encryptions. The 
output transformation makes the ciphertexts differ in one byte, the same byte in 
which the keys differ. For some keys, K ,  there are up to 9 other keys encrypting 
a non-negligible fraction of all plaintexts in the same way a8 K .  Also, for the 
same types of keys, K and K’, the encryption functions induced by the two keys 
encrypt from 229 to 235 pairs of plaintexts, P and P* , different only in one byte, 
the same way in the 6 rounds of encryptions. The output transformation makes 
the ciphertexts differ in the same byte. Interestingly, the keys, the plaintexts and 
the ciphertexts differ in the same byte. 

We use our observations to establish related-key chosen plaintext attacks, 
which using from 244 to 247 chosen plaintexts finds 8 bits of the secret key 
with probabilities from 1 to 2-59 depending on certain circumstances of the 
attacks. Related-key attacks are not the most realistic attacks, and our results 
may have no greater impact on the security of SAFER in practice when used 
for encryption. However, first of all, it can be avoided by re-constructing the key 
schedule, secondly it greatly reduces the security of the algorithm when used in 
hashing modes. 

In hashing modes using a block cipher algorithm its building block the plain- 
text (and/or the key) is exclusive-or’ed to the ciphertext to produce a kind of 
one-wayness in the hash algorithm. We found collisions of such hash functions 
in estimated time about 223 encryptions when SAFER is used aa the underlying 
block cipher. This should be compared with a brute force collision attack, which 
requires about 232 operations. The keys we used were well-chosen, but with our 
method collisions can be found faster than a brute force attack for most keys. 

This paper is organised as follows. First we give a short description of SAFER. 
In Sect. 3 we describe the weakness in the key schedule and give examples of the 
above mentioned (pseudo)-collisions. Next we use our observations to establish 
a related-key chosen plaintext attack on SAFER. In Sect. 4 we describe attacks 
on hash modes using SAFER and give examples of collisions. In Sect. 5 we give 
different methods of how to improve SAFER to avoid the problems described in 
the preceding sections. 

2 Description of SAFER 

SAFER is an r round iterated cipher with both block and key size of 64 bits 
and with all operations done on bytes. The key is expanded to 2r + 1 round 
keys each of 64 bits, described later. The designer’s recommendation for P is 6 
[S]. Each round takes 8 bytes of text input and two round keys each of 8 bytes. 
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The input and the round keys are divided into 8 bytes and the first round key is 
xor'ed, respectively added modulo 256, according to Fig. 1. The bytes are then 
processed using 2 permutations or S-boxes, X ( a )  = (45" mod 257) mod 256, and 
the inverse of X, L(a) = log45(u) mod 257 for a # 0 and where L(0)  = 128. After 
the S-boxes each byte of the second round key is added modulo 256, respectively 
xor'ed, and finally the so-called Pseudo-Hadamard Transformation (PHT) is 
applied to produce the output of the round. PHT is defined by three layers of 
the 2 - P H T ,  which is defined by 

2-PHT(z, y) = (2 * z + y, 2 + y) 
where each coordinate is taken modulo 256. Between two layers of 2-PHT's a 
permutation of the bytes is done, see Fig. 1. After the last round an output 
transformation is applied, which consists of xoring, respectively adding modulo 
256, the last-round key. 

1 1 1 1 1 1 1 1  
€3 + + a3 a3 + + @ - A - 2 . - 1  

+ + + + + + + +  
C1 C2 C 3  C4 C.5 C6 c? Cg 

Fig. 1. One round of SAFER. 

The key of 64 bits is expanded to 2 r  + 1 round keys each of 64 bits in the 
following way. Let Ii' = ( I c l , ~ ,  ..., k ~ , ~ )  be an 8 byte key. The round key byte j in 
round i is denoted K i , j .  The round key bytes are derived as follows: K 1 , j  = k,,j 
for j = 1, ..., 8 and 
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for i = 2, ..., 2r + 1 and j = 1, ..., 8. '<< 3' is a bitwise rotation 3 positions to 
the left and bias[i,j] = X(X(9i + j ) ) ,  where X is the exponentiation function 
described above. 

2.1 Some Properties of SAFER 

The following lemma is used in this paper. 

Lemma 1 ,  Let X be the exponentiation funct ion of SAFER and lei a be any  
byte value. T h e n  it holds that 

X ( a )  + X ( a  + 128) = 1 mod 256 

Proof: The statement is proved as follows. 

X ( a )  + X ( a  + 128) mod 256 = (45" + 45"+lZ8 mod 257) mod 256 
= (45" x (1 + 45lz8) mod 257) mod 256 
= (0 mod 257) mod 256 

since 45lZ8 = -1 mod 257. And since both X(a) and X ( a +  128) are in the range 
0 

The mixed use of addition modulo 256 and exclusive-or operations in SAFER 
was introduced to  give the cipher confusion [6]. There is a simple and useful 
connection between the two operations when used on bytes, namely 

Lemma 1. Let a be a byte value. Then a @ 128 = a + 128 mod 256. 

Proof Follows easily from the fact that the only possible carry bit of a + 128 
disappears. 0 
A result similar to Lemma 2 is shown in [7]. 

[0,256] and their sum is not zero, the statement follows. 

3 Weakness in the Key Schedule 

From the previous section it is seen that key byte j affects only S-box j directly 
in every round. Let I( = (kl, ...,ks) be an 8 byte key. Consider the first byte 
in the first round. A key byte is first xor'ed to the plaintext byte, the result is 
exponentiated and another key byte is added modulo 256, the ciphertext byte 
after one round is X(y @ K1,1) + ZCZ,~, where I C l , l ,  K Z , ~  are derived from 61. 
While it is true that this is a permutation of the plaintext byte to the ciphertext 
byte for a fixed key, it is not a permutation of the key byte to the ciphertext 
byte for a fixed plaintext. Let I{* = ( k ; ,  ..., kg) be an 8 byte key different from 
K in only one byte, say byte no. 1. Then if k.1 and k;  encrypt some of the 256 
possible inputs to S-box 1 in every round the same way, obviously K and IC' 
encrypt some 64 bit plaintexts over 6 rounds the same way. 
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If, say, n inputs to an S-box in the s'th round are encrypted the same way 
by two such keys we will say that the keys encrypt equally with probability 
p a  = &. Also we will call two such keys relaled. Consider S-box 1, K and K' 
again. If a byte g is evaluated the same way with the two keys in S-box 1, i.e. 

X(Y @ K1,l) + K2,l = X(Y @ KfJ) + K;,, 

then so is the byte 5 = y@K1,1@ Kf,, @ 128. This follows from Lemma 1 and 2. 
Since L is the inverse of X ,  a similar property holds for the logarithmic S-boxes. 
Therefore n is always a multiple of 2. The probability that a 64 bit plaintext 
encrypts into the same ciphertext using such two keys is 

and the number of plaintexts is PI = 264 x n:,,pa 2 222. Here we have tac- 
itly assumed that the pi's are independent. This is not the case, however our 
experimental results have shown that the product (3) of the round probabilities 
is a good approximation for SAFER with 6 rounds. Since this phenomenon is 
isolated to one S-box we could easily do an exhaustive search for all such pairs of 
keys. We found that for two keys different only in the sixth byte with the values 
132 and 173 respectively, nf=, pa = 2: 2-35 and PI  N 1.7 x 22s. Note that 
since the only requirement we make is that the two keys have certain values in 
the eighth bytes, PI N 1.7 x 2" for 256 pair of keys. For another 3 x 256 pairs 
of keys PI  2: 1.13 x 228. How do we determine for how many keys there exist 
another key which encrypts from 2a2 to about 2" plaintexts the same way? Take 
a key K .  Consider all 2' - 1 keys K' different from K only in byte 1. If none of 
them are related to I<, choose keys K" different from K only in byte 2 and so on. 
Again we can do an exhaustive search for all S-boxes isolated. The total number 
of keys for which there are no such other keys different in only one byte is about 
240. For many keys K there exists more than one related key, on average about 
2 related keys, and in some cases there are as many as 9 keys related to I<. 

In the search for the plaintext/ciphertext pairs that coincide for two keys 
it is not necessary to do two full 6 rounds of encryptions. One can start the 
encryptions in the second round with the inputs to this round such that the 
ciphertexts after the first two rounds of encryption are the same. This can be 
done easily by precomputing two small tables. Assume that the two keys differ in 
the first byte only. For the 256 possible values of the text output of the first S-box 
in the first round, store in a table the values for which the two keys decrypt to 
equal plaintexts. For the 256 possible values of the text input to the first S-box 
in the second round, store in a table the values for which the two keys encrypt 
to equal values. By pairing the values in the two tables and determining which 
PHT inputs whose first byte equals the first byte of a pair give a PHT output 
whose first byte equals the second byte of this pair, one can compute all the 64 
bit inputs to the second round, such that the two keys encrypt equally in both 
the first and the second round. 
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Then after every round of encryption one checks whether the encryptions are 
equal. In most trials only 1 round of encryption is needed for every plaintext in 
a pair. Therefore one needs only to do about 3 x 2/ n!=3 pi encryptions, which 
is 222 in the optimal cases. Again we note that the output transformation, which 
consists of xoring, respectively adding modulo 256, the key l i 2 r + l  makes the 
above ciphertexts differ in one byte, exactly the byte for which the keys differ. 
As illustrations we list in Fig. 1 two such examples. The first collision was found 
in time 222, the second in time 222.1. We summarize our results. 

Plaintext Keys Ciphertexts 
8a 2c 62 a2 a2 81 cl 8c eO 81 01 85 eb 3b 48 76 ca dd fc f6 30 ac 71 38 
8a 2c 62 a2 a2 81 cl 8c eO 81 01 85 eb 3b 48 bc ca dd fc f6 30 ac 71 5c 
50 l c  7a 44 39 63 fl 8c eO 81 01 85 eb 3b 48 76 6a ‘Id db 51 44 89 5a fl 
150 lc 7a 44 39 63 f7 8c eO 81 01 85 eb 3b 48 bc 6a 7d db 51 44 89 5a 931 

Table 1. Pseudo key-collisions for SAFER (hex notation). 

Theorem3. For all but z 4 O  keys K in SAFER, there exists at least one and 
on average two keys, K* ,  diflerent from IC an one byte, say byte b k ,  such that 
K and K* encrypt from 2a2 to about Z2’ plaintexts the same way an 6 rounds. 
The output transformation of SAFER makes the ciphertexts dafler in one byte ,  
byte bk. The related keys can be found easily b y  exhaustive search over a single 
8 bit S-box in 6 rounds. Given two related keys one such plaintext (and the two 
ciphertexts) can be found in time f rom about 222 to 228 encryptions. 

From the above also the following result follows. 

Theorem4. For all but 217 keys Ir‘ in SAFER, there exists at least one and on 
average 3.5 keys, K * ,  different from K in one byte,  say  byte bk, such that Ii‘ and 
K* encrypt from 229 to  about 235 pairs of plaintexts, P ,  P*, dzflerent an only 
byte bk the same way in 6 rounds. The output transformation of SAFER makes 
the ciphertexts differ an one byte ,  byte bk. 

To find such “collisions”, one can use the same method as described above for 
the result of Theorem 3, but this time start the search in the third rounds, 
such that the encryption in the second and third rounds are equal. Once two 
ciphertexts different in only byte bk are found, the ciphertexts after one round 
are decrypted into two plaintexts different in only byte bk. Examples of collisions 
from Theorem 4 are given in the section about collisions of hash functions. We 
can use Theorem 4 to establish a related-key attack on SAFER. 

3.1 

In [3,4, 11 new attacks based on related keys were introduced. In this section we 
apply the principles of these attacks and introduce a chosen plaintext attack on 

A Related-key Chosen Plaintext Attack 



280 

SAFER. Assume we have access to two oracles, one encrypting plaintexts with 
a key K ,  the other encrypting plaintexts with a key I<*, such that K and K* 
are related, i.e. encrypt a non-negligible fraction of all plaintexts the same way. 
Assume without loss of generality that the keys differ only in byte b l .  Consider 
the following attack 

- Choose the values of the bytes b2 to be at random. 
- Get the 256 encryptions {Ci) of the plaintexts b l ,  b z ,  ..., be for all values of 

bl encrypted under the first key. 
- Get the 256 encryptions {Cj} of the plaintexts 6 1 , b 2 ,  ..., b13 for all values of 

bl encrypted under the second key. 
- Sort the ciphertexts just received and check, if any ciphertext in {Ci) differs 

from any ciphertext in {Cj} only in byte b1. If a match is found the two 
ciphertexts are output. 

If ciphertexts are output in the last step of the above attack, we search exhaus- 
tively for two 8 bit keys k and k* for which the encryptions of the bytes bl for 
the two corresponding plaintexts yields equal outputs after one round. For these 
key bytes we check if the xor of the byte bl for the two ciphertexts is the value 
of the xor of the last-round key bytes induced by k and k*. If this is the case we 
have found 8 bits of the secret key with a high probability. It could happen by 
accident that two ciphertext blocks are different only in one byte without the 
property that the encryptions after each of the 6 rounds are equal. But clearly 
that would happen only with negligible probability. 

The attack is repeated until the last step of the algorithm outputs two ci- 
phertexts. Note that since we choose all 256 plaintexts different in one byte, 
we can consider 216 pairs of plaintexts, consisting of one plaintext encrypted 
under one key and another plaintext encrypted under the second key. It follows 
that there are 256 pairs of plaintexts encrypted the same way in the first round. 
According to Theorem 4 the above algorithm succeeds with probability a t  least 
229 2-64 = 2-35 and therefore needs to be repeated at  most about 235 times, in 
the optimal cases only z2’ times. The number of chosen plaintexts needed in the 
worst cases is about 2 x 28 x 235 = 244. The probability of success is about 0.63. 
The attack can be extended to the case where the attacker has no knowledge 
of the byte for which the keys differ. The above attack is simply repeated for 
all 8 bytes requiring a total of 247 chosen plaintexts. If the two keys are chosen 
a t  random different in only one byte, the attack succeeds with a probability of g ,  according to Theorem 4. Two randomly chosen 8 byte keys will be differ- 
ent in only one byte with probability 8 x % x 2-56 N 2-53. Therefore, if all 
of the 8 bytes of the two keys are chosen a t  random, the attack succeeds with 
a probability of N 2-59. We summarize our results in Table 2 for 
SAFER with the recommended 6 rounds. We note that the complexities given 
are worst case considerations. The factor 0.63 in the probabilities can be in- 
creased by using more chosen plaintexts. In Table 3 we give the complexities for 
similar related-key attacks on SAFER reduced to (the first) 4 and 5 rounds. 

Our attacks may seem unrealistic. But imagine Alice and Bob are sending 
many messages to each other every day. Alice and Bob have been acting in many 

x 
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Chosen plaintexts
2 "
244

247

247

Probability
0.63 x 1
0.63 x 1Two

0.63 x 1/73

0.63 x 2~59

Conditions
Two related keys
The two keys differ in
one known byte position.
The two keys differ in
one unknown byte position.
The two keys are randomly chosen.

Table 2. Related-key chosen plaintext attacks on SAFER finding one byte of the key.
(Worst case considerations.)

4 rounds
Ch. pl.texts Prob

230

233

233

0.63
0.63

0.63

0.63

.
X

X

X

X

1
1/14

1/14

2-b/

Ch.
5 rounds

pl.texts Prob.
2"'
2 3 7

2 4 0

240

0.63 X
0.63 x

0.63 x

0.63 x

1
1/35

1/35

2-b8

Conditions
Two
The
one
The
one
The

related keys.
two keys differ in
known byte position.
two keys differ in
unknown byte position.
two keys are randomly chosen.

Table 3. Related-key chosen plaintext attacks on SAFER reduced to four and five
rounds finding one byte of the key. (Worst case considerations.)

cryptographic papers, so they know that the key should be changed often. So,
they change the key every day, but to save computations only in one byte, so that
all the bytes in the key are changed after eight days. Nowhere in the literature
have they found evidence that this should be dangerous. Using SAFER it will be.
Eve hasn't appeared in as many papers as Alice and Bob, but is smart enough
to trick one of the parties into encrypting many chosen plaintexts every day.
Eve finds 8 bits of the secret key with probability | g | every day, except the first
day, using at most 247 chosen plaintexts. We assume here that the time to sort
and compare ciphertexts is negligible compared to the time of getting the many
encryptions. After 73 days Eve has used about 25 3 chosen plaintexts and with a
probability 0.63 found at least 8 key bits. The number of chosen plaintexts can
be reduced to 250, if Eve can predict which byte of the secret key is changed
from day to day. Similar attacks on SAFER with a reduced number of rounds
will have much lower complexities.

3.2 The Rotations and Bias Additions

In this section we consider the rotations and bias additions used in the key
schedule of SAFER. In [6] it is argued that the bias additions prevent weak
keys. Moreover, by letting out the key biases, for any key K there exists another
key A'*, such that the first 5 rounds of the encryption function induced by A" are
the same as the first 5 rounds of the encryption function induced by I < a r e
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is not a desirable property as illustrated in [3, 4, 11. We have found a reason to 
have byte rotations as well. 

Lemma 5. PHT has 256 fixed points. 

This result can be found by using Gauss-eliminations on the 8 x 8 matrix of PHT 
etc. In each fixed point every byte value is a multiple of 64. There are 16 fixed 
points where every byte value is either 0 or 128. They are given in Table 4. If 

( 0 0 0 0 0  0 0 0 ) (  0 0 0 0128128 0 0 )  
( 0 0 128 0 0  0 128 0 )  ( 0 0 128 0 128 128 128 0 )  
( 0 128 0 1280 0 0 0 )  ( 0 128 0 128 128 128 0 0 )  
( 0 128 128 128 0 0 128 0 ) ( 0 128 128 128 128 128 128 0 ) 
( 128 0 0 128 0 128 128 128 ) ( 128 0 0 128 128 0 128 128 ) 
( 128 0 128 128 0 128 0 128 ) ( 128 0 128 128 128 0 0 128 ) 
( 128 128 0 0 0 128 128 128 ) ( 128 128 0 0 128 0 128 128 ) 
( 128 128 128 0 0 128 0 128 ) ( 128 128 128 0 128 0 0 128 ) 

Table 4. The 16 fixed points for the PHT with only entries 0 and 128. 

one leaves out the key rotations, but keeps the addition of the biases then these 
16 fixed points for PHT are ”linear structures” for SAFER with any number of 
rounds in the following way. Let u l ,  ......, a16 be the fixed points from Table 4. 
Let E ( K ,  P) = C be the encrypted value of plaintext P using key I ( ,  then 

E ( K ,  P )  = c 3 E ( K  + u i ,  P + U i )  = c. 
where ’+’ is bytewise addition modulo 256. Thus, an exhaustive search for the 
key could be reduced by a factor of 16 using 16 chosen plaintexts. The 16 fixed 
points are the only linear structures. Fixed points with entries of values 64 or 
192 are affected/destroyed by the group operation changes exclusive-or/addition 
mod 256, but the values 0 and 128 are not, which follows from Lemma2. The 
above illustrates that SAFER needs both key rotations and bias additions in the 
key schedule. 

4 Collision of Hash Functions 

Often a block cipher is used as building block in hash functions. A hash function 
for which the hash code is of the same size as the block cipher is called a single 
block length hash function. In these hash functions the message blocks are hashed 
in a number of rounds, each round requiring one encryption of the underlying 
block cipher. There are essentially 12 secure single block length hash functions, 
which by a linear transformation of the inputs to one round of the hash function 
can be transformed into only 2 different schemes [8, 91: 
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The first scheme is known as the Davies-Meyer scheme. These schemes are be-
lieved to be secure, in the sense that, if the underlying block cipher has no weak-
nesses, free-start preimage attacks and free-start collision attacks have time com-
plexities 2m and 2m/2 encryptions, respectively, of the underlying m-bit block
cipher [5, 8]. In a free-start attack the attacker is free to choose the initial values.
Using SAFER as the underlying block cipher it is possible to find both free-start
and fixed-start collisions with a complexity of much less than the brute force
method of 232 operations.

Also, we note that the attacks to follow will be applicable to many double
block length hash functions based on a block cipher, since in free-start attacks it
is possible to attack the two blocks independently. In the next section we show
how to find free-start collision for the schemes (4) and (5).

4.1 Free-start Collisions

In this section we exploit the phenomenon of Theorem 4. In the attacks to follow
we choose two plaintexts different only in the byte for which both the keys and
ciphertexts differ. We hope in this way to obtain plain- and ciphertexts and keys,
such that

EKAPI) ®PI = EK,(Fa) © P2 or
EKl{Pi) e Pi e KX = Eh-2(P2) © P 2 © K2

We can speed up this search by choosing the inputs of SAFER to the third
round, such that the keys encrypt equally in the second and third rounds. When
we find two ciphertexts different in only one byte, we calculate the plaintexts
and check for a collision. In the optimal cases these collisions can be found in
estimated time about 222 8 encryptions of SAFER. In Table 5 we give examples
of such collisions for hash functions of type (4). The first collision was found in
time 220 6 encryptions, the second collision in time 219 3 encryptions.

Initial value (pi. text) Message (key) Hash code
6e 32 68 46 c8 fd fl a9 6f 2d 73 46 el 2f 62 45 e5 12 8b 4d 3d 58 c2 18
6e 32 68 46 c8 fd fl 9c 6f 2d 73 46 el 2f 62 f7 e5 12 8b 4d 3d 58 c2 18
f4 bl a3 27 Ob ed 78 a9 57 f5 9b 4e 49 77 Oa 45 54 43 57 c4 be f9 88 c9
f4 b l a3 27 Ob ed 78 9c 57 {5 9b 4e 49 77 Oa f7 54 43 57 c4 be f9 88 c9

Table 5. Free-start collisions for hash functions of type (4) with SAFER.

It is possible to find free-start collisions for hash functions of type (5) also.
We found such collisions in time about 222. In the next section we give examples
of collisions for hash functions of type (5) with a fixed start.
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Initial value (pl. text,) Message (key) Hash code 
ff 4e 79 3f c3 4f 52 5b 6d e6 02 f2 54 f0 59 a8 a7 a9 3e Bc 23 30 c3 b4 
ff 4e 79 3f c3 4f 52 5b e5 e6 02 f2 54 f0 59 a8 a7 a9 3e 8c 23 30 c3 b4 
ff 9d e5 fS c l  bc eb 71 6d 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17 
ff 9d e5 f5 c l  bc eb 71 e5 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17 

Table 6. Fixed-start collisions for hash functions of type (5) with SAFER. 

4.2 Fixed-start Collisions 

Although the collisions found in the last section are considered hard to find, if 
the underlying block cipher has no weaknesses, it is interesting to find collisions 
also for a fixed start. Using our observations about SAFER this cannot be done 
for the hash round function (4), since if the plaintexts are equal for two relat'ed 
keys the hash value of (4) will always be different. However, it is possible to find 
collisions if we consider two rounds of the hash function. Assume Ho is a fixed 
initial value. Using the related key properties described earlier in this paper one 
finds M I  and Mi, such that H I  =  EM^ (Ho) @ Ho and Hi = E M ;  ( H o )  @I Ho differ 
in one byte. Then use the related key properties once again in the second round 
and find Mz and M i ,  such that Hz = E M ~ ( H ~ ) $ H ~  equals H i  = E M ; ( H ~ ) @ H ~ .  
We did not implement this attack. For the hash functions (5) it is possible to find 
fixed start collisions for the hash round function. For our pseudo-collisions for 
SAFER, see Table 1, the ciphertexts and keys differ in the same byte. Therefore 
when both the plaintexts and the keys are fed forward in the hash mode, we 
can obtain collisions. The difference in the ciphertexts of Table 1 is equal to the 
difference in the last-round keys, which is not necessarily the difference in the 
keys themselves. Therefore for this attack to work we must use pairs of keys 
for which the byte differences in the keys are equal to the byte differences in 
the last-round keys of the keys. An exhaustive search reveals many pairs of keys 
with this property. Two keys different only in the fifth byte with values 9 and 
129 respectively, encrypt about 228 plaintexts in the same way. By using similar 
techniques as for freestart collisions one can show that a collision can be found in 
expected time about 222 encryptions. In Table 6 we list such collisions. The first 
collision was found in time 222.3 encryptions, the second collision in time 2"." 
encryptions. Many of our collision implementations ran faster than expected, 
which may be due to the fact that probabilities in (3) are not independent as 
assumed. 

5 Improvements of SAFER 

In this section we suggest modifications of SAFER, such that the above attacks 
cannot be effected. An obvious and immediate way is to increase the number of 
rounds. 
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5.1 An Increased Number of Rounds 

In SAFER with 8 rounds there are still many pairs of keys encrypting some plain- 
texts the same way. In the optimal case a pair of keys encrypt 1.5 x 214 plaintexts 
into the same ciphertexts after 8 rounds of encryption using our method. The 
output transformation makes those ciphertexts differ in one byte. But in contrast 
to  SAFER with 6 rounds collisions cannot be found faster than the time of 232 
encryptions. Still, it must be an undesirable property for a block cipher. 

In the optimal case for SAFER with 10 rounds a pair of keys encrypt equally 
for all 10 rounds with probability of only 2-66 using our method. Since there are 
only 264 different plaintexts there are no keys with the above phenomenon. 

5.2 New Key Schedule for SAFER 

Another and in our taste better solution is l o  change the key schedule. The 
discoveries in this paper come from the fact, that a key is applied to the text 
input before and jus t  after the S-box, thus enabling collisions considering one 
byte isolated in every round. One way to hinder this is, paradoxically, to remove 
the second xor/addition of the key in every round or just in one of the middle 
rounds. To find collisions similar to the ones we've found would now require an 
incorporation of the PHT-transformation. That seems very unlikely to  succeed. 
But, the fact that a one byte key is connected to the same S-box in every round 
seems dangerous and unnecessary. We give a modified key schedule for SAFER 
with any number of rounds. Let Ji' = (k1 ,1 ,  ..., k 1 , ~ )  be an 8 byte key and let 

8 

k1,9 = @ h , i  
i=l  

The round keys are defined as follows. K 1 , j  = k , , j  for j = 1, ..., 8 and 

for i = 2, ..., 2r+ 1, j = 1, ..., 8. There is a circular shift of the nine key bytes. In 
that way the 8 key bytes k l ,  ..., k8 are connected to different S-boxes from round 
to  round. The parity byte is introduced to provide an avalanche effect in the key 
schedule. The new key schedule ensures that the round keys of two different keys 
are always different in two bytes in some rounds and in one byte in the remaining 
rounds. For instance, in SAFER with 6 rounds, two keys will be different in two 
bytes in 9 out of the 13 round keys. In SAFER with 8 rounds, this will be the 
case in 13 out of the 17 round keys. Thus, our method of finding key-collisions is 
no longer applicable. Also, note that if the key is chosen uniformly at random, 
any round key is uniformly random. 
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6 Conclusion 

We described a weakness in the key schedule of SAFER K-64 and exploited it to 
establish a related-key attack much faster than a brute force attack, and showed 
by examples that collisions for the standard hashing modes based on a block 
cipher using SAFER K-64 are easy to find. A new key schedule was suggested, 
so that the resulting cipher is invulnerable to our attacks. To conclude, we believe 
that  the results presented in this paper show that a change in the key schedule 
of SAFER K-64 is necessary. 
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