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Abstract. Recently there has been a great deal of interest in the power 
of “Quantum Computers” [4, 15, 181. The driving force is the recent 
beautiful result of Shor that shows that discrete log and factoring are 
solvable in random quantum polynomial time [15]. We use a method 
similar to Shor’s to obtain a general theorem about quantum polyno- 
mial time. We show that any cryptosystem based on what we refer to as 
a ‘hidden linear form’ can be broken in quantum polynomial time. Our 
results imply that the discrete log problem is doable in quantum poly- 
nomial time over any group including Galois fields and elliptic curves. 
Finally, we introduce the notion of ‘junk bits’ which are helpful when 
performing classical computations that are not injective. 

1 Introduction 

The general discrete log problem can be phrased as follows: Let G be a finite 
group for which the group operation can be computed efficiently( given 2 ,  y E G 
we can find z + y). Let h : Z - G be a homomorphism from the integers to 
G which can also be computed efficiently. Given /3 = h(a )  the general discrete 
log problem is to  find the smallest positive integer 2 such that h ( z )  = /3. For 
example, in the standard discrete log problem over Z; the homomorphism h 
is defined by h(a)  = go (mod p) for some generator g of Z;. Here Z; is the 
multiplicative group of residues modulo a prime p. 

A large variety of cryptosystems are based on the discrete log problem for 
various groups G. Specific groups that are being used are the multiplicative 
groups of large Galois fields [S], the multiplicative group of residues modulo a 
composite number [9, lo], elliptic curves over finite fields [ll,  71 and the class 
group of imaginary quadratic fields [17]. 

Recently Shor [15] showed that the discrete log problem where G = Z; can 
be solved in polynomial time on a quantum machine. We generalize this result 
to  show that any type of cryptosystem which is based on what we refer to  as 
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a “hidden linear form” can be broken in quantum polynomial time(QP). An 
immediate application of this result shows that the general discrete log problem 
for any finite group G can be solved in QP. Thus, QP can break any of the 
cryptosystems discussed above. 

Simon [14] observed that in QP it is possible to find a period of a function 
defined over Z; . We show that it is possible to detect the period of any function 
defined over Z, even when the function is not one to one in its fundamental 
domain. Our method is similar to Shor’s factoring algorithm and is crucial for 
solving the general discrete log problem.. 

These results raise a natural question of trying to  detect periods over arbi- 
trary groups G. The problem can be stated as follows: given a function f : G + D 
for some range D, find an element g E G such that f ( x  + g )  = f (t) for all t E G. 
For instance, the problem of detecting periods of functions over S, is of signif- 
icant importance since the problem of graph isomorphism can be reduced to 
it. Fourier analysis is a natural tool to use when trying to detect a period of 
a function. It is well known that one can define a Fourier transform over any 
group G ([13]). Now, suppose that for a given group G, the Fourier transform of 
G can be computed in Q P  (in time polynomial in log /GI). Does this imply that 
a period of the function f : G 4 D can be found in QP? We have so far been 
unable to resolve this general problem. However, our results can be generalized 
to  solve this problem for any finite Abelian group. 

We assume that the reader is familiar with the general model of quantum 
computations. See [4, 15, 181 for further details. 

2 Main Results 

In this section we will state our main results. We begin by introducing some 
terminology. A function h : Z -* S has period q if for any integer x we have 
h(x + q )  = h(z) .  Such a function h can be regarded as a function from Z, to S. 
Here Zq is the group of residues modulo q.  We say that the function h has order 
at most m provided that h does not map more than rn elements of Z, to  one, 
i.e. all L E S satisfy lh-l(z) (mod q)l 5 m. 

Let f(z1, ..., ZL) be a function from the integers Z k  to some arbitrary range 
S. Say that f has hidden linear structure over q provided there are integers 
a2, . . . , a k  and some function h with period q so that 

f(z1t ...,Z k )  = h(z1 -k a 2 2 2  + ... + Q k z k )  

for all integers tl, ..., x k .  We say that f has order at most m if h has order at 
most m. 

Theorem 1 .  Suppose that f ( x l  , ..., X k )  is a function which has a hadden linear 
structure over q of order at most rn. We impose two technical conditions: 

I. Let n = logq then rn and k Q R  at most no(’).  
2. Let  p be the smallest prime divisor of q; then m < p .  
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For such a funciion f, in random quantum polynomial time in n we can recover 
the values of all the a2, ...,a, (mod q )  from an oracle for f. 

The point of this theorem is that random quantum polynomial time is able 
to solve a kind of cryptanalysis problem. With just the ability to evaluate the 
function f we can find the “secret” linear structure of f .  The two restrictions 
on the function f are critical. The first one restricts m, the order of h. This is 
crucial since for example, if h is a constant function then trivially it is impossible 
to recover the values of the a’s. 

The second restriction on m ensures that the a2,. . . , a, are unique modulo 
q .  In fact, as we shall see in Section 6, this condition enables us to test if a 
proposed solution a:,. . . , a; is the correct one. Note that when q has no small 
factors the second restriction is subsumed by the first. 

Another important problem which can be solved in quantum polynomial time 
is that of determining the period of a function. 

Theorem% Suppose the function h : Z -+ S is periodic. Let q be ihe small- 
est positive period of h and assume h has order at most m. We impose two 
conditions: 

1. Let n = logq then m is ai most no(l). 
2. Let p be the smallest prime divisor of q; then m < p ,  

For such a function h, an random quantum polynomial time in n it  i s  possible to 
recover the period q of h.  

The two technical conditions are required so that we will be able to test that 
the output of the algorithm is correct. Theorem 2 shows that the value of q need 
not be known for Theorem 1 to hold. Indeed, as we shall see, in many important 
applications the value of q is not known. 

3 Applications 

There are several applications of these theorems. First, we generalize the original 
results of Shor [15] to show how to compute discrete log over an arbitrary group. 
To achieve this we show how to phrase the general discrete log problem as a 
hidden linear form. 

Let h : Z -+ G be a homomorphism and let p = h(a) .  Given p we wish to 
find the smallest positive integer 2 such that /3 = h ( z ) .  Let d be the order of 
h( 1) in the group G. Clearly, the homomorphism h has period d. Note that in 
general d in unknown, e.g. when G = Z: for some composite n or when G is the 
clasa group of a quadratic field. 

Define the function f : Z2 -, G as f ( z ,  v )  = h(z + cry). By the remarks 
above, the function f has a hidden linear form over d of order 1. An important 
observation is that the function f can be efficiently evaluated as follows: 

f(2, 9) = h(Z)h(W) = h(z)h(a)Y = @)PY 
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To solve the general discrete log problem we apply the following two steps:
first use Theorem 2 to find d, the period of the homomorphism h. The theorem
can be applied since the function h has order 1, i.e. m=l. Then apply Theorem 1
to find an integer a' < d such that a' = a (mod d). Since a' is the smallest
positive integer such that h(a) = h(a'), it is the required solution to the general
discrete log problem. We have proved the following corollary to Theorems 1
and 2.

Corollary S. The general Discrete Log problem can be solved in random quan-
tum polynomial time.

This shows that we can find Discrete Log over composite modulus, Galois
fields, and elliptic curves. An immediate corollary of Theorem 2 is the following.

Corollary 4- Factoring can be solved in random quantum polynomial time.

Proof. Suppose we wish to factor an n bit odd integer q. For an element g € ZJ,
define the function h : Z —• ZJ by h(x) = ga (mod q). Let d be the order of g
in ZJ then the function ft has period d and oder 1, i.e. m=l. Theorem 2 can be
used to find the period of h and hence the order of g. The ability to find the
order of an element in ZJ enables us to factor as is described in [15]. •

Another application of Theorem 1 concerns what are sometimes called "gar-
bled" linear equations. Consider the following family of linear equations over

where e\,... , em are unknown "errors" and the x's are known values. The gen-
eral garbled linear equation problem is to find the value of the a's given m ^> n
large enough and given that most of the errors are equal to 0. This is a known
difficult problem. However, suppose that the errors are determined by some poly-
nomial time rule, i.e. some polynomial time function e() satisfies e(j/j) = e,-. Then
the function

f(xi,... ,xn) = h(aixi + ... + anxn) where h(y) = y + e(y)

has a hidden linear structure. By Theorem 1 we can, in random quantum poly-
nomial time, find the a's provided h does not collapse too much. Note, that we
assume that we have an oracle that given x i , . . . ,xn supplies us with the value
of y + e(y). Of course we do not assume we know when e(y) = 0 or not.
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4 Basic Lemmas 

Before we can prove Theorem 1 we need several lemmas. The following lemma is 
the main lemma which enables us to handle the fact that h may not be one-to-one 
in Theorems 1 and 2. 

Lemmo5. Let W be some  integer and let R < W .  Then  f o r  any integers 
b l ,  . . . , b, there are at least R/m2 integers 0 5 x 5 R satisfying 

Lemma 5 relies on the following lemma. 

Lemma 6.  Let A1, . . . , A,,, be m complex numbers each of n o r m  1. Let & = cj"=l A$ then  there ezists a 1 5 k 5 rn such that lskl> 3. 
Proof. Assume that for all k = 1,.  . . , m - 1 we have lSkl 5 i. We show that 
this implies that lSml > m/2 proving the lemma. Let Ck be the m'th symmetric 
polynomial in AI, , . . , A,, i.e. 

First we prove by induction on k that [Ckl 5 3 for k = 1,. . . , m  - 1. For 
k = 1 this is clear since ICl( = IS,( 5 +. Now, assume that lCjl 5 a for 
j = 1,. . . , k - 1 < m. - 1. We show that ICkl 5 +. For k > 1 define 

Ak =ClSk-i -CzSk-t_2+.-.+(-l)kCk-iS1 . 

The Newton relatioiis (see [8]) state that Sk - Ak + (-1)'kCk = 0 for k 4 m. 
The induction hypothesis implies that lAkl < since the norm of each term 
in the sum is less than 1/2. Hence, 

To conclude the proof of the lemma we show that ISm! > m/2. The fact that 
for k = 1,. . . , na - 1 we have Iskl 5 4 and I c k I ' <  4 implies that lAml 5 m/2.  
Furthermore, Since C, = nr=l Ak we know that IC,l = 1. Hence, by Newton's 
relations 

m 
2 

IS,l= [A ,  - (-l)"mC,/ 2 lmCml - lA,l 2 m -  - = m/2 . 
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Proof of Lemm.a 5. Define 

P(x) = 

By Lemma 6, for any E ,  one of ,O(z),,O(2x), . . . , P(mz) must be bigger than 
i. Observe that the integers (0,. , . , R }  can be partitioned into R/m2 distinct 

0 sequences of the form {x,2x, . . . , mz}. Hence, the lemma follows. 

The following lemma provides a lower bound on the sum of roots of unity 
which are close to 1. 

Lemma 7. Suppose that 5 c < 1 are real numbers for k = 1,. . . , m. Then,  

Proof This follows directly from the fact that the real part of exp(it9i) is at least 
0 COS(E) > 1 - €2. 

5 An Overview of the Proofs 

Before we present the proofs of Theorems 1 and 2 we will outline a general 
paradigm for proving that a problem of size n can be solved in quantum poly- 
nomial time. We will describe a certain quantum experiment &. Each time we 
perform this experiment we will get some observable value. Let V be some subset 
of all the possible observable values. We’will arrange things so that the following 
are true: 

1. Given any value from V we can in polynomial time (on a conventional com- 

2. The probability of observing a specific element of V is at least l /Wnc for 

3. The cardinality of the set V is at least W/nc’ for some constant c’. 

puter) solve the given problem. 

some integer W and constant c.  

We refer to the observables in V as the “good” observables. By 2 and 3 above, 
The probability of sampling an observable from V is at least 1/n0(l). Once such 
an observable is found it will be used to solve the given problem. Hence, in 
expected polynomial time the problem will be solved. 

An important point is that we do not know which observables lie in the set 
V .  When an observable is observed, we try to use it to solve the hidden linear 
problem as if it is in V .  Then, we check that the computed result works correctly. 
If it does we are done; otherwise, we try again. 
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6 The Proof of Theorem 1 

We now turn to the proof of Theorem 1. We will prove the theorem for a hidden 
linear form with two variables f(z,y) = h(z + ay). This is enough to prove 
the general theorem, since we can find all the a's one by one by setting all the 
irrelevant variables to zero. 

Let f(z, y) = h(x + ay) be a hidden linear form over q ,  an n-bit number. 
The assumptions of Theorem 1 state that h has order at most rn = nd for some 
constant d and if p is the smallest prime divisor of q ,  then rn < p. Our objective 
is to find a. 

a' (mod q ) .  This is 
the only place where we use the fact that rn < p. Let A,, be the set of pairs 
{ ( - k a ' , k ) )  for k = 0 , .  . . ,rn. 
Lernma8. Iffor all (x, y) E A,# we have f(x,y) = h(x f a'y) then a 

We first show that given an a' it is easy to test if a 

a' 
(mod !?I. 
Proof. Observe that for all (8, y) E A,I we have x + a'y = 0. Hence, all (2, y) E 
A,, satisfy h(z + cry) = f(z, y) = h(0) .  Now, suppose a f a' (mod q) .  For two 
distinct pairs (+, y) and (z',y') in A,, we have, that x + ay f x' + ad.  This 
follows from the fact that 

The division by y - y' is valid since ly - y'l 5 rn < p where p is the smallest 
prime divisor of q. Hence, y - y' is relatively prime to q and hence invertible. 
This shows that h maps the m+ 1 pairs in A,# to the same value, h(0).  However, 
by assumption h had order at most rn. This contradiction proves the lemma. 0 

6.1 The Quantum Experiment 

Let W1 kc W2 < . . . be the first primes that are relatively prime to q .  Define 
W = ni=, Wi as the first product that exceeds max(29, mq). Note that W and 
q are relatively prime. Since rn < no(') we have W < qno('). 

Let Fw be the Fourier transform unitary matrix: 

Shor shows that for the W constructed above the transformation FW can be 
carried out by a quantum machine in polynomial time. In general this holds 
whenever W is smooth, i.e. contains no large prime factors, 

The quantum experiment C is as follows: First, the quantum machine writes 
two random numbers r l ,  r2 from iZ, on its tape. So the state after this first step 
is 
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The algorithm next computes the function f in a reversible manner so that the 
machine is in state 

We now use the mapping ( F w ) ~ , ~  = e2n'zy /W to send each r, to si for i = 1,2 
with amplitude exp(2sirisi/W). This places the machine in the state 

1 - C exp(2ri(+lal+ r m ) / w ) 1 ~ 1 ,  82, f(r1, r2) > 
eW 

where the sum is over all r1, r2 and s1,sZ. Thus, the machine will end up in state 
IsI,s~, b > with probability 

where the sum is over all PI,  r2 such that f ( r1 ,  ~ 2 )  = b. 
We now describe the special set of observables V. We denote the residue of 

2 modulo W by {E}w. The observable (61, s2, b) is in V provided the following 
properties are satisfied: 

1. s1q 2 W ;  
2. (s1q)w 5 w/w 

161 < 1. 
3. Let C = 8 2  - sla + %{slq}w. Then C = tW + S for some integer t and 

4. I~~!-1exp(2nib~sl/W)l 2 1/2 where b l , .  . . , b ,  are distinct elements so 
that h ( b k )  = b for k = 1,.  . . , rn. Recall that rn is the order of the function 
h. 

In what follows we will refer to these conditions as (1),(2),(3) and (4). It re- 
mains to prove that the set V satisfies the three properties specified in Section 5. 

6.2 Using a "Good" Observable 

Let (s1,s2, b) be an observable from the set V .  We show how this observable can 
be used to find a. Condition (3) implies that 

Ly 
$2 - -(s1q - (s1q)w) = tW + 6 . 

P 

Write s1q = VW + u with 0 5 u < W. Observe that w = q. Since t is 
an integer, and IS1 < 1, dividing the above equality by W leads to 

where 1 1 ~ 1 1  is the fractional part of z, i.e. minlz + il over all integers i. 
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Let s be the integer which makes the values of the closet to %. That is, 5 
is the fraction we get when we round + to  the closest rational with denominator 
q. Since W > 2q it is not difficult to see that for the above inequality to hold we 
must have 

This means that s - aw f 0 (mod q ) .  By condition (1) we know that v 2 1. 
Hence, when q and w are relatively prime we can easily recover a. 

When q and v are not relatively prime we proceed as follows: let z = 
q/gcd(q,w). Observe that v is invertible modulo z and let a’ = s/w (mod z) .  
Clearly a‘ 3 a (mod 2 ) .  For 0 5 a’ < z we have that a’ a (mod z )  if and 
only if a’f a: (mod q). Hence, it is easy to check that the resulting a’ satisfies 
a’ G Q (mod z )  by using Lemma 8 on the function f’(+, y) = f(z, fy). 

Once a pair a’, z satisfying a’ E Q (mod z )  is found, write a = a’ + zk. 
Define a new function f”(x, y) = f(z+ - cr‘y, y). Then 

f”(z, y) = h(zz - a’y + ay) = h(r(z  + ky)) . 

Hence, f”(z, y) has a hidden linear structure over q / z .  We can now recursively 
apply the algorithm to f” to find k and thus find a (mod q) .  

6.3 

For an observable (sl, s2, 6),  we denote by a(s1, s2, b)  the probability of observing 
(s1, sa, b )  at the end of the quantum experiment. To simplify the exposition in 
this section we assume that the order of the function f satisfies m 2 10. This is 
not a restriction since a function which has order lass than 10 may be regarded 
as a function with order 10. 

Let (s1, s2, b) be an observable from the set V .  Recall that the probability of 
this observation is 

The Amplitude of a “Good” Observable 

where the sum is over all rl, r2 such that f(r1, r2) = 6. The key is that f has 
a hidden linear structure, i.e. f(q , r2) = b if and only if h ( q  + ar2) = 6. Since 
h need not be one to one there are distinct b l ,  .., b , ~  so that h(bk) = b for 
k = 1,. . . , m‘ and rn‘ 5 rn. WLOG we assume m = m’. Thus, u(s1, s2, b) is 

where the inner sum is over all T I ,  ~2 so that T I  E bh - arz mod q. Since 1 5 
r l  < q ,  given an r2 the value of rl is equal to b k  - ar2 - q l ( b k  - arz ) /qJ .  Thus, 
the key is to  bound the absolute value of the following double summation, 
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First we bound the inner sums. For a given k, rewrite the inner sum as 

By condition (3), and the fact that r2/W < q/W < l /m,  the argument of 
the first exponent is always less than 2?ri/m. For the second exponent we know 
b k  < q. The fact that all reds A, B > 0 satisfy IB + LA - BJ I 5 [AJ + 1 implies 
that 

Combining this with condition (2) we see that the argument of the second ex- 
ponent is always less, in absolute value, than 27rilm. Hence, the total exponent 
is less than 47ri/m. Using Lemma 7, we get that the inner sum is always bigger 
than [l - 0(&)] q. On the other hand the inner sum is clearly less than q. It 
follows that b ( s 1 ,  s2, b) is equal to 

where 0 5 6 k  5 O ( 3 )  for all k = 1, .  . . , m. Now, since the Ek are small it is 
not difficult to see that condition (4) implies that u(s1 , 6 2 ,  b) > a(&). Hence, 
a "good" observable (81, 6 2 ,  6) has the required probability. 

6.4 

The last step is to show that V has the required cardinality. First, observe that 
for any s1 there exists an s2 satisfying condition (3). This follows by setting s2 to  
the integer closest to as1 + % { s l q } w .  We only need to lower bound the number 
of s1 satisfying 

1. s1q 2 w; 
2. {Slqlw I w/m; 
3. I cpZl exp(2rribksl/~)I 2 1/2 

We will show that the number of s1 satisfying conditions (2) and (3) is at least 
W / m 3 .  The number of s1 violating condition (1) is at most W/q which is negli- 
gible in comparison. Hence, throwing away the st that violate condition (1) will 
make no difference. 

Let x = qsl (mod W) and c k  = b k q - l  (mod W). Since q and W are rela- 
tively prime by construction, 9-l  exists modulo W. Conditions (2) and (3) can 
now be rewritten as 

1. O < x < W / m  

Cardinality of Set of "Good" Observables 
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By Lemma 5 ,  the number of x that satisfy these two conditions is at least W/m3. 
Since rn < no('), the number of such 2 is at least W / n o ( l ) .  

Hence, the total number of pairs 81, s2 satisfying conditions (1) , (2) , (3)  and 
(4) in the definition of V is W/n0('). Putting this together with the fact that 
there are q possible value for b ,  we get that the number of triplets (81,82, b) in 
V is qW/no( l ) .  By definition of W we know that W = qno(l) .  Hence, IVl > 
W a / n o ( l ) ,  which is what we had to show. 

7 The Proof of Theorem 2 

Say we are given a function h : Z + S which is periodic. We wish to find the 
smalleat period q of h. Let n = logq. We assume that h is of order at most m 
where rn = no@).  

Without loss of generality we can assume that we are given an upper bound 
q' on q such that q' < 2q. This upper bound can be found by guessing some 
initial q' and running the algorithm. If the algorithm fails to find the period, 
double q' and rerun the algorithm. After at most n steps q' will be the required 
upper bound. 

Let p be the smallest prime factor of q. As in the previous section, the as- 
sumption of Theorem 2 that m < p implies that when the algorithms outputs q' 
as the period, we can test that q = q'. 

7.1 The Quantum Experiment 

Let W be a smooth number constructed as in the previous section such that 
W > max{q'2,rnq'2} and W < qt2n0(1).  The quantum experiment & is as 
follows: First, the quantum machine writes a random numbers r from Zw on its 
tape. So the state after this first step is 

The algorithm next computes the function h in a reversible manner so that the 
state of the machine is now 

We now use the Fourier unitary transformation Fw to send r to s with amplitude 
exp(2~irs/W). It places the machine in the state 

The probability that the machine ends in the state Is, b > is 
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where the sum is over all r such that h(r) = b. 

( 8 ,  b) is in V provided the following properties are satisfied: 
As before, we now describe the special set of observables V .  An observable 

1. { W I W  < q/m; 

2. I xrZl exp(2aibrs/W)l 2 1/2 where b l ,  . . . , b ,  are distinct elements so that 
h ( b k )  = b for k = 1,. . . , m. Recall that m is the order of the function h. 

It remains to prove that the set V satisfies the three properties specified in 
Section 5: 

1. Given an observable (s, b) in V Condition (1) implies that we can find a non 
trivial factor z of q using a method similar to Shor’s [15]. We can then define 
a new function h’(;c) = h ( m )  which will have period q / z .  The algorithm can 
be applied recursively on h’ to recover q / z .  This shows that given a “good” 
observable we can find the period q. 

2. Using condition (2) and an argument similar to the one in the previous 
section we can show that the amplitude of a “good” observable is n(+). 

3. Using Lemma 5 we can show that the cardinality of V is at least q2/n0(’) .  

8 JunkBits 

In both algorithms described in the previous sections the first step was to pick 
a random number between 1 and q - 1 for some integer q. This means that the 
machine should be in state 

1 q - 1  -CIr> . 
f i  r=O 

However, when q is a large prime, this state can not be easily constructed using 
a quantum circuit. 

An easy method for generating a random number between 0 and q - 1 is to 
pick an integer W which is the closest power of 2 to q. Then generate a random 
number z (mod W). If z < q then use t, otherwise generate a new z and repeat 
this until a number in the required range is generated. This will clearly generate a 
number uniformly distributed on 0, . . . , q - 1. The problem is that this procedure 
can not be carried out on a quantum machine since all the “bad” samples (the 
ones larger than q )  can not be erased from the tape. Erasure is not a reversible 
operation. Clearly the bad samples can not be left on the tape since they would 
prevent the interference effects which are so useful in quantum computing. 

Another approach is to pick some large integer W > qa which is a power of 
2. Then generate a random number z (mod W) and compute z (mod q). The 
resulting value will be exponentially close to being uniformly distributed between 
0 and g - 1 which is good enough. However, ai before, we run into the problem 
that the map sending z to z (mod q )  is not reversible. As before keeping extra 
information on the tape to make this map reversible is risky since it may prevent 
interference effects. 
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The solution is to keep just enough extra information on the tape so that 
the computation is reversible, however the extra information on the tape should 
be independent of the computation taking place. We call this extra information 
Jzlnk bits. 

Definition 9. Let f : (0 , l )”  -+ Y be some polynomial time computable func- 
tion which is not one to one. A function J : ( 0 , l ) ”  -+ Y’ will be called a ‘Ljunk” 
function for f if the following are satisfied: 

1. The map x -+ (f(z), J ( z ) )  is one to one and polynomial time computable. 

2. I Pr[f(x) = y I ~ ( x )  = j] - Pr[f(x) = y]l < ~ ~ ( ~ 1 .  
Furthermore, the inverse map is in QP; 

Thus, the value of J(z) and f(r) should be almost independent of one an- 
other. Condition (1) implies that the map sending z to (f(z),J(x)) can be 
computed in QP using a result due to Bennett [2]. It should be clear that once 
we have computed (f(z),J(x)), the computation can proceed to use the value 
of f ( z )  as if J ( z )  was not written on the tape. The independence property will 
guarantee that the interference effects will change by an exponentially small 
amount. The full details of this method will be given in the final version of the 
paper. 

To generate a random number between 0 and q - 1 we follow the second 
method. Let W > q2 be a large power of 2. Generate a random number between 
0 and W - 1. We now wish to compute the function f(z) = z mod q. A possible 
junk function for f is J(x) = [ x /qJ .  It is not difficult to see that J ( z )  is indeed 
a junk function for f(z). Using similar methods we can show that it is possible 
to  generate random permutations and other random objects. 

9 Conclusions and Open Problems 

We have shown that QP can solve two types of problems: recovering the hidden 
linear structure of a function and detecting periods over Z. Our results hold even 
when the function h used is not one to one. Using both theorems we were able 
to show that the discrete log problem can be solved in quantum polynomial time 
over any group. 

The problem of recovering the hidden linear structure can be generalized to 
any ring. Similarly, the problem of detecting periods can be generalized to any 
group. As was mentioned in the introduction, graph isomorphism is reducible 
to the problem of detecting periods of functions defined over the symmetric 
group S, . This example shows the importance of these generalizations. We hope 
that Fourier methods analogous to the ones used in this paper can be used to 
detect periods over S n .  This will show that the graph isomorphism problem 
can be solved in random quantum polynomial time. We mention that Beals [l] 
has shown that the Fourier transform over the group Sn can be carried out in 
quantum polynomial time. 
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We have also introduced the concept of Junk bits which enables quantum 
machine to carry out certain non invertible functions in a way tha t  does not  
effect the interference patterns. A natural problem is to try and  understand 
which deterministic computations can be done using junk  bits. 
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