
Improved Efficient Arguments
(Preliminary version)

Joe Kilian'

NEC &search Institute, 4 Independence Way, Princeton, N J 08540.
joeOresearc h . nj. nec.com

Abstract. We consider complexity of perfect zero-knowledge arguments
[4]. Let T denote the time needed to (deterministically) check a proof and
let L denote an appropriate security parameter. We introduce new tech-
niques for implementing very efficient zero-knowledge arguments. The
resulting argument has the following features:

0 The arguer can, if provided with the proof that can be determin-
istically checked in O(T) time, run in time O(TLo(')). The best

0 The protocol can be simulated in time 0 (L o (l)) . The best previous
bound was O(T'+'L'(')).

0 A communication complexity of O(LlgL), where L is the security
parameter against the prover. The best previous known bound was

This can be based on fairly general algebraic aesumptions, such as the
hardness of diacrete logarithms.
Aside from the quantitative improvements, our results become qualita-
tively different when considering arguers that can run for some super-
polynomial but bounded amount of time. In this scenario, we give the
first arguments zeroknowledge arguments and the first "constructive"
arguments in which the complexity of arguing a proof is tightly bounded
by the complexity of verifying the proof.
We obtain our results by a hybrid construction that combines the best
features of Merent PCPs. This allows us to obtain better bounds than
the previous technique, which only used a single PCP. In our proof
of soundness we exploit the error correction capabilities as well as the
soundness of the known PCPB.

previous bound was O(T1t'Lo(l) 1.

O(L k T).

1 Introduction

One of the great achievements in the study of interactive proof systems has
been the discovery of transparent/probabilistically checkable proofs [6, 11, While
most of this research has been aimed at proving complexity results, it is inter-
esting to consider the original application, proving theorems. By requiring the
verifier to look at a vanishing section of a proof, one might hope to use them
to speed the verification of large, unwieldy proofs. For example, [6] discusses
an application to checking the executions of long computations, saying, "In this
setup, a single reliable PC can monitor the operation of a herd of supercomputers

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 '95, LNCS 963, pp. 31 1-324, 1995
0 Springer-Verlag Berlin Heidelberg 1995

31 2

working with possibly extremely powerful but unreliable software and untested
hardware .”

Beyond the practical difficulties of this scenario are problems of a more funda-
mental nature. First, the prover must work quite hard to produce the transparent
proof. The most easy to verify PCPs ([3] and its descendants) can be checked
in O(1) probes, but require the prover to spend time superquadratic in the size
of the execution trace. Polishchuk and Spielman [27] construct a constant probe
PCP using only O(T1+‘) work, where T is the time to deterministically verify
the original proof. Furthermore, they show that for any positive constant c2 there
exists a constant c1 such that proofs of size T are converted into transparent
proofs in O(T lg“’ T) time, which may be verified using O(Tc2) work. Thus, at
present, there is a continuum of achievable proof complexity/verification com-
plexity tradeoffs, but there does not exist any “optimal” PCP that dominates
the others. One can either force the prover to work hard or force the verifier to
work hard.

Another difficulty is that in order for the proof to work, the verifier must
have possession of the entire proof, or at least a guarantee that the prover cannot
change any bits of the proof. Thus, it is not clear how to verify a PCP over a
network. The work needed to receive such a proof would be much more than the
work required to receive and check a standard proof.

By a standard transformation, results for PCPs carry over into two-prover
proofs with essentially optimal (logarithmic in the size of the PCP) communica-
tion requirements. Furthermore, these proofs may be made to be zero-knowledge
[lo]. However, it is open how to surmount this last difficulty within the more
realistic framework of single-prover interactive proof systems.

1.1 Efficient zero-knowledge arguments

Brassard, Chaum and CrCpeau introduce the notion of arguments [4]. Unlike
interactive proofs, which place no assumptions the power of potentially mali-
cious provers, the argument framework puts some bound on the capabilities of
the prover, weakening the ordinary soundness condition to one of computational
soundness. This more realistic assumption leads to dramatically improved prop-
erties over interactive proof systems. For example, there exist constant-round
perfect zero-knowledge arguments for N P based on reasonable number-theoretic
complexity assumptions [4]; [26] shows how to base such proofs on one-way func-
tions at the expense of greater round complexity.

Fiat and Shamir [19] introduce a technique whereby interactive arguments of
a fairly general form may be converted into noninteractive arguments. Their basic
idea is to replace random questions from the verifier by the results of a random-
behaving hash function. They observe that this transformation is rigorously an-
alyzable given a truly random hash function as a black box. Damgkd also uses
similar ideas for developing practical noninteractive arguments [9]. More recently,
Bellare and Rogaway have developed a much more extensive treatment black-
box hash functions [S]. Unfortunately, there is no known clean computational

31 3

assumption under which the soundness of the resulting noninteractive argument
can be established.

In [21], it is shown (under suitable complexity assumptions) how to

1. Convert PCPs into a type of “perfect zero-knowledge” PCPs, and
2. Convert {“perfect zero-knowledge” } PCPs into {perfect zero-knowledge} ar-

guments.

Asymptotically, this construction requires much less communication than any
previous construction. For example, by using the PCPs constructed in [3], the
total communication is only O(LlgT), where T is the number of steps needed
to check the original proof and L is the security parameter for the prover (in-
formally, L specifies the size of the problems the prover is assumed unable to
solve).

More recently, Micali has put forth the notion of “CS Proofs” [25]. A stronger
result may be obtained by a straightforward application of the Fiat-Shamir trans-
formation and the method of [21]. We strongly recommend a careful reading of
[4, 19, 9, 21, 81 prior to reading [25].

1.2 Limitations of previous techniques

The arguments of [21] inherit their work/verification time tradeoffs from the
work/verification time tradeoffs in the original PCPs. So to obtain the lowest
communication costs advertised, one must use proofs that are very difficult to
construct.

The time required to simulate the argument is polynomial in the size of
the original proof. While in line with previous proof systems and arguments,
one can hope to do much better. The verifier only communicates O(L 1gT) bits
and performs 0 (L o (l) 1gT) computations. The intuition behind our notions of
zero-knowledge is that what one obtains by participating in a proof should not
be more than what one could have obtained using the same resources but not
participating in the proof. In the program-checking application of [6], one can by
oneself reconstruct the original “proof” in O(TlgO(l) T) time. Hence, to say that
the simulation can be performed in O(TO(l)) time doesn’t preclude being able
to obtain information about entire execution, with a computational investment
of only O(Lo(’) 1gT). In such a scenario, the standard notion of zero-knowledge
is too weak to be meaningful.

Finally, even when optimized for communication, there remains a significant
gap between the O(L 1gT) communication required by this protocol what one
could reasonable hope for. Intuitively, one might achieve communication of O(L)
bits (it would be amazing if one could achieve o(L) communication, without
assuming the existence of problems of size o(L) that the prover cannot solve),
and since T might conceivably be nearly exponential in L , O(L 1gT) is nearly a
quadratic factor off from what one can hope for.

314

1.3 Our main result

We make progress on the above mentioned difficulties. We show that one can use
substantially less communication, even while using the computationally cheap
proofs from [27). As before, thm protocol requires the existence of secure perfect
zero-knowledge bit-commitment and collision-intractable hash functions, with
security parameter L. We will also assume in this paper that the size of ones
proofs is much larger than the statement of what is to be proven.

Theorem 1. Under the above assumptions, a proof P deterministically verifi-
able in T steps, can be implemented as a perfect zero-knowledge argument for
the correctness of P with the following properties:

(communication efficiency) Only O(L lg L) bits of communication are required.
(computational efficiency) The prover only has to perform only 0(Lo(l)T) com-

putational steps
(completeness) If P is correct and P follows the protocol, then V will always

accept .
(soundness) If P is false, then either V will reject with probability at least 4

or there exists a program which will break the bit-commitment or collision-
intractability assumption (with security parameter L) with nonnegligible
probability, in To(’) time and using To(1) calls to an oracle for P.

(strong perfect zero-knowledge) There exists a simulator that given an oracle for
a possibly malicious verifier V will perfectly simulate V ’ s view of the proof
using expected Lo(’) computation and Lo(1) calls to the oracle for V .

Note that we are implicitly using a black-box notion of soundness and zero-
knowledge in the statement of our theorem, which has ample precedent in the
literature. We prefer this approach because is allows one to make meaningful
statements about arguments of specific theorems. The older formalisms strictly
make sense only in the context of infinite languages L.

1.4

The improved efficiency of our protocol is particularly striking if one considers
large T. For example, it is not unreasonably to posit a super-arguer that can
run for superpolynomially many steps (e.g. T = O(n’gn)), but cannot perform
exponential-time computations. The original arguments required communication
at least T, and hence the verifier would also have to run in superpolynomial time.
The arguments of [21] don’t have this problem (as noted in [25]) but they still are
very problematic. Suppose that an arguer works very hard to generate a proof
whose verification takes as long as the time to construct the proof. To use the [21]
protocol would require him to run for T’ = 0(T1+‘) steps. However, T I T is also
superpolynomial. We contend that this is not in the spirit of superpolynomial
time. If one believes that T2 or is “of the same order” as T, then one is
really treating T as polynomial time.

How our protocol scales for large T

31 5

In contrast, our techniques yield a polynomial mul~aplacatiue blowup in the
running time of the super-arguer as opposed to the polynomial compositional
blowup of previous techniques. Thus, the transformation from a proof to an
argument is much more robust than the previous one.

We also note that if one uses the [21] protocol the simulation time is at
least T, and thus fails to be zero-knowledge for superpolynomial T. Our proto-
col continues to be zero-knowledge for as long as a polynomially large security
parameter L is appropriate. It is quite possible that the cryptographic primi-
tives we require can be based on problems which have no subexponential time
solutions, in which case exponential-sized T may be accommodated,

1.5 Techniques Used

For our new protocol, we use the techniques employed by [21], namely zero-
knowledge proofs on committed bits [28, 141, transparent proofs [6, 171 and
Merkle’s hash-tree commitments [24],l and introduce three new techniques.

To improve the communication complexity of our protocols while using com-
putationally inexpensive transparent proofs, we add a further recursive step to
our protocol. Interestingly, in these recursive proofs both parties know that the
statement is true (with probability extremely close to 1) ahead of time. Rather,
the prover convinces the verifier that he knows a particular way of proving this
statement. The use of recursive proofs in the transparent proof context is not
new; more sophisticated noncryptographic examples of this technique can be
found in, for example, [I, 3, 71. Here, our use of recursion is intermingled with
the manner in which individual bits of the transparent proof are revealed, allow-
ing us to obtain much stronger bounds than if we simply restricted ourselves to
these techniques.

To achieve the improved zero-knowledge result, we augment the basic hash
tree construction with a randomization step. It is difficult to simulate the interior
nodes of the hash tree, in particular the root node, in our desired time bound. To
get around this problem we use the recursive proof technique to hide the values
of all but the root node of the tree. We then show how to randomize this root
node so that it may be very efficiently simulated.

Finally, we show how to save random bits by using cryptographically se-
cure pseudorandom generators. This last technique allow us to efficiently exploit
transparent proof system in which the verifier flips many more coins than is al-
lowed for in our communication bound. Interestingly, whereas the previous tech-
niques don’t say anything about the standard transparent proof/PCP model,
this result gives strong evidence for PCPs with a better size/bits of randomness
tradeoff than our current techniques can establish without relying on computa-
tional assumptions. Note that we do not however obtain fewer random bits than
the most efficient systems [l, 31, but merely show how to shrink the number of
random bits used in proofs that obtain a very small size in exchange for a large

[21] missed this reference - our apologies to Merkle.

31 6

amount of required randomness. It is an interesting open question to achieve
these tradeoffs using noncryptographic techniques.

1.6 Outline of the Abstract

In Section 2 we introduce some preliminary definitions and background. In Sec-
tion 3 we show how to combine PCPs to obtain greater efficiencies than are
obtainable using a single PCP. In Section 4 we show how to obtain a protocol
with strong simulatability properties. In Section 5 we note that one use complex-
ity assumptions to save random bits. Finally, in Section 6 we give a brief idea of
how soundness and zero-knowledge are proven for our interactive arguments.

2 Preliminaries

2.1 Cryptographic Primitives

The original construction of [21] makes use of Merkle’s hash-tree technique,
which in turn relied on families of collision-intractable hash functions and per-
fect zero-knowledge bit-commitment functions. Let d (L) denote ones notion of
an intractable amount of time. A family {Hk,,.} of collision-intractable hash func-
tions has the following property: with high probability, if one chooses a function
h : (0, 1}2L + (0, l}L uniformly from { H L , + } , then one cannot in expected time
4 (L) compute c and y such that h(z) = h(y).

The perfect zero-knowledge commitment scheme has functions { E L , + } , such
that if EL,(is appropriately chosen, then the distribution on E ~ , ~ (0 , r) will
be identical to that of E ~ , ~ (l , r) , where r is a uniformly distributed infinite
sequence of random bits, of which an expected Lo(’) bits are actually read.
However, one cannot in expected time d (L) compute prefixes ro and r1 such

By using some global randomness, these schemes can be decided on before
that EL,& P o) = EL,&, r1).

any proofs take place, and the same functions can be used by everyone.

2.2 Review of the [21] Protocol

The [21] protocol uses two very separate techniques. The first technique is a
method for adding “zero-knowledge” to transparent proof systems. We will leave
this basic trick unchanged, though we will alter our method of making our com-
mitments in the next section. The second technique is to use Merkle’s hash tree
technique to allow a time-bounded prover P to commit to a large number of
bits to a verifier I/ with little communication, and then efficiently reveal these
individual bits. This procedure works &s follows. Let 61, . . . , b,, be the sequence
of bits to be committed by the prover, let h : (0, 1}2L - (0, 1IL be uniformly
chosen (by the verifier) from a family of collision-intractable hash functions. For
ease of exposition, assume that n = 2kL for some integer E (otherwise, pad the
sequence to make it the right size).

31 7

To commit to b l , . . . , b,, P breaks b l , . . . , b, into m = 2k blocks,

Ck+l,l,. * * , Ck+l,rn,

of L bits each. For 1 5 i 5 k and 1 5 j 5 2“l, P computes

Ci,j = h(Ci+1,2j-l,~,+l,a,).

We can think of the array [Cij] as specifying a hash tree in which each parent is
equal to the hashed values of its children. Finally, P sends C I , ~ , the root node,
to v.

To reveal block Ck+l,,, P defines j 1 , . . . , j k + l by j k + 1 = I and j j - 1 = [ji/21
for 1 5 i 5 k. P then sends V

(C2,2j1-1, C Z , Z j A I - . ’ I (Ck+l,2jx-l, C2,zyJ *

V checks that
Ci,jl = h(Ci+l,2j,-l,C.+i.a,, 1

for 1 5 i 5 k. The collision intractability of h ensures that P can expand a path
in the tree in only one way. We refer to this sequence of pairs as a “witness” for
block Ck+l,l, and denote it as Wr.

In the original protocol, the leaves of the tree were encrypted as perfect zero-
knowledge blobs, but in the next section we achieve zero-knowledge in a more
efficient way that (in its first step) works on the root of the tree. For the moment,
we ignore this issue, and implement transparent proofs as follows:

1. P constructs the transparent proof and commits to it using the commit
protocol described above. This step requires Q(L) bits of communication
and that P compute for time within an O(Lc) multiplicative factor of the
time needed to construct the transparent proof.

2. V generates its sequence r of random bits, and sends r to P.
3. P and V compute which bits, and hence which L-bit blocks V would have

accessed from the original transparent proof. P reveals these blocks using the
above protocol. This requires computing time proportional to that used by in
evaluating the original transparent proof, with an O(Lc lg n) multiplicative
overhead. The total communication required by this step is O(L lgn) times
the total number of revealed blocks.

4. V decides whether to accept or reject based on the values of the bits revealed
by P. Again, this requires relatively little computation.

3 Greater Efficiencies Using Hybrid Schemes

Assume without loss of generality that V uses relatively few (O(L)) random bits.
If not, then we can use the straightforward technique in Section 5 to shrink the
number of bits required. Most of the communication cost is incurred in Step 3.
To reveal a single bit requires O(Llg n) communication, which already exceeds
our desired bounds.

31 8

To get around this problem, we employ the “proof within a proof’ technique
that was used to achieve zero-knowledge. In the zero-knowledge version of the
above protocol, the prover doesn’t reveal the actual bits, but rather convinces
the verifier that had he revealed these bits the verifier would have accepted.
Similarly, the prover does not really need to send the witness for each block the
verifier wishes to see. It suffices that he convince the verifier that he could indeed
have sent such a message and that the verifier would have accepted. This involves
a zero-knowledge proof of knowledge that can be recursively solved using current
techniques.

3.1 Using “witnesses” for answers

Given input e, random string r and the root node C~,J , we denote a witness W
for (z, r , CIJ) as a sequence

where

0 1 1 , . . . , I , , denote those sections of the original transparent proof that V would

0 WI, is a valid witness for a block Ck+l,I,, and
On seeing the bits given in blocks

have looked at on input c and with random string r ,

c k + l , l l j * * * I c k + l , l p 1

V will accept.

We note that the existence of a witness for (2, r, C ~ , J) is not sufficient to guaran-
tee that the original theorem is true. However, under the collision intractability
assumption, the fact that P knows such a witness is strong evidence for the
validity of the theorem.

Consider a machine that in the pointer machine model (used by [S] and [2q)
nondeterministically guesses W and then deterministically verifies that W is a
witness for (c, r, C1,l). We denote the transcript of this verification by 7 w . We
bound the length of 7~ up to polylogarithmic factors. First, suppose that the
original verifier for the transparent proof used total time Tv. Note that p 5
Tv . Guessing W involves O(L lg nTv) operations. Verifying that each witness is
consistent requires O(Lc lg n) operations for some constant c, for a total coat of
O(Le lg nTv). Finally, verifying that seeing the given portion of the tableau will
cause the verifier to accept requires at most O(LTv) operations. Thus, the total
transcript will be of size O(Le lg nTv).

For illustrative purposes, we first show how to obtain near optimal communi-
cation costs, without regard for the computational costs involved. Suppose that
the original proof P was of size n and that we used the PCPs from [3]. Then
the size of the resulting transparent proof P’ will be O(n0(’)) and the time used
by the verifier to check this proof will be O(1gn) (not counting the initial cast
for putting T in error-correcting code format). Thus, the size of the resulting

31 9

proof of knowledge will be (up to polylogarithmic factors) 0 (L"' lgCa n), which
for reasonable sized n is 0 (15"") for some constant cs.

For n large compared to L, 0 (L c s) is small compared to n. P can therefore
recursively prove that it knows a valid W by using the [21] zero-knowledge
construction, optimizing for low communication by again using the transparent
proof of [3]. The resulting communication for this step will be

O(Llg(O(L""))) = O(L1gL).

Since the [3] type proof uses superquadratic time complexity, the above
proof is very inefficient. To obtain simultaneously low-communication and low-
computation proofs, we use a three-step recursion. On the top level, we use a
Polishchuk-Spielman proof which requires O(n lg"' n) time and verified using
O(nca) work, where c2 is sufficiently small (< 4 suffices). The resulting proof
of knowledge will therefore be of size O(L0(')nCa). Since c2 is so small, we can
then use the computationally intensive protocol described above.

Since malicious prover can try to cheat in the proofs at each level of the
recursion, we amplify the error probabilities of these proofs 80 that in each
one he can escape detection with probability at most, for example, 1/100. More
precisely, our proof of soundness requires that whenever a PCP causes the verifier
to accept with probability 2 1/1000 an accepting computation path can be
reconstructed (technically, this condition is not needed for the first proof).

The number of rounds of communication required when use of recursive
proofs is of course greater than that of the original protocol. We can offset
this somewhat by noting a simple optimization to the protocol of [21]. Instead
of using proofs on committed bits, which requires multiple rounds, it suffices
to use the zero-knowledge PCPs of [lo]. These PCPs have the same qualitative
properties as those of [3] (though with worse constants) but with the property
that the queries are easy to simulate. This eliminates the round cost incurred
by the proofs on committed bits.

We note that the techniques in [lo] can be applied to the the protocol of
[271 to obtain a zero-knowledge PCP in which the prover only performs T1+'
work. However, it is open whether there exists zero-knowledge PCPs in which
the prover only performs T logo(') T work. Fortunately, the elimination of the
proof on committed bits steps occur in the last proof invoked, in which the work
required is small in any case.

4 Achieving Strong Zero-Knowledge

In this section, we further modify the construction of [21] in order to make ,a
more efficiently simulatable zero-knowledge protocol. In terms of a verifier's V
view, the argument from the previous section can be summarized as follows:

1. P sends V a string C1,1 (the root of the hash tree).
2. V sends P a string T (which may not be random).
3. P and V engage in a low-communication zero-knowledge proof of knowledge.

320

Since the transparent proofs we use have perfect completeness, it is straightfor-
ward to simulate the last two steps of the protocol. Regardless of the distribution
on r , P will always know a witness for (z, r, CI,~), and this proof can be simu-
lated in using the original simulator for this protocol. Furthermore, the simulator
for this last proof will work in time polynomial in L, since the entire transparent
proof is bounded by a polynomial in L.

However, as we have written our protocol, it is not at all clear how to sim-
ulate the distribution on C I , ~ , even in time polynomial in n. C ~ J is a hashed
down version of a transparent proof that S does not know. In the original [21]
argument, the root node was a hashed version of a large number (polynomial in
n) of L-bit perfect zero-knowledge blobs. Since these blobs were easy to simu-
late, the root node could be simulated in time polynomial in n. However, it is
not clear how to speed up this simulation for arbitrary collision-intractable hash
functions.

We get around this problem by using zero-knowledge blobs and a further use
of hash trees. We modify the naive, stripped down protocol as follows: Instead
of sending V the L-bit value of Cl,l, P generates a sequence of L perfect zero-
knowledge L-bit blobs, denoted Ci, . . . , CL. Then, P computes a [lg L1-depth
hash-tree for Ci, . . . , CL, generating a second root node, C'. P sends C' to V .

Naively, P can run the basic (nonzero-knowledge) argument as follows: On
receiving r , P first sends the entire hash tree for C;, . . . , Ci, and then opens
these blobs to reveal CI,~. V will later check this part of the proof by verifying
that the hash tree is self consistent and that the blob openings were correct.
Now, P can then behave just as in the basic protocol without zero-knowledge.
We call this Concatenation of a valid hash tree rooted at C', the valid opening
of these blobs to reveal C1,1 and a valid witness for (z, r, C1,l) a witness for

Naively, this extra step involves sending O(L2) bits just to reveal the sec-
ondary hash-tree, which is prohibitive. However, we can use the same recursion
trick to demonstrate knowledge of a witness W for (z, r, C'). The size of 7w
will be O(L") bigger than the transcript for a witness for (z, r, CIJ) (for some
constant c) , but this will at most add an O(L lg L) factor to the communication
complexity of the resulting protocol.

(XI r , C').

5 Saving random bits

The transparent proofs and PCPs in the literature in general use relatively few
bits. However, as one optimize ones PCPs in order to minimize the prover's
overhead the number of random bits may conceivably become problematic. How-
ever, we can use pseudorandom generators to conserve bits in a straightforward
manner. Suppose that V would normally send m random bits to P, and let
g : (0,l)" + (0, l}m be a pseudorandom generator. Then if suffices for V to
send a random n-bit string z to P, who then behaves as if sent the m-bit string
y = g(z). We claim that if g is sufficiently strong, then the modified PCP will
remain a PCP, even against infinitely powerful provers.

32 1

Suppose that for some supposed theorem T (not necessarily true), and sup-
posed transparent proof/PCP ?‘’ (not necessarily correctly generated), there is
a nonnegligible difference between the probability that V accepts using random
coin tosses y and the probability that V accepts using pseudorandom coin tosses
y = g(z). Consider the circuit &,pi which on input y, outputs 1 iff V would
accept P’ after generating its queries according to y. It is straightforward to gen-
erate G,p given P’, T and V, and its size will typically be O(P’). Furthermore,
C ~ , ’ p t can then be used to distinguish a random g(z) from a random y.

Thus, by the contrapositive, if one believes that g is resistant against all
sufficiently large circuits, then in particular it may be used for all transparent
proofs of a given size.

The above argument relies on the nonuniform complexity of g; we don’t know
how to prove the analogous result result based on uniform complexity. We also
note that thus far there has been no advantage to using cryptography based
randomness reduction techniques instead of those currently used for PCPs.

6 Establishing Soundness and Zero-knowledge

In this abstract, we omit the proof of soundness and completeness, and give only
a brief sketch of how they are proven. how they work.

Theorem 2. For the protocol described above, there exists a breaker B with the
following property. Let T be a false statement, and P be a malicious prover who
claims to have a proof of length n for this theorem. Suppose that P can convince
V to accept T with probability greater than using the protocol outlined
above. Then given black-box access to p, B can break either the commitment
assumption or the sibling-intractable hash function assumption, running in time

0 Lel nca , where c1 and c2 are explicitly computable constants.

Thus, if we believe that breaking the assumption with security parameter L
requires more than Lclnca times the number of steps that could plausible taken
by P, then it is reasonable to believe such an argument. Note that it is not SO
crucial to prove an optimal for c2, since one can modestly increase the security
parameter L .

Here is the very basic idea - numerous trivial details are omitted. For sim-
plicity of exposition, we concentrate on a single proof; the analysis of a cascade
of 0(1) recursive proofs behaves similarly. Thus, we consider the simplified pro-
tocol where P commits to a root C and then expands its leaves in response to
V’s challenges. In each challenge, P either,

1. Opens up paths in the hash-tree, revealing PCP values that cause V to

2. Opens up legitimate paths in the hash-tree, but reveals values that cause V

3. Otherwise causes V to reject. We call this a garbage response.

accept, or,

to reject, or,

322

While in the actual protocol only a single challenge is given, B can roll P back
and ask him several challenges. He can then combine the branches for non-
garbage responses in the natural way to recover entries of a partial PCP. If at
any time these non-garbage answers cannot reconciled, i.e., the values of the
hash-tree (or the root-node commitments and their hash-tree) are inconsistent,
then B trivially has either,

1. Two strings that hash to the same value, or
2. Identical bit commitment strings for a 0 or a 1.

If this ever happens then we are done. Otherwise, we can show that if B runs
P sufficiently many times and receives a Type 1 response with sufficiently high
probability on each random run, then he will reconstruct a PCP that would
cause the original verifier to accept with sufficiently high probability.

It remains to low-bound how many times B must run P in order to obtain a
sufficiently good PCP. Suppose that B ran through all of V’s coin tosses, which
are identified with those used by the initial PCP verifier. Then, provided that no
“breaks” were found, the resulting PCP would cause the verifier to accept with
at least the probability that P makes a Type 1 response to the next question
by V. Here we implicitly assume (at least this assumption trivializes the claim)
that V’s coin tosses specifies what bits of the PCP he will look at - all known
PCPs have this property.

We suspect that the above bound on how often B needs to invoke P to
construct a PCP is sufficient for known PCP’s. That is, the verifiers require
randomness that is typically within a constant of optimal. But to make sure, we
note that it also suffices for B to run P O(nC) times, where c is a sufficiently large
constant (2 may suffice) and n is the size of the PCP. Here, no effort has been
made to reduce the O(nC) - sharper bounds are possible but are not needed. The
intuition for why this is true is that any portion of the PCP that is not revealed
after so many trials cannot have been needed to make the verifier accept with the
given probability. Thus, setting these entries to 0 will not significantly damage
the resulting PCPs acceptance probability.

Recall that in each recursive proof P that he could have given a good response
to the preceding question. Using the PCP construction procedure given above
and the the self-correcting properties of [3]-style PCPs (and by extension, those
of [lo]) the breaker can, whenever the verifier still has a sufficiently large chance
of accepting, actually produce a good response. The breaking can then proceed
recursively.

Of course, one must be a little more careful than described above. The PCP
reconstruction step will only work when it holds that for a random challenge P
will cause V to accept the current proof. One must perform a simple averaging
argument to verify that if the acceptance probability for the entire protocol is
Sufficiently high than for the most of the time it will hold that most of the time
P will deal with the next challenge so as to make V accept with high probability.
Further details are omitted.

323

Theorem3. For the protocol described above, there exists a simulator S with
the following property. Let P be a correct proof for T, and let V be a malicious
verifier. Then given T, IPI and black-box access to 9, S can generate the view

0 obtained by in time Le for some explicitly computable constant c.

Finally, we observe that a simulator can trivially simulate the distribution
on C’, simply by generating L random blobs (0-blobs and 1-blobs are identically
distributed) and creating the hash-tree for them. We can no longer use the
simulator for the proof system given in [21], since it implicitly relied on the multi-
phase nature of the standard protocol for zereknowledge proofs on committed
bits. However, if one uses the [3] protocol, then P is only allowed to look at
a constant number of bits. The simulator exploits this fact by committing to
a sequence of random bits. With constant probability, the query made by $’
will be satisfiable by the proof, at which point it the simulation of the zero-
knowledge proof will be perfect. Here the proof is simplified by the fact that the
bit commitments are information theoretically secure. Note that to argue that
the concatenation of the simulation phases is zero-knowledge, we can use the
fact that our protocols are auxiliary input zero-knowledge, a weaker property
than black-box zero-knowledge.

7 Acknowledgments

We would like to acknowledge Lance Fortnow and Carsten Lund for valuable
information about the self correction properties of PCPs. Dan Spielman provided
early and invaluable information on his work with Polishchuk, which greatly
improved the results of an earlier version of this manuscript.

References

1.

2.

3.

4.

5.

6.

7.

8.

S. Arora and S. Safra. Probabilistic Checking of Proofs, Proceedings of STOC
1992.
S. Arora and T. Leighton and B. Maggs. On-line algorithms for path selection in
a nonblocking network. Proceedings of STOC 1990, pp. 149-158
S. Arora, C. Lund, R. Motwani, M. Sudan and M. Swgedy. Proof Verification and
Hardness of Approximation Problems, Proceedings of STOC 1992.
G. Brassard, D. Chaum, and C. Crkpeau. Minimum Disclosure Proofs of Knowl-
edge, 3. Comput. System Sci. 37 (1988), 156-189.
L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Proofs, Proceedings of FOCS 1990
L. Babai, L. Fortnow, L. Levin and M. Szegedy. Checking computation in poly-
logarithmic time. Proceedings of STOC 1991.
M. Bellare, S. Goldwasser, C. Lund, A. Ruasell, UEfficient probabilistic checkable
proofs and applications to approximation,” Proc. 25’h STOC, 1993, pp. 294-304.
M. Bellare, P. Rogaway. Random Oracles are Practical: A paradigm for Designing
Efficient Protocols, Proc. First ACM Conference on Computer and Communica-
tions Security, ACM, November 1993.

324

9. I. Damgtd, Non-interactive Circuit Based Proofs and Non-Interactive Perfect
Zero-Knowledge with Preprocessing, Advances in Cryptology - EUROCRYPT 92,

10. C. Dwork, U. Feige, J. Kilian, M. Naor and S. Safra. Low communication 2-Prover
ZereKnowledge Proofs for NP. Advances in Cryptology - Crypto '92, pp. 215-227.

11. U. Feige, A. Fiat and A. Shamir. Zero knowledge prooh of identity, Proceedings
of 19"' Annual Symposium on the Theory of Computation, 1987, pp. 210-217.

12. U. Feige, S. Goldwasser, L. Lovasz, M. Safra and M. Szegedy. Approximating
Clique is Almost NP-complete, Proceedings of 32"' Annual Symposium on Foun-
dations of Computer Science, 1991, pp. 2-12.

13. U. Feige, D. Lapidot and A. Shamir. Multiple Non-Intemctive Zero-Knowledge
Proofs Based on a Single Random String, Proceedings of the 22th Annual Sym-
posium on the Theory of Computation, 1990, pp. 308-317

pp. 341-355.

14. C. Bennett. personal communication via Gaes Brassard.
15. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-Prover Interactive

Proofs: How to Remove Intractability, Proceedings of STOC 1988.
16. De Santis, A., S. Micali and G. Persiano, "Bounded-Interaction Zero-Knowledge

proofs," Advances in Cryptology - Crypto '88
17. U. Feige, S. Goldwasser, L. Lovisz, S. Safra and M. Szegedy. Approximating clique

is almost NP-complete. Proceedings of FOCS 1991, pp. 2-12.
18. L. Fortnow, J. Rompel, and M. Sipser. On the Power of Multi-Prover Interactive

Protocols, Proceedings of Structure 1988.
19. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification

and Signature Problems. Advances in Cryptology - Crypto '86, pp. 186-189.
20. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive

Proof Systems, SIAM J . Comput. 18 (1989), 186-208.
21. J. Kilian. A note on efficient zero-knowledge proofs and arguments, Proceedings of

STOC 1992.
22. J. Kilian On the complexity of bounded interaction and noninteractive proofs.

Proceedings of FOCS 1994.
23. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. The polynomial-time hierarchy

has interactive proofs, proceedings of STOC 1990, pp. 2-10.
24. R. Merkle. A Certified Digital Signature. Proceedings of Crypto '89, pp. 218-238.
25. S. Micali. Computationally Sound Proofs, Proceedings of FOCS 1994.
26. M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge

Arguments for NP can be Based on General Complexity Assumptions. Advances
in Cryptology - Crypto '92, pp. 196-214.

27. A. Polishchuk and D. Spielman. Nearly-linear Size Holographic Proofs. Proceed-
ings of STOC 1994.

28. S. Rudich, Personal communication via Gilles Brassard.
29. A. Shamir. IP = PSPACE, Proceedings of FOCS 1990, IEEE.

	Improved Efficient Arguments
	Introduction
	Efficient zero-knowledge arguments
	Limitations of previous techniques
	Our main result
	How our protocol scales for large T
	Techniques Used
	Outline of the Abstract

	Preliminaries
	Cryptographic Primitives
	Review of the [21] Protocol

	Greater Efficiencies Using Hybrid Schemes
	Using “witnesses” for answers

	Achieving Strong Zero-Knowledge
	Saving random bits
	Establishing Soundness and Zero-knowledge
	Acknowledgments
	References

