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Abstract 

This paper presents two transformations of public-coin/Arthur-Merlin 
proof systems which are zero-knowledge with respect to the honest verifier 
into (public-coin/Arthur-Merlin) proof systems which are zero-knowledge 
with tt3peCt to any verifier. 

The first transformation applies only to constant-round proof systems. 
It builds on Damgird’s transformation (see Crypto93), using ordinary 
hashing functions instead of the interactive hashing protocol (of Naor, 
Ostrovsky, Venkatesan and Yung - see CryptoSZ) which was used by 
Damgbd. Consequently, the protocols resulting from our transformation 
have much lower round-complexity than those derived by Damgird’s trans- 
formation. As in Damgbd’s transformation, our transformation preserves 
statistical/perfect zero-knowledge and does not rely on any computational 
assumptions. However, unlike Damgird’s transformation, the new trans- 
formation is not applicable to argument systems or to proofs of knowledge. 

The second transformation can be applied to proof systems of arbitrary 
number of rounds, but it only preserves statistical zero-knowledge. It 
assumes the existence of secure commitment schemes and transforms any 
public-coin proof which is statistical zero-knowledge with respect to the 
honest into one which is statistical zero-knowledge (in general). It follows, 
by a result of Ostrovsky and Wigderson (1993), that any language which 
is “hard on the average” and has a public-coin proof system which is 
statistical zero-knowledge with respect to the honest verifier, has a proof 
system which is statistical zero-knowledge (with respect to any verifier). 
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Hashing Functions Can Simplify Zero-Knowledge 
Protocol Designs (too)’ 

1 Introduction to Part I 
Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [16], are 
a key tool in the design of cryptographic protocols. The results of Goldreich, Micali 
and Wigderson [14] guarantee that such proof systems can be constructed for any NP- 
statement, provided that one-way functions exist. However, the general construction 
presented in [14] and subsequent works may yield quite inefficient proof systems for 
particular applications of interest. Thus, developing methodoligies for the design of 
zero-knowledge proofs is still of interest. 

Designing proof systems which are merely zero-knowledge with respect to the hon- 
est verifier (i.e., the ve f i e r  specified for the system) is much easier than constructing 
proof systems which are zero-knowledge in general (i.e., with respect to any efficient 
strategy of trying to extract knowledge from the specified prover). For example, the 
simple 1-round interactive proof for Graph Non-Isomorphism is zero-knowledge with 
respect to the honest verifier. Yet, cheating verifiers may extract knowledge from this 
system and a non-trivial modification, which utilizes proofs of knowledge and increases 
the number of rounds, is required to make it zero-knowledge in general. Likewise, as- 
suming the existence of one-way function, there exist constant-round interactive proofs 
for any NP-language which are zero-knowledge with respect to the honest verifier. 
Yet, constant-round interactive proofs for NP which are zero-knowledge in general are 
known only under seemingly stronger assumptions and are also more complex (cf., 

In view of the relative simplicity of designing protocols which are zero-knowledge 
with respect to the honest verifier, a transformation of such protocols into protocols 
which are zero-knowledge in general (i.e., w.r.t. any verifier) may be very valuable. 
Assuming various intractability assumptions, such transformations have been presented 
by Bellare et. al. [2], and Ostrovsky et. al. [23]. A transformation which does not rely 
on any intractability assumptions has been presented by Damgkd in Crypto93. His 
transformation (of honest-verifier zero-knowledge into general zero-knowledge) has two 
shortcomings. Firstly, it can be applied only to constant-round protocols of the Arthur- 
Merlin type (i.e., in which the verifier’s messages are uniformly distributed in the set 
of strings of specified length). Secondly, the transformation produces protocols of very 
high round complexity; specifically, the round complexity of the resulting protocol is 
linear in the randomness complexity of the original one. 

In this part of paper, we improve the round complexity of Damggrd’s transforma- 
tion, while preserving the class of interactive proofs to which it can be applied. Our 
transformation only increases the number of rounds by a factor of two. However, it also 
increases the error probability of the proof system by a non-negligible amount which 
can be made arbitrarily small. This increase is inevitible in view of a result of Goldreich 
and Krawcyzk [12], see discussion in subsection 3.4. Thus, to get proof systems with 
negligible error probability, one may repeat the protocols resulting from our transfor- 

’To be convinced that Go and GI are not isomorphic, the verifier randomly selects n 
random isomorphic copies of each graph, randomly shu%lea all these copies together, and aslus 
the prover to specify the origin of each copy. 

[111)* 

by Ivan DamgW, Oded Goldreich and Avi Wigderson. 
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mation a non-constant number of times. Still, the resulting proof systems will have 
much lower round complexity than those resulting from Damghd’s transformation. 

We preserve mme of the positive properties of DamgHrd’s transformation. In partic- 
ular, our transformation does not rely on any computational assumptions and preserves 
perfect and almostperfect (statistical) zero-knowledge. However, unlike Damgiird’s 
transformation, the new transformation is not applicable to argument systems (i.e., 
the BCC model [4]) or to proofs of knowledge. 

Our transformation builds on DamgLd’s work [6]. In his transformation, the ran- 
dom messages sent by the verifier (in each round) are replaced by a multi-round inter- 
active hashing protocol, which in turn originates in the work of Ostrovsky, Venkatesan 
and Yung [22]. Instead, in our transformation, the random messages sent by the verifier 
are replaced by a $-round protocol, called Random Selection. The Random Selection 
protocol uses a family of ordinary hashing functions; specifically, we use a family of 
t-wise indepedent functions, for some parameter i (which is polynomial in the input 
length). 

We believe that the Random Selection protocol may be of independent interest. 
Thus, a few words are in place. The goal of this protocol is to allow two parties to 
select a “random” n-bit string. There is a parameter c which governs the quality 
of this selection and the requirement is asymmetric with respect to the two parties. 
Firstly, it is required that if the first party follows the protocol then, no matter how the 
second player plays, the output of the protocol will be at most E away (in norm-1) from 
uniform. Secondly, it  is required that if the second party follows the protocol then, 
no matter how the first player plays, no string will appear as output of the protocol 
with probability greater than poly(n/e). 2-”. Our Random Selection protocol has the 
additional property of being simulatable in the sense that, given a possible outcome, it 
is easy to generate a (random) transcript of the protocol which ends with this outcome. 

Other Related Work 
The idea of transforming honest verifier zero-knowledge into zero-knowledge in general 
was first studied by Bellare, Micali and Ostrovsky [2]. Their transformation needed a 
computational assumption of a specific algebraic type. Since then several constructions 
have reduced the computational assumptions needed. The latest in this line of work is 
by Ostrovsky, Venkatesan and Yung [23], who give a transformation which is based on 
interactive hashing and preserved statistical zero-knowledge. Their transformation re- 
lies on existence of a one-way permutation. The transformation works for any protocol, 
provided that the verifier is probabilistic polynomial-time. 

In the other part of this paper, a secure commitment scheme3 is used to trans- 
form honest-verifier zero-knowledge Arthur-Merlin proofs (with unbounded number of 
rounds) into (general) zero-knowledge Arthur-Merlin proofs. This transformation in- 
creases the round-complexity of the proof system by an additive term which is linear 
in the number of coin tosses used in the original proof system. 

An indirect way of converting protocols which are zero-knowledge with respect to 
the honest verifier into ones which are zero-knowledge in general, is available through 
a recent result of Ostrovsky and Wigderson [24]. They have proved that the existence 
of honest verifier zero-knowledge proof system for a language which is “hard on the 
average” implies the existence of one-way functions. Combined with the results of [14] 
and [19,3], this yields a (computational and general) zero-knowledge proof for the same 
language. Thus, computational honest-verifier zero-knowledge interactive proofs, for 
“hard on the average” languages, get transformed into computational zero-knowledge 
interactive proofs for these languages. However, perfect honest-verifier zero-knowledge 
proofs (for such languages) do not get transformed into perfect zero-knowledge proofs. 

3Secure commitment schemes exist provided that one-way functions exist [18, 201 and the 
latter exist if some languages which is hard on the average have proof syetems which are 
zero-knowledge with respect to the honest verifier [24]. 
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A two-party protocol for random selection, with unrelated properties, has been 
presented in [lo]. This protocol guarantees that, as long as one party plays honestly, the 
outcome of the protocol hits any set S c {0,1}" with probability at most 6( Jm), 
where O(e) = e . polylog(l/c). 

Another two-party protocol for random selection, with other unrelat,ed properties, 
has been presented in [13]. Loosely speaking, this protocol allows a computationally 
restricted party, interacting with a powerful and yet untrustful party, to uniformly 
select an element in an easily recognizable set S c (0, l}n. 

*. def 

Remarks Concerning this Part of the Paper 
We use the standard definitions of interactive proofs and zero-knowledge, except for 
the following minor modification. We require the simulator (in the definition of zero- 
knowledge) to to run in strictly polynomial-time (rather than in expected polynomial- 
time), but we allow it to produce output only with some non-negligible probability 
(rather than always). Clearly, this definition implies the standard one, but the converse 
is not known to hold - see [9]. This definition is more convenient for establishing zero- 
knowledge claims and in particular for our purposes, but our results do not depend on 
it (and can be derived under the standard definitions). 

Due to space limitations the proofs of all propositions have been omitted. The 
complete proofs appear in our technical report [7]. 

2 Random Selection 
We consider a randomized two-party protocol for selecting strings. The two parties to 
the protocol are called the challenger and the responder. These names are supposed 
to reflect the asymmetric requirements (presented below) as well as the usage of the 
protocol in our zero-knowledge transformation. Loosely speaking, we require that 

0 if the challenger follows the protocol then, no matter which strategy is used by 
the responder, the output of the protocol is almost uniformly distributed; 

0 if the responder follows the protocol then, no string may appear with probability 
much greater than its probability under the uniform distribution. Furthermore, 
for any string which may appear as output, when an arbitrary challenger strategy 
is used, one can efficiently generate a random transcript of that protocol ending 
with this output. 

We postpone the formal specification of these properties to the analysis of the protocol 
presented below. Actually, we present two version of the protocol. 

Construction 1 (Random Selection Protocol - two versions): Let n and m < n be 
 integer^^^ and Hn,, be a family of functions, each mapping the set of n-bit long strings 
onto5 the set of n-bit long strings. 

C1: the Challenger uniformly selects h E H,,, and sends it to the responder; 
R1: 0 (version 1): the responder uniformly selects z E {0, computes (Y = h ( z )  

(version 2): the responder uniformly selects (Y E (0 , l )"  and sends it to the 

and sends a to the challenger; 

challenger; 
C2: the challenger uniformly selects a preimage o f a  under h and outputs it. 

dt f  'In particular, we will use m = n - 410g2(n/s), where E is an error-boundparameter. 
We stress that each function in Hn,- rages over all {0, I}"'. Thus, the challenger may 

always respond in step C2 even if the responder deviates from the protocol or version 2 is used. 
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We remark that if version 1 is used and both parties follow the protocol then the 
output is uniformly distributed in {0, I}". However, the interesting case is when one of 
the parties deviates from the protocol. In this case, the protocol can be guaranteed to 
produce "good" output, provided that 'good" families of hash functions are being used 
as Hn,m. These functions must have relatively succient representation as well as strong 
random properties. Furthermore, given a function h, it should be easy to evaluate h 
on a given image and to generate a random preimage (of a given range element) under 
h. Using the algorithmic properties of H,,, it follows that the instructions specified 
in the above protocol can be implemented in probabilistic poly(n/e)-time, which for 
E = I/poly(n) means poly(n)-time. 

Construction 2 (Preferred family HA,m): Let n, m < n and 1 = poly(n) be integers. 
We associate {0,1}" with the finite field GF(2") a n d  consider the set of ( t  - 1)-degree 
polynomials over this field. For each such polynomial f, we consider the function h SO 

that, for  every z E {0, l}", h ( z )  is t h e m  most significant bits of f (z) .  The famtly HA,, 
consists of all such functions h. The canonical description of a function h E Hh,m i s  
merely the sequence of t smallest coefficients of the corresponding polynomial Finaly, 
we modify the functions in  HA,m so that for each h E HA,, and every 2' E {0, l}, it 

holds h ( ~ ' 0 ' + ~ )  gf 2'. 

In the sequel, we will use the family H,,, = H,",,. We now list the following, easy 
to verify, properties of the above family. 
P1 There is a poly(n)-time algorithm that, on input a function h E H;,, and a string 

P2 The number of preimages of an image y under h E HA,,, is bounded above by 
2n-m . t ;  furthermore, there exists a ~oly(2"-~t ) - t ime algorithm that, on input 
y and h, outputs the set h-'( y) %f { z : h ( z )  = y}. (The algorithm works by trying 
all possible extensions of y to an element of GF(2*); for each such extension it 
remains to find the roots of a degree t - 1 polynomial over the field.) 

P3 H&m is a family of almost t-wise independent hashing functions in the following 
sense: for every t distinct images, 21, ..., zt E ( (0 , l )"  - (0, l}mon-m), for a uni- 
formly chosen h E HA,,, the random variables h(s l ) ,  ..., h(z,) are indepedently 
and uniformly distributed in (0, 

def 

2 E (0, 1)", outputs h(2) .  

2.1 The output distribution for honest challeger 
We now turn to analyze the output distribution of the above protocol, assuming that 
the chdenger plays according to the protocol. in the analysis we allow the responder 
to deviate arbitrarily from the protocol and thus as far aa this analysis goes the two 
versions in Construction 1 are equivalent. The analysis is done using the "random" 
properties of the family HA,m. Recall that the statistical difference between two random 
variable X and Y is 

1 
- IProb(X=a) - Prob(Y=a)) 
2 

a 

We say that X is €-away from Y if the statistical difference between them is e. 

def Proposition 1 Let n be a n  integer, e E [0,1] and m = n - 410g2(n/e). Suppose that 
Hn,m i s  a family of almost n-wise independent hashing functions. Then, no matter 
which strategy i s  used by the responder, provided that the challenger follows the protocol, 
the output of the protocol i s  a t  most (2e  + 2-")-away from uniform distribution. 
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2.2 The output distribution for honest responder 
We now show that no matter what strategy is used by the challenger, if the responder 
follows the protocol then the set of possible outputs of the protocol must constitute 
a non-negligible fraction of the set of n-bit long strings. This claim holds for both 
versions of Construction 1. Furthermore, we show that no single string may appear 
with probability which is much more than 2-" (i.e., its probability weight under the 
uniform d i t  ribution) . 

Proposition 2 Suppose that Hn,m = HA,m i s  a family of hashing functions satisfying 
property (PS), for some t = poly(n). Let C' be an arbitmry challenger stmtegy. Then, 
for every z E {O, l}", the probability that an ezecution of version 1 of the protocol with 
challenger stmtegy C* ends with output x is at most ( 1 .  2"lrn) 2'". 

Proposition 3 Let C' be an arbitmry Challenger stmtegy. Then, for every x E 
(0, l)", the probability that an execution of version 2 of the protocol with challenger 
stmtegy C' ends with output x is at most 2-m. Furthermore, for every deterministic 
challenger stmteggy c,  exactly Zm strings may appear as output, each with probability 
exactly 2-m, 

2.3 Simultability property of the protocol 
We conclude the analysis of the above protocol by showing that, one can efficiently 
generate random transcripts of the protocol having a given outcome. Throughout 
this analysis, we assume that the responder follows the instruction specified by the 
protocol. As in the proof of the last two propositions, it suffices to consider an arbitrary 
deterministic challenger strategy, denoted c. 

Now, suppose that HnBm = HA,m is a family of hashing functions satisfying property 
(Pl ) ,  for some t = poly(n). Then, on input z and access to a function c :  {0,1}* I+ 

{0, l}', we can easily test if c ( h ( z ) )  = x, where h = c(X). In case the above condition 
holds, the triple (h,  h ( z ) ,  z) is the only transcript of the execution of the protocol, with 
challenger strategy c ,  which ends with output z. Otherwise, there is no execution of 
the protocol, with challenger strategy c, which ends with output x. Thus, 

Proposition 4 Consider executions of the Random Selection protocol in which the 
challenger strategy, denoted c, is  an arbitrary function and the responder plays ac- 
cording to the protocol. There exists a polynomial-time oracle machine that, on input 
z E ( 0 , l ) "  and h E and omcle access to a function c, either generates the unique 
transcript of a c-execution which outputs z or indicates that no such ezecution exists. 

def 

2.4 Setting the Parameters 
Proposition 1 motivates us to set E (the parameter governing the approximation of 
the output in case of honest challenger) as small as possible. On the other hand, 
Propositions 2 and 3 motivates us to maintain the difference n - rn small and in 
paricular logarithmic (in n ) .  Recalling that n - m = 410g2(n/e), this suggests setting 
t = l/p(n) for some fixed positive polynomial p. 

3 The Zero-Knowledge Transformation 
Our transformation is restricted to interactive proofs in which the verifier sends the 
outcome of every coin it tosses. Such interactive proofs are called Artbur-Merlin games 
[l] or public-coins interactive proofs (cf., [IT]). Note that in such interactive proofs the 
verifier moves, save the last, may consist merely of tossing coins and sending their 
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outcome. (In its last move the verifier decides, based on the entire history of the 
communication, whether to accept the input or not.) Without loss of generality, we 
.may assume that in every round of such an interactive proof the verifier tosses at 
least 41og((z)/~) coins, where z is the common input to the interactive proof and 
c specifies the desired bound on the statistical distance (between one round in the 
resulting interactive proof and the original one). Furthermore, assume for sake of 
simplicity that at each round the verifier tosses the same number of coins, denoted n, 

3.1 The Transformation 
In the following description, we use the second version of the Random Selection protocol 
presented in Construction 1. This simplifies the construction of the simulator for the 
transformed interactive proof. The first version can be used as well, at the expense of 
some modification in the simulator construction. 

The protocol transformation consists of replacing each verifier move (except the 
last, decision move) by an execution of the Random Selection protocol, in which the 
verifier plays the role of the challenger and the prover plays the role of the responder. 

Construction 3 (transformation of round i in (P, V) interaction): Let (P, V) be an 
interactive proof system in which the verifier V only uses public coins, let ~ ( n )  = 
l/poly(ta) be the desired error in the Random Selection protocol, m Cf m(n) = n - 
41og2(n/c(n)) and be as specified in Construction 2 (for t = n). The ith round of 
the (P ,  V) interaction, on common input x, is replaced by the jobllowing two rounds of 
the resulting interactive proof (P’,V’). Let (h1,cq,ri,@i, ..., hi-l,iai-i,ri-i,Pi-~) be 
the history so far of the interaction between prover P’ and verifier V’. Then, the nett 
two rounds consist of an ezecution of the (second version of the) Random Selection 
protocol follows by P’ mimicing the response of P. Namely, in the first round, the 
verifier V‘ uniformly select8 hi E H,,,  and sends it to the prover P‘ who replies with 
O i  uniformly selected in (0, l}”. In the second round, the verifier V’ uniformly selects 
ri E h,’(ai) and sends it to the prover P’ who replies with P, ef P ( z ,  r l ,  ..., ri). 

def 

The final decision of the new verifier V’ mimics the one of the origind verifier V; 
namely, 

V’(hi ,m,r l ,  P I ,  ..., ht ,a t , r t ,P t )  = v ( r 1 , ~ 1 ,  ..., rt, P t )  

3.2 Preservation of Completeness and Soundness 
In this subsection, we may assume that V‘ follows the interactive proof. Thus, if for 
some x E (0, I}*, prover P always convinces V on common input 1: then P‘ always 
convinces V’ on thw common input. We stress that both V’ and P‘ run in polynomial- 
time when given oracle access to V and P, respectively. Thus, the new verifier is a 
legitimate one. Furthermore, if the original prover P, working in polynomial-time with 
help of a suitable auxiliary input, could convince the original verifier to accept some 
common input, then the resulting prover P’ could do the same (i.e., can convince V’ 
to accept this common input, while working in polynomial-time with help of the same 
auxiliary input). 

We have just seen that the completeness properties of the original interactive proof 
is preserved, by the transformation, in a strong sense. Soundness properties are pre- 
served aa well, but with some slackness which results from the imperfectness of the 
Random Selection protocol. In particular, 

Proposition 8 Let p :  (0,1}* I+ [0,1] be a function bounding the probability that uer- 
ifier V accepts inputs when interacting with any (possibly cheating) prover. Namely, 
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p ( x )  is a bound on the probability that V accepts 2. Suppose that on input 2, the in- 
teractive proof ( P , V )  runu for t(Iz1) rounds. Then, k ' ( ~ )  kf k ( ~ )  t O(t(lzl)  * €(IS!)) 
is a function bounding the probability that verifier V' accepts inputs when interactrng 
with any (possibly cheating) prover. 

proof: Recall that V' plays the role of the challenger in the Random Selection protocol. 
Thus, the proposition follows quite immediately from Proposition 1. 

We stress that the above proposition remains valid no matter which of the two version 
of Random Selection is used. The same holds with respect to the comments regarding 
completeness (made above). 

3.3 Zero-Knowledge 
In this subsection, we may assume that P' follows the interactive proof. Assuming 
that P is zero-knowledge with respect to the verifier V, we prove that P' is zero- 
knowledge with respect to any probabilistic polynomial-time verifier strategy. This 
statement holds for the three versions of zero-knowledge; specifically, perfect, almost- 
perfect (statistical), and computational zero-knowledge. 

Proposition 6 Let (P ,  V )  be a constant-round Arthur-Merlin interactive proof. SUP- 
pose that P i s  perfect (resp. almost-perfect) [resp. computational] zero-knowledge 
with respect to the honest verifier V over the set L { 0 ,  l}'. Then P' i s  perfect (resp. 
almost-perfect) [resp. computational] zero-knowledge (with respect to any probabilistic 
polynomail-time verifier) over the set L {0,1}'. 

A few comments regarding the proof: Let M be a simulator witnessing the hypothesis of 
the proposition. Then, for every 5 E L ,  with non-negligible probability M ( z )  halts with 
output, and given that this happens the output has distributed indistinguishable from 
that of ( P , V ) ( z ) .  For every verifier strategy V* interacting with P', we construct a 
simulator M', which uses M and V' as black-boxes, as follows. By uniformly selecting 
and fixing coin tosses for V*, we may u,wurne that V' is  deterministic. 

On input 2, the simulator M *  invokes M and assuming M ( z )  halts with output, 
sets ( T I ,  PI, ..., r t ,  Pt) %* M ( z ) ;  otherwise M' also halts with no output. The simulator 
M' now tries to form transcripts of the Random Selection protocol which end with 
output 71, 72 through r t ,  respectively. (Here we use the simulatability of the Random 
Selection protocol.) A transcript with output rl is formed as follows. M' feeds V' with 
input x and obtains h l ,  which can be assumed as in Propositions 2 and 3 to be in H,,,. 
Next, M' computes a1 = hI(r1)  and feeds V' with ( 2 , u l ) .  If V' replies with r1, we've 
succeeded in forming a transcript for the first invokation of Random Selection and we 
proceed to the next. (This happens with non-negligible probability.) Otherwise, M' 
halts with no output. We note that for the next invokations of Random Selection, 
V* is fed with the entire history so far; for example, to obtain h2 we feed V *  with 
( z , a l , p l )  and next we feed it with ( z , a l , @ l , a z ) ,  where u2 = h 2 ( r 2 ) .  If all t rounds 
were completed successfully6, M' halts with output (hl,a1,71,IBl, ..., ht,at ,rr ,Pt) .  

To complete the proof we prove six claims. Firstly, we show that in each of the three 
cases (perfect, almost-perfect, or computational zero-knowledge), the simulator M *  
produces output with non-negligible probability. Secondly, for each of the three cases, 
we establish the required relationship between the transcript of the real interaction 

'This happens with probability y ~ ( l s l ) ~ ,  where p ( . )  ie the non-negligible probability that 
we've completed successfdy a single round. This is the reason we can handle any constant 
number of rounds. 
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and the output of the simulator. As expected, the proofs become more involved as we 
move from perfect to computational zero-knowledge. 

The above proposition remains valid even if one uses the first version of the Random 
Selection protocol. However, a slightly more complex simulator will have to be used. 
The reason being that in the first version (of the Random Selection protocol) the ai’s 
are not selected uniformly but are rather weighted by the number of their preimages 
under the corresponding hi’s. Thus, T i ’ s  which are mapped to as’s with small preimage 
may be less likely in the real interactions. To compensate for this phenomenon, one may 
modify the simulator so that it skews the probabilities in the same manner. Namely, 
when producing a transcript with less likely r,’s, the simulator will discard it with some 
pr0babil;ty. The required probability (with which to  discard transcripts) can be easily 
computed. 

3.4 Conclusions 
Combining Propositions 5 and 6, we get 

Theorem 1 Let p :  N H [0,1]. Suppose L has a constant-round Arthur-Merlin proof 
syutem, with error bound p ,  which i s  perfect (resp. almost-perfect) [resp. compu- 
tational] zero-knowledge with respect to the honest verifier. Then, for every positiue 
polynomial p ( . ) ,  L has a constant-round Arthur-Merlin proof system, with error bound 
p‘(n) %f p(n) + &, which is perfect (resp. almost-perfect) [resp. computational] 
zero-knowledge (with respect to any probabilistic polynomial-time verifier). Further- 
more, the zero-knowledge property can be demonstrated using a black-box simulation. 
Also, if the original system had no error on inputs in L then the same holds for the 
new system. 

Theorem 1 does not preserve the error probability of the original system. This 
seems inevitible, in light of [12]. Recall that there are languages believed not to be 
in BPP which have constant-round Arthur-Merlin proof systems, with exponentially 
small error probability, which are zero-knowledge with respect to the honest verifier. 
For example, Graph Isomorphism has such a system (for perfect zero-knowledge), and 
assuming the existence of one-way functions, every language in JVP has such a system 
(for computational zero-knowledge) [14]. Now, a stronger version of Theorem 1, say one 
in which p’(n)  - p ( n )  is a negligible function of n, would imply that these languages 
have constant-round Arthur-Merlin (balck-box) zero-knowledge proof systems (with 
negligible error probability). But, according to [12], languages having constant-round 
Arthur-Merlin (balck-box) zero-knowledge proof systems lie in S P P .  Needless to say 
that “P and even Graph Non-Isomorphism are believed not to lie in BPP.  

We now compare the round complexity of the protocols resulting from our trans- 
formation to those resulting from DamgArd’s transformation of [6]. Suppose we start 
with a c-round proof system which uses r(n) random coins and has error p(nj. Clearly, 
p(n)  >_ 2-‘(n) and r ( n )  > log,% (otherwise the language is in BPP [15]). Now, the 
proof system resulting from DamgLrd’s transformation will have c + ~ ( n )  rounds and 
maintain the error bound of the original proof system. On the other hand, the protocol 
resulting from our transformation will have 2c rounds and error p(n) + *. In case 

p ( n )  is non-negligible, we have a clear advatage. Otherwise, to make the comparison 
fak, we use sequentail repetitions to reduce the error in the protocols resulting from 
our transformation to the bound p ( n ) .  This requires logDolv(n,(l/p(njj repetitions . .\ r 

yielding round complexity bounded by ‘ o g ~ $ ~ $ n ) ~  5 e. (Typically, p ( n )  is much 
larger than 2-r(n).) 



Part I1 

Using Commitment Schemes to Simplify 
Zero-Knowledge Protocol Design ’ 

4 Introduction to Part I1 
In this part, we will show another transformation, which can be applied to arbitmry 
number of round statistical zero-knowledge proofs, assuming the existence of secure 
commitment schemes (i.e., one-way functions [l8, 201). This assumption can be re- 
placed by the restriction on the applicable languages, that they are “hard on the 
average” (not in AVBPP) [24]. 

This result can be considered to improve the two previous results partially: one 
is the result by Ostrovsky, Venkatesan and Yung [23] and the other is by DamgBrd[G] 
(see Introduction of Part I). That is, our result generalizes the assumption of [23], 
from one-way permutations to one-way functions, although our transformation is only 
applicable to public coin proof systems. On the other hand, this result relaxes the 
round complexity restriction for applicable proof systems, from constant number of 
rounds to arbitrary number of rounds, although our transformation does not preserve 
perfect zero-knowledge, and the applicable languages should not be in AVBPP. 

The technique of using the bit-commitment for the transformation can be also 
applied to the argument model [4]. In this transformation, the roles of the committer 
and receiver are reversed (i.e., the verifier is the committer.) 

5 The Zero-Knowledge Transformation 
Theorem 2 If language L has a statistical zero-knowledge public-coin proof against 
a “honest verifier”, then L has a statistical zero-knowledge public-coin proof against 
“any uerifier”, assuming the existence of secure bit-commitment schemes (i.e., one- 
way functions). 

Proof 
Let (M, A) be a statistical zero-knowledge public-coin proof against a “honest veri- 

fier” , A, for language L .  Then we will construct a statistical zero-knowledge public-coin 
proof, (M*, A*), against any verifier, A*, for L. 

We assume 
1. If x E L, then Prob[(M,A)(x) accepts 3 2 1 - 1/2” 

2. If x 
where n is the size of x. 

Suppose that the conversation of (M,A)(z) is (a1,/31,. . . , (Yk, P k ) ,  where ai ( a  = 
1 , .  . . , k) is the a-th public coin message by A, and pi is the i-th message by M. Let l i  
be the (bit) size of a,. 

Let BC be Naor’s bit-commitment function based on a pseudo-random generator, 
G, [20]. That is, Naor’s bit-commitment protocol is as follows: 

L ,  then for any i@, Prob[(&,A)(x) accepts ] 5 1/2”, 

‘by Tatsuaki Okamoto. 
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1. [Commit stage:] 
Receiver (R) sends a (3n bits) random string, t ,  to Committer (c). 
C randomly selects a (n bits) seed, s, of a pseudo-random generator, G, and 
calculates BC(3, t ,  b )  = G(3")(3) @ b t ,  where b E (0 , l )  is the bit C is committed 
to, bt is t (if b = 1) or 03" (if b = O), and d S n ) ( s )  is the first 3n bits output of 
G(3).  P sends BC(8, t ,  b )  to R. 

C sends 8 and b to R, and R checks the validity. 
2. [Reveal stage:] 

A pseudo-random generator exits if and only if a one-way function exists [18]. 
Next, we show the protocol of (M*, A') using Nmr's bit-commitment protocol. 

Common input: x 
What to prove: 2 E L. 
Repeat the following protocol for a from 1 to k sequentially. Here, when i = j ,  we 

suppose that ( M * , A * )  has already executed the protocol for i from 1 through j - 1. 
(When i = 1, suppose that no protocol has been executed before.) 

1. Repeat the following protocol for I from 1 to I, sequentially. 

Protocol (M', A') 

(a) A' sends a (3n bits) random string, t y ) ,  to M*. 
(b) M *  randomly selects a ( n  bits) seed, sy), of a pseudo-random generator, 

and a random bit, b y )  E (0 , l ) .  M* calculates BC(sj'), t ! ) ,  b y ) ) ,  and sends 
it to A'. 

(c) A' sends a random bit, c y )  E (0, I}, to M * .  

(d) M' sends 3Y)  and b y )  to A'. 

(e) A' checks the validity of a y )  and b y ) ,  and if it is invalid A' halts. Otherwise, 
go to the next step. 

2. M' sets 

M' runs M with a, as the i-th message by A and gets the i-th message by 
B, pi. Here, we suppose that M, given (a1 ,..., a,-l) ,  has already outputs 
( p i , .  . . , & - I )  sequentially. M* sends pi to A'. 

Finally, for a = 1,. . . , k, A* sets 

Then, A' runs A with (01,. . . , ak) as A's random string, and (P I , .  . . , P k )  as messages 
from M. If A accepts, then A* accepts. 

[End of Protocol (M', A*)] 

If 2 E L and M' and A* are honest, then, clearly, ( M ' , A * )  accepts x with the 
[Completeness] 

same probability by (M, A), where M and A are also honest. 
[Soundness] 

If x fZ L, we willshow that for any prover, z*, (F', A')(z) accepts with probability 
less than ~ ( n ) .  

First, we assume that there exist F* and a constant a such that ( g * , A * ) ( z )  
accepts with probability greater than l/na. Here, we suppose that M* is deterministic, 

- 
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by selecting the optimum coin flips of z* which maximize the accept probability of 

(g*, A')(z).  - 
Then w e @ l  show that M* must break the condition of Nmr's bit-commitment. 
For any M, Prob[(M,A)(z) accepts] 5 1/2n, and ( M ' , A ' )  is the same as ( M , A )  

except the procedure of determining {at}. Hence, if (F*,A*)(x) accepts with proba- 
bility greater than l /na for a constant a, then ( a ] ,  . . . , ab), which is input to A by A* 
to decide the acceptance, must be in a negligible (< 1/2n) fraction, r, of {(ai, . . . , ak)} 
with probability greater than l / n P  for a constant a. Here, r is fixed when J@ is fixed. 

On the other hand, from the condition of Naor's bit-commitment, the committer 
(z*) can change the committed value with probability at most 1/2-. Since A* sends 
a true random bits CI (for I = 1,. . . , I , ;  i = 1 , .  . . , k), e y )  is uniformly distributed with 
probability greater than 1 - 1/2". Hence, ( 0 1 , .  . . ,ak) = ( e y ) ,  . . . ,e{E)) is uniformly 

distributed with probability greater than (1 - 1/2")c;=1 I' > 1 - ~ ( n ) .  Therefore, the 
probability that ( G I , .  . . , Qk) E r is at most (l /Y)(l-  ~ ( n ) )  -t c(n) < ~ ( n ) .  

Thus, if (E*,A')(z) accepts with probability greater than 1/nP for a constant a, 
then z* must break the condition of Naor's bit-commitment. 
[Zero-knowledgeness (Black-box simulation zero-knowledgeness] 

black-box, can be constructed as follows: 
[Simulator $1 

When z E L ,  for any verifier A', simulator for (M', A*), which utilizes A' as a 

1. For z E L,  5 runs Simulator S for (M, A), then gets the simulated conversation, 
(a1, P I , .  . . , a&) of (M, A)(z). Let 

for i =  1, ..., k. 
2. Repeat the following procedure for i from 1 to k, and for I from 1 to I , ,  sequen- 

tially. (So, totally, (c;=, I I )  procedures are repeated sequentially.) We denote 
each procedure by [ & I ] .  Here, when i = j and I = J ,  we suppose that has 
already executed the procedures for i from 1 through j - 1 and the procedures 
for I from 1 through J - 1 in the procedure for i = j .  (i.e., [I, 11,. . . , [1,11], 

So, the initial status of A* in the following procedure is the final status of A* 
just before the procedure. Let Init[;,Il be the initial status of A* in procedure 

During the following procedure [ ; , I ] ,  can make A* to I n i t ~ , , ~ ]  from the first 
initial status of A* (i.e., In i$~ ,~ j ) .  Since a simulated conversation from [1,1] 
through [ : , I  - 11 has been fixed, can make A' to Inkt(,,1l just by simulating 
the fixed simulated conversation from [1,1] through [i, I - 11 again. (Then the 
execution is straightforward and no trial and error.) (Note: [ i , O ]  means [i - 
1, [;-I].) When i = 1, suppose that no procedure has been executed before. 

. . . , L - 1,1],. . . , - 1,1j-1], [j, 11, 9 . .  , [j, J - 11.) 

Ii, 111 

(a) 
(b) ,!? randomly selects a (n bits) seed, sy), of a pseudo-random generator, and 

calculates BC(s(:), t y ) ,  b y ) ) ,  and gives it to 

runs A' and gets a (3n bits) string, t j ' )  from A*. 

a random bit, b y )  {0 ,1} .  
A*. 

(c) runs A* and gets a bit, c(:' E (0, l}, from A*. 
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(d) checks whether the following equation holds or not: 

b y )  @ cy) = ey)e 
If it holds, then goes to the next procedure, [a,I + 11. (Note: [ i , h  + I] 
means [ i  + 1,1].) Otherwise, 5 makes A* to In i t [ , ,~ l  and returns to the first 
step of this procedure, [a, I]. 

arranges these values in the order of ( M * , A * )  protocol, and outputs 3. Finally 

Next, we will show that S terminates in expected polynomial-time. 
Since A* is a polynomial time hounded Turing machine, from the property of the 

them. - 
bit-commitment protocol, 

IProb[cy) I b p )  = 01 - Prob[c(;) I b y )  = 111 < ~ ( n ) .  

Therefore, if b y )  is randomly selected, 

Prob[bj‘) @ cy’ = ey)] > 1/2 - ~ ( n ) .  

Thus, in each procedure, the expected repetition number is less than 1/(1/2 - ~ ( n ) )  < 
2 + 4e(n). Clearly, after procedure [a, I] is completed, the simulated conversation from 
[ l ,  11 to [i, I] is not affected by the following procedures. (i.e., there is no hack-track.) 
Hence, totally, 3 terminates in expected time of polynomial (i.e., O ( Z ( ~ ~ = ,  / I )  x T); 
where T is the running time of each procedure described above). 

Next, we will show that the simulated conversation is statistically close to the real 
conversation. 

Since this is a black-box simulation, if the simulated messages of M *  is statistically 
close to the r e d  messages, then the total simulation is also statistically close to the 
real conversation. 

To prove this, it is sufficient to show that the simulated a, is statistically close to 
the real one. Since (M, A) is a statistical zero-knowledge proof, the distribution of the 
simulated a, = (ey) ,  . . . ,.If’) (output of simulator S for (M, A)) is statistically close 
to the uniform distribution. On the other hand, the real a; is also statistically close to 
the uniform distribution. This is because: (same as the related part of the proof that 
S terminates in expected polynomial-time) 
- 

IProb[cj‘) I b y )  = 01 - Prob[c(I) 1 b y )  = 111 < ~ ( n ) ,  

and b y )  is truly random in the real conversation. Hence, 

Prob[e(l‘) = b y )  @ cv) = 01 > 1/2 - ~(n) .  

Thus, the simulated ai is statistically close to the real one. 
U 

We can immediately obtain the following corollary from Theorem 2 and “241. 

Corollary 1 If language L has a statistical zero-knowledge public-coin proof and L i s  
not an AVBPP, then L has a statistical zero-knowledge public-coin proof against “any 
verifier”. 

By using the commitment scheme reversely, we can obtain the following: 

Corollary 2 If language L has a statisticalzero-knowledge public-coin argument against 
a “honest verifier”, then L has a statistical zero-knowledge public-coin argument against 
“any verifier”, assuming the existence of secure bit-commitment schemes (i.e., one-way 

functions). 
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