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Abstract. We consider complexity of perfect zero-knowledge arguments 
[4]. Let T denote the time needed to (deterministically) check a proof and 
let L denote an appropriate security parameter. We introduce new tech- 
niques for implementing very efficient zero-knowledge arguments. The 
resulting argument has the following features: 

0 The arguer can, if provided with the proof that can be determin- 
istically checked in O(T) time, run in time O(TLo(')). The best 

0 The protocol can be simulated in time 0 ( L o ( l ) ) .  The best previous 
bound was O(T'+'L'(')). 

0 A communication complexity of O(LlgL), where L is the security 
parameter against the prover. The best previous known bound was 

This can be based on fairly general algebraic aesumptions, such as the 
hardness of diacrete logarithms. 
Aside from the quantitative improvements, our results become qualita- 
tively different when considering arguers that can run for some super- 
polynomial but bounded amount of time. In this scenario, we give the 
first arguments zeroknowledge arguments and the first "constructive" 
arguments in which the complexity of arguing a proof is tightly bounded 
by the complexity of verifying the proof. 
We obtain our results by a hybrid construction that combines the best 
features of Merent PCPs. This allows us to obtain better bounds than 
the previous technique, which only used a single PCP. In our proof 
of soundness we exploit the error correction capabilities as well as the 
soundness of the known PCPB. 

previous bound was O(T1t'Lo(l) 1. 

O(L k T). 

1 Introduction 

One of the great achievements in the study of interactive proof systems has 
been the discovery of transparent/probabilistically checkable proofs [6, 11, While 
most of this research has been aimed at proving complexity results, it is inter- 
esting to consider the original application, proving theorems. By requiring the 
verifier to look at a vanishing section of a proof, one might hope to use them 
to speed the verification of large, unwieldy proofs. For example, [6] discusses 
an application to checking the executions of long computations, saying, "In this 
setup, a single reliable PC can monitor the operation of a herd of supercomputers 
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working with possibly extremely powerful but unreliable software and untested 
hardware .” 

Beyond the practical difficulties of this scenario are problems of a more funda- 
mental nature. First, the prover must work quite hard to produce the transparent 
proof. The most easy to verify PCPs ([3] and its descendants) can be checked 
in O(1) probes, but require the prover to spend time superquadratic in the size 
of the execution trace. Polishchuk and Spielman [27] construct a constant probe 
PCP using only O(T1+‘) work, where T is the time to deterministically verify 
the original proof. Furthermore, they show that for any positive constant c2 there 
exists a constant c1 such that proofs of size T are converted into transparent 
proofs in O(T lg“’ T) time, which may be verified using O(Tc2) work. Thus, at 
present, there is a continuum of achievable proof complexity/verification com- 
plexity tradeoffs, but there does not exist any “optimal” PCP that dominates 
the others. One can either force the prover to work hard or force the verifier to 
work hard. 

Another difficulty is that in order for the proof to work, the verifier must 
have possession of the entire proof, or at least a guarantee that the prover cannot 
change any bits of the proof. Thus, it is not clear how to verify a PCP over a 
network. The work needed to receive such a proof would be much more than the 
work required to receive and check a standard proof. 

By a standard transformation, results for PCPs carry over into two-prover 
proofs with essentially optimal (logarithmic in the size of the PCP) communica- 
tion requirements. Furthermore, these proofs may be made to be zero-knowledge 
[lo]. However, it is open how to surmount this last difficulty within the more 
realistic framework of single-prover interactive proof systems. 

1.1 Efficient zero-knowledge arguments 

Brassard, Chaum and CrCpeau introduce the notion of arguments [4]. Unlike 
interactive proofs, which place no assumptions the power of potentially mali- 
cious provers, the argument framework puts some bound on the capabilities of 
the prover, weakening the ordinary soundness condition to one of computational 
soundness. This more realistic assumption leads to dramatically improved prop- 
erties over interactive proof systems. For example, there exist constant-round 
perfect zero-knowledge arguments for N P based on reasonable number-theoretic 
complexity assumptions [4]; [26] shows how to base such proofs on one-way func- 
tions at the expense of greater round complexity. 

Fiat and Shamir [19] introduce a technique whereby interactive arguments of 
a fairly general form may be converted into noninteractive arguments. Their basic 
idea is to replace random questions from the verifier by the results of a random- 
behaving hash function. They observe that this transformation is rigorously an- 
alyzable given a truly random hash function as a black box. Damgkd also uses 
similar ideas for developing practical noninteractive arguments [9]. More recently, 
Bellare and Rogaway have developed a much more extensive treatment black- 
box hash functions [S]. Unfortunately, there is no known clean computational 
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assumption under which the soundness of the resulting noninteractive argument 
can be established. 

In [21], it is shown (under suitable complexity assumptions) how to 

1. Convert PCPs into a type of “perfect zero-knowledge” PCPs, and 
2. Convert {“perfect zero-knowledge” } PCPs into {perfect zero-knowledge} ar- 

guments. 

Asymptotically, this construction requires much less communication than any 
previous construction. For example, by using the PCPs constructed in [3], the 
total communication is only O(LlgT), where T is the number of steps needed 
to check the original proof and L is the security parameter for the prover (in- 
formally, L specifies the size of the problems the prover is assumed unable to 
solve). 

More recently, Micali has put forth the notion of “CS Proofs” [25]. A stronger 
result may be obtained by a straightforward application of the Fiat-Shamir trans- 
formation and the method of [21]. We strongly recommend a careful reading of 
[4, 19, 9, 21, 81 prior to reading [25]. 

1.2 Limitations of previous techniques 

The arguments of [21] inherit their work/verification time tradeoffs from the 
work/verification time tradeoffs in the original PCPs. So to obtain the lowest 
communication costs advertised, one must use proofs that are very difficult to 
construct. 

The time required to simulate the argument is polynomial in the size of 
the original proof. While in line with previous proof systems and arguments, 
one can hope to do much better. The verifier only communicates O(L 1gT) bits 
and performs 0 ( L o ( l )  1gT) computations. The intuition behind our notions of 
zero-knowledge is that what one obtains by participating in a proof should not 
be more than what one could have obtained using the same resources but not 
participating in the proof. In the program-checking application of [6], one can by 
oneself reconstruct the original “proof” in O(TlgO(l) T) time. Hence, to say that 
the simulation can be performed in O(TO(l)) time doesn’t preclude being able 
to obtain information about entire execution, with a computational investment 
of only O(Lo(’) 1gT). In such a scenario, the standard notion of zero-knowledge 
is too weak to be meaningful. 

Finally, even when optimized for communication, there remains a significant 
gap between the O(L 1gT) communication required by this protocol what one 
could reasonable hope for. Intuitively, one might achieve communication of O( L) 
bits (it would be amazing if one could achieve o(L)  communication, without 
assuming the existence of problems of size o(L) that the prover cannot solve), 
and since T might conceivably be nearly exponential in L ,  O(L 1gT) is nearly a 
quadratic factor off from what one can hope for. 
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1.3 Our main result 

We make progress on the above mentioned difficulties. We show that one can use 
substantially less communication, even while using the computationally cheap 
proofs from [27). As before, thm protocol requires the existence of secure perfect 
zero-knowledge bit-commitment and collision-intractable hash functions, with 
security parameter L. We will also assume in this paper that the size of ones 
proofs is much larger than the statement of what is to be proven. 

Theorem 1. Under the above assumptions, a proof P deterministically verifi- 
able in T steps, can be implemented as a perfect zero-knowledge argument for 
the correctness of P with the following properties: 

(communication efficiency) Only O(L lg L )  bits of communication are required. 
(computational efficiency) The prover only has to perform only 0(Lo(l)T)  com- 

putational steps 
(completeness) If P is correct and P follows the protocol, then V will always 

accept . 
(soundness) If P is false, then either V will reject with probability at least 4 

or there exists a program which will break the bit-commitment or collision- 
intractability assumption (with security parameter L) with nonnegligible 
probability, in To(’) time and using To(1) calls to an oracle for P. 

(strong perfect zero-knowledge) There exists a simulator that given an oracle for 
a possibly malicious verifier V will perfectly simulate V ’ s  view of the proof 
using expected Lo(’) computation and Lo(1) calls to the oracle for V .  

Note that we are implicitly using a black-box notion of soundness and zero- 
knowledge in the statement of our theorem, which has ample precedent in the 
literature. We prefer this approach because is allows one to make meaningful 
statements about arguments of specific theorems. The older formalisms strictly 
make sense only in the context of infinite languages L. 

1.4 

The improved efficiency of our protocol is particularly striking if one considers 
large T. For example, it is not unreasonably to posit a super-arguer that can 
run for superpolynomially many steps (e.g. T = O(n’gn)), but cannot perform 
exponential-time computations. The original arguments required communication 
at least T, and hence the verifier would also have to run in superpolynomial time. 
The arguments of [21] don’t have this problem (as noted in [25]) but they still are 
very problematic. Suppose that an arguer works very hard to generate a proof 
whose verification takes as long as the time to construct the proof. To use the [21] 
protocol would require him to run for T’ = 0(T1+‘) steps. However, T I T  is also 
superpolynomial. We contend that this is not in the spirit of superpolynomial 
time. If one believes that T2 or is “of the same order” as T, then one is 
really treating T as polynomial time. 

How our protocol scales for large T 
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In contrast, our techniques yield a polynomial mul~aplacatiue blowup in the 
running time of the super-arguer as opposed to the polynomial compositional 
blowup of previous techniques. Thus, the transformation from a proof to an 
argument is much more robust than the previous one. 

We also note that if one uses the [21] protocol the simulation time is at 
least T, and thus fails to be zero-knowledge for superpolynomial T. Our proto- 
col continues to be zero-knowledge for as long as a polynomially large security 
parameter L is appropriate. It is quite possible that the cryptographic primi- 
tives we require can be based on problems which have no subexponential time 
solutions, in which case exponential-sized T may be accommodated, 

1.5 Techniques Used 

For our new protocol, we use the techniques employed by [21], namely zero- 
knowledge proofs on committed bits [28, 141, transparent proofs [6, 171 and 
Merkle’s hash-tree commitments [24],l and introduce three new techniques. 

To improve the communication complexity of our protocols while using com- 
putationally inexpensive transparent proofs, we add a further recursive step to 
our protocol. Interestingly, in these recursive proofs both parties know that the 
statement is true (with probability extremely close to 1) ahead of time. Rather, 
the prover convinces the verifier that he knows a particular way of proving this 
statement. The use of recursive proofs in the transparent proof context is not 
new; more sophisticated noncryptographic examples of this technique can be 
found in, for example, [I, 3, 71. Here, our use of recursion is intermingled with 
the manner in which individual bits of the transparent proof are revealed, allow- 
ing us to obtain much stronger bounds than if we simply restricted ourselves to 
these techniques. 

To achieve the improved zero-knowledge result, we augment the basic hash 
tree construction with a randomization step. It is difficult to simulate the interior 
nodes of the hash tree, in particular the root node, in our desired time bound. To 
get around this problem we use the recursive proof technique to hide the values 
of all but the root node of the tree. We then show how to randomize this root 
node so that it may be very efficiently simulated. 

Finally, we show how to save random bits by using cryptographically se- 
cure pseudorandom generators. This last technique allow us to efficiently exploit 
transparent proof system in which the verifier flips many more coins than is al- 
lowed for in our communication bound. Interestingly, whereas the previous tech- 
niques don’t say anything about the standard transparent proof/PCP model, 
this result gives strong evidence for PCPs with a better size/bits of randomness 
tradeoff than our current techniques can establish without relying on computa- 
tional assumptions. Note that we do not however obtain fewer random bits than 
the most efficient systems [l, 31, but merely show how to shrink the number of 
random bits used in proofs that obtain a very small size in exchange for a large 

[21] missed this reference - our apologies to Merkle. 



31 6 

amount of required randomness. It is an interesting open question to achieve 
these tradeoffs using noncryptographic techniques. 

1.6 Outline of the Abstract 

In Section 2 we introduce some preliminary definitions and background. In Sec- 
tion 3 we show how to combine PCPs to obtain greater efficiencies than are 
obtainable using a single PCP. In Section 4 we show how to obtain a protocol 
with strong simulatability properties. In Section 5 we note that one use complex- 
ity assumptions to save random bits. Finally, in Section 6 we give a brief idea of 
how soundness and zero-knowledge are proven for our interactive arguments. 

2 Preliminaries 

2.1 Cryptographic Primitives 

The original construction of [21] makes use of Merkle’s hash-tree technique, 
which in turn relied on families of collision-intractable hash functions and per- 
fect zero-knowledge bit-commitment functions. Let d ( L )  denote ones notion of 
an intractable amount of time. A family {Hk,,.} of collision-intractable hash func- 
tions has the following property: with high probability, if one chooses a function 
h : (0, 1}2L + (0, l}L uniformly from { H L , + } ,  then one cannot in expected time 
4 ( L )  compute c and y such that h(z )  = h(y). 

The perfect zero-knowledge commitment scheme has functions { E L , + } ,  such 
that if EL,( is appropriately chosen, then the distribution on E ~ , ~ ( 0 , r )  will 
be identical to that of E ~ , ~ ( l , r ) ,  where r is a uniformly distributed infinite 
sequence of random bits, of which an expected Lo(’) bits are actually read. 
However, one cannot in expected time d ( L )  compute prefixes ro and r1 such 

By using some global randomness, these schemes can be decided on before 
that EL,& P o )  = EL,&, r1). 

any proofs take place, and the same functions can be used by everyone. 

2.2 Review of the [21] Protocol 

The [21] protocol uses two very separate techniques. The first technique is a 
method for adding “zero-knowledge” to transparent proof systems. We will leave 
this basic trick unchanged, though we will alter our method of making our com- 
mitments in the next section. The second technique is to use Merkle’s hash tree 
technique to allow a time-bounded prover P to commit to a large number of 
bits to a verifier I/ with little communication, and then efficiently reveal these 
individual bits. This procedure works &s follows. Let 61, . . . , b,, be the sequence 
of bits to be committed by the prover, let h : (0, 1}2L - (0, 1IL be uniformly 
chosen (by the verifier) from a family of collision-intractable hash functions. For 
ease of exposition, assume that n = 2kL for some integer E (otherwise, pad the 
sequence to make it the right size). 
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To commit to b l ,  . . . , b,, P breaks b l ,  . . . , b, into m = 2k blocks, 

Ck+l,l,. * * , Ck+l,rn, 

of L bits each. For 1 5 i 5 k and 1 5 j 5 2“l, P computes 

Ci,j = h(Ci+1,2j-l,~,+l,a,). 

We can think of the array [Cij] as specifying a hash tree in which each parent is 
equal to the hashed values of its children. Finally, P sends C I , ~ ,  the root node, 
to v. 

To reveal block Ck+l,,, P defines j 1 , .  . . , j k + l  by j k + 1  = I and j j - 1  = [ji/21 
for 1 5 i 5 k. P then sends V 

(C2,2j1-1, C Z , Z j A  I - .  ’ I  (Ck+l,2jx-l, C2,zyJ * 

V checks that 
Ci,jl = h(Ci+l,2j,-l,C.+i.a,, 1 

for 1 5 i 5 k. The collision intractability of h ensures that P can expand a path 
in the tree in only one way. We refer to this sequence of pairs as a “witness” for 
block Ck+l,l, and denote it as Wr. 

In the original protocol, the leaves of the tree were encrypted as perfect zero- 
knowledge blobs, but in the next section we achieve zero-knowledge in a more 
efficient way that (in its first step) works on the root of the tree. For the moment, 
we ignore this issue, and implement transparent proofs as follows: 

1.  P constructs the transparent proof and commits to it using the commit 
protocol described above. This step requires Q( L) bits of communication 
and that P compute for time within an O(Lc)  multiplicative factor of the 
time needed to construct the transparent proof. 

2. V generates its sequence r of random bits, and sends r to P. 
3. P and V compute which bits, and hence which L-bit blocks V would have 

accessed from the original transparent proof. P reveals these blocks using the 
above protocol. This requires computing time proportional to that used by in 
evaluating the original transparent proof, with an O(Lc lg n)  multiplicative 
overhead. The total communication required by this step is O(L lgn) times 
the total number of revealed blocks. 

4. V decides whether to accept or reject based on the values of the bits revealed 
by P. Again, this requires relatively little computation. 

3 Greater Efficiencies Using Hybrid Schemes 

Assume without loss of generality that V uses relatively few (O(L) )  random bits. 
If not, then we can use the straightforward technique in Section 5 to shrink the 
number of bits required. Most of the communication cost is incurred in Step 3. 
To reveal a single bit requires O( Llg n)  communication, which already exceeds 
our desired bounds. 
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To get around this problem, we employ the “proof within a proof’ technique 
that was used to achieve zero-knowledge. In the zero-knowledge version of the 
above protocol, the prover doesn’t reveal the actual bits, but rather convinces 
the verifier that had he revealed these bits the verifier would have accepted. 
Similarly, the prover does not really need to send the witness for each block the 
verifier wishes to see. It suffices that he convince the verifier that he could indeed 
have sent such a message and that the verifier would have accepted. This involves 
a zero-knowledge proof of knowledge that can be recursively solved using current 
techniques. 

3.1 Using “witnesses” for answers 

Given input e, random string r and the root node C~,J ,  we denote a witness W 
for (z, r ,  CIJ) as a sequence 

where 

0 1 1 , .  . . , I , ,  denote those sections of the original transparent proof that V would 

0 WI, is a valid witness for a block Ck+l,I,, and 
On seeing the bits given in blocks 

have looked at on input c and with random string r ,  

c k + l , l l j  * * * I c k + l , l p  1 

V will accept. 

We note that the existence of a witness for (2, r,  C ~ , J )  is not sufficient to guaran- 
tee that the original theorem is true. However, under the collision intractability 
assumption, the fact that P knows such a witness is strong evidence for the 
validity of the theorem. 

Consider a machine that in the pointer machine model (used by [S] and [2q) 
nondeterministically guesses W and then deterministically verifies that W is a 
witness for (c,  r, C1,l). We denote the transcript of this verification by 7 w .  We 
bound the length of 7~ up to polylogarithmic factors. First, suppose that the 
original verifier for the transparent proof used total time Tv. Note that p 5 
Tv . Guessing W involves O(L lg nTv) operations. Verifying that each witness is 
consistent requires O(Lc lg n) operations for some constant c, for a total coat of 
O(Le lg nTv). Finally, verifying that seeing the given portion of the tableau will 
cause the verifier to accept requires at most O(LTv)  operations. Thus, the total 
transcript will be of size O(Le lg nTv). 

For illustrative purposes, we first show how to obtain near optimal communi- 
cation costs, without regard for the computational costs involved. Suppose that 
the original proof P was of size n and that we used the PCPs from [3]. Then 
the size of the resulting transparent proof P’ will be O(n0(’)) and the time used 
by the verifier to check this proof will be O(1gn) (not counting the initial cast 
for putting T in error-correcting code format). Thus, the size of the resulting 
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proof of knowledge will be (up to polylogarithmic factors) 0 (L"' lgCa n), which 
for reasonable sized n is 0 (15"") for some constant cs. 

For n large compared to L, 0 ( L c s )  is small compared to n. P can therefore 
recursively prove that it knows a valid W by using the [21] zero-knowledge 
construction, optimizing for low communication by again using the transparent 
proof of [3]. The resulting communication for this step will be 

O(Llg(O(L""))) = O(L1gL). 

Since the [3] type proof uses superquadratic time complexity, the above 
proof is very inefficient. To obtain simultaneously low-communication and low- 
computation proofs, we use a three-step recursion. On the top level, we use a 
Polishchuk-Spielman proof which requires O(n lg"' n) time and verified using 
O(nca) work, where c2 is sufficiently small (< 4 suffices). The resulting proof 
of knowledge will therefore be of size O(L0(')nCa). Since c2 is so small, we can 
then use the computationally intensive protocol described above. 

Since malicious prover can try to cheat in the proofs at each level of the 
recursion, we amplify the error probabilities of these proofs 80 that in each 
one he can escape detection with probability at most, for example, 1/100. More 
precisely, our proof of soundness requires that whenever a PCP causes the verifier 
to accept with probability 2 1/1000 an accepting computation path can be 
reconstructed (technically, this condition is not needed for the first proof). 

The number of rounds of communication required when use of recursive 
proofs is of course greater than that of the original protocol. We can offset 
this somewhat by noting a simple optimization to the protocol of [21]. Instead 
of using proofs on committed bits, which requires multiple rounds, it suffices 
to use the zero-knowledge PCPs of [lo]. These PCPs have the same qualitative 
properties as those of [3] (though with worse constants) but with the property 
that the queries are easy to simulate. This eliminates the round cost incurred 
by the proofs on committed bits. 

We note that the techniques in [lo] can be applied to the the protocol of 
[271 to obtain a zero-knowledge PCP in which the prover only performs T1+' 
work. However, it is open whether there exists zero-knowledge PCPs in which 
the prover only performs T logo(') T work. Fortunately, the elimination of the 
proof on committed bits steps occur in the last proof invoked, in which the work 
required is small in any case. 

4 Achieving Strong Zero-Knowledge 

In this section, we further modify the construction of [21] in order to make ,a 
more efficiently simulatable zero-knowledge protocol. In terms of a verifier's V 
view, the argument from the previous section can be summarized as follows: 

1. P sends V a string C1,1 (the root of the hash tree). 
2. V sends P a string T (which may not be random). 
3. P and V engage in a low-communication zero-knowledge proof of knowledge. 
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Since the transparent proofs we use have perfect completeness, it is straightfor- 
ward to simulate the last two steps of the protocol. Regardless of the distribution 
on r ,  P will always know a witness for (z, r, CI,~),  and this proof can be simu- 
lated in using the original simulator for this protocol. Furthermore, the simulator 
for this last proof will work in time polynomial in L, since the entire transparent 
proof is bounded by a polynomial in L. 

However, as we have written our protocol, it is not at all clear how to sim- 
ulate the distribution on C I , ~ ,  even in time polynomial in n. C ~ J  is a hashed 
down version of a transparent proof that S does not know. In the original [21] 
argument, the root node was a hashed version of a large number (polynomial in 
n) of L-bit perfect zero-knowledge blobs. Since these blobs were easy to simu- 
late, the root node could be simulated in time polynomial in n. However, it is 
not clear how to speed up this simulation for arbitrary collision-intractable hash 
functions. 

We get around this problem by using zero-knowledge blobs and a further use 
of hash trees. We modify the naive, stripped down protocol as follows: Instead 
of sending V the L-bit value of Cl,l, P generates a sequence of L perfect zero- 
knowledge L-bit blobs, denoted Ci, . . . , CL. Then, P computes a [lg L1-depth 
hash-tree for Ci, . . . , CL, generating a second root node, C'. P sends C' to V .  

Naively, P can run the basic (nonzero-knowledge) argument as follows: On 
receiving r ,  P first sends the entire hash tree for C;, . . . , Ci, and then opens 
these blobs to reveal CI,~. V will later check this part of the proof by verifying 
that the hash tree is self consistent and that the blob openings were correct. 
Now, P can then behave just as in the basic protocol without zero-knowledge. 
We call this Concatenation of a valid hash tree rooted at C', the valid opening 
of these blobs to reveal C1,1 and a valid witness for (z, r,  C1,l) a witness for 

Naively, this extra step involves sending O(L2)  bits just to reveal the sec- 
ondary hash-tree, which is prohibitive. However, we can use the same recursion 
trick to demonstrate knowledge of a witness W for (z, r,  C'). The size of 7w 
will be O(L") bigger than the transcript for a witness for (z, r, CIJ) (for some 
constant c) ,  but this will at most add an O(L  lg L) factor to the communication 
complexity of the resulting protocol. 

(XI  r ,  C'). 

5 Saving random bits 

The transparent proofs and PCPs in the literature in general use relatively few 
bits. However, as one optimize ones PCPs in order to minimize the prover's 
overhead the number of random bits may conceivably become problematic. How- 
ever, we can use pseudorandom generators to conserve bits in a straightforward 
manner. Suppose that V would normally send m random bits to P, and let 
g : (0,l)" + (0, l}m be a pseudorandom generator. Then if suffices for V to 
send a random n-bit string z to P, who then behaves as if sent the m-bit string 
y = g(z). We claim that if g is sufficiently strong, then the modified PCP will 
remain a PCP, even against infinitely powerful provers. 
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Suppose that for some supposed theorem T (not necessarily true), and sup- 
posed transparent proof/PCP ?‘’ (not necessarily correctly generated), there is 
a nonnegligible difference between the probability that V accepts using random 
coin tosses y and the probability that V accepts using pseudorandom coin tosses 
y = g(z). Consider the circuit &,pi which on input y, outputs 1 iff V would 
accept P’ after generating its queries according to y. It is straightforward to gen- 
erate G,p given P’, T and V, and its size will typically be O(P’). Furthermore, 
C ~ , ’ p t  can then be used to distinguish a random g(z) from a random y. 

Thus, by the contrapositive, if one believes that g is resistant against all 
sufficiently large circuits, then in particular it may be used for all transparent 
proofs of a given size. 

The above argument relies on the nonuniform complexity of g;  we don’t know 
how to prove the analogous result result based on uniform complexity. We also 
note that thus far there has been no advantage to using cryptography based 
randomness reduction techniques instead of those currently used for PCPs. 

6 Establishing Soundness and Zero-knowledge 

In this abstract, we omit the proof of soundness and completeness, and give only 
a brief sketch of how they are proven. how they work. 

Theorem 2. For the protocol described above, there exists a breaker B with the 
following property. Let T be a false statement, and P be a malicious prover who 
claims to have a proof of length n for this theorem. Suppose that P can convince 
V to accept T with probability greater than using the protocol outlined 
above. Then given black-box access to p, B can break either the commitment 
assumption or the sibling-intractable hash function assumption, running in time 

0 Lel nca , where c1 and c2 are explicitly computable constants. 

Thus, if we believe that breaking the assumption with security parameter L 
requires more than Lclnca times the number of steps that could plausible taken 
by P, then it is reasonable to believe such an argument. Note that it is not SO 
crucial to prove an optimal for c2, since one can modestly increase the security 
parameter L . 

Here is the very basic idea - numerous trivial details are omitted. For sim- 
plicity of exposition, we concentrate on a single proof; the analysis of a cascade 
of 0(1) recursive proofs behaves similarly. Thus, we consider the simplified pro- 
tocol where P commits to a root C and then expands its leaves in response to 
V’s challenges. In each challenge, P either, 

1. Opens up paths in the hash-tree, revealing PCP values that cause V to 

2. Opens up legitimate paths in the hash-tree, but reveals values that cause V 

3. Otherwise causes V to reject. We call this a garbage response. 

accept, or, 

to reject, or, 
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While in the actual protocol only a single challenge is given, B can roll P back 
and ask him several challenges. He can then combine the branches for non- 
garbage responses in the natural way to recover entries of a partial PCP. If at 
any time these non-garbage answers cannot reconciled, i.e., the values of the 
hash-tree (or the root-node commitments and their hash-tree) are inconsistent, 
then B trivially has either, 

1. Two strings that hash to the same value, or 
2. Identical bit commitment strings for a 0 or a 1. 

If this ever happens then we are done. Otherwise, we can show that if B runs 
P sufficiently many times and receives a Type 1 response with sufficiently high 
probability on each random run, then he will reconstruct a PCP that would 
cause the original verifier to accept with sufficiently high probability. 

It remains to low-bound how many times B must run P in order to obtain a 
sufficiently good PCP. Suppose that B ran through all of V’s coin tosses, which 
are identified with those used by the initial PCP verifier. Then, provided that no 
“breaks” were found, the resulting PCP would cause the verifier to accept with 
at least the probability that P makes a Type 1 response to the next question 
by V. Here we implicitly assume (at least this assumption trivializes the claim) 
that V’s coin tosses specifies what bits of the PCP he will look at - all known 
PCPs have this property. 

We suspect that the above bound on how often B needs to invoke P to 
construct a PCP is sufficient for known PCP’s. That is, the verifiers require 
randomness that is typically within a constant of optimal. But to make sure, we 
note that it also suffices for B to run P O(nC) times, where c is a sufficiently large 
constant (2 may suffice) and n is the size of the PCP. Here, no effort has been 
made to reduce the O(nC) - sharper bounds are possible but are not needed. The 
intuition for why this is true is that any portion of the PCP that is not revealed 
after so many trials cannot have been needed to make the verifier accept with the 
given probability. Thus, setting these entries to 0 will not significantly damage 
the resulting PCPs acceptance probability. 

Recall that in each recursive proof P that he could have given a good response 
to the preceding question. Using the PCP construction procedure given above 
and the the self-correcting properties of [3]-style PCPs (and by extension, those 
of [lo]) the breaker can, whenever the verifier still has a sufficiently large chance 
of accepting, actually produce a good response. The breaking can then proceed 
recursively. 

Of course, one must be a little more careful than described above. The PCP 
reconstruction step will only work when it holds that for a random challenge P 
will cause V to accept the current proof. One must perform a simple averaging 
argument to verify that if the acceptance probability for the entire protocol is 
Sufficiently high than for the most of the time it will hold that most of the time 
P will deal with the next challenge so as to make V accept with high probability. 
Further details are omitted. 
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Theorem3. For the protocol described above, there exists a simulator S with 
the following property. Let P be a correct proof for T, and let V be a malicious 
verifier. Then given T, IPI and black-box access to 9, S can generate the view 

0 obtained by in time Le for some explicitly computable constant c. 

Finally, we observe that a simulator can trivially simulate the distribution 
on C’, simply by generating L random blobs (0-blobs and 1-blobs are identically 
distributed) and creating the hash-tree for them. We can no longer use the 
simulator for the proof system given in [21], since it implicitly relied on the multi- 
phase nature of the standard protocol for zereknowledge proofs on committed 
bits. However, if one uses the [3] protocol, then P is only allowed to look at 
a constant number of bits. The simulator exploits this fact by committing to 
a sequence of random bits. With constant probability, the query made by $’ 
will be satisfiable by the proof, at which point it the simulation of the zero- 
knowledge proof will be perfect. Here the proof is simplified by the fact that the 
bit commitments are information theoretically secure. Note that to argue that 
the concatenation of the simulation phases is zero-knowledge, we can use the 
fact that our protocols are auxiliary input zero-knowledge, a weaker property 
than black-box zero-knowledge. 
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