
Efficient Commitment Schemes with Bounded 
Sender and Unbounded Receiver 

Shai Halevi 

MIT - Laboratory for Computer Science, 
545 Technology Square, Cambridge, MA 02139 

shaihQtheory.lcs.mit .edu 

Abstract. In this paper we address the problem of commitment schemes 
where the sender is bounded to polynomial time and the receiver may 
be all powerful. We present a scheme for committing to a (possibly long) 
string. Our scheme is efficient in the following three ways: 

ROUND EFFICIENCY: Each part of the scheme consists of a single round. 
LOW COMMUNICATION: The number of bits required for the commitment 
equals the security parameter of the system, 'regardless of the length of 
the string which is being committed to. 

FAST IMPLEMENTATION: The time taken to commit to a string is linear 
in the length of the string and almost linear in the security parameter of 
the system. 

1 Introduction 

In this paper we address the problem of commitment schemes for (possibly long) 
messages. The problem arises when Alice has a message which Bob does not 
know, and they want to  simulate (by means of electronic communication) the 
effect of delivering the message to  Bob in a sealed envelope (or better yet, in 
a locked box): Alice wants to  prevent Bob from knowing anything about the 
message in the box until such time in the future when she decides to  give him 
the key. Bob, on the other hand, wants to  prevent Alice from changing the 
message in the box after he has already received it. 

COMMITMENT SCHEMES. A protocol for implementing such a simulation is 
called a commitment scheme. It consists of two phases. The first phase simulates 
the delivery of the locked box. When this phase is completed, Bob does not 
know the message yet, but Alice can not change it any more. The second phase 
simulates the delivery of the key. Bob can now see the message and verify that 
i t  is indeed the message to which Alice is committed. 

EXAMPLE. As a simple example of a commitment scheme, consider a public-key 
encryption function E(.) .  To commit to a message o, Alice sends the encryption 
c = E(o)  t o  Bob. After this is done, Bob still does not know what u is (provided 
that he can not break the encryption) but Alice can not change it anymore 
since there is no other message which encrypts to  c. When Alice wants t o  reveal 

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 '95, LNCS 963, pp. 84-96, 1995. 
0 Springer-Verlag Berlin Heidelberg 1995 



85 

her message, she just send it to Bob, who encrypts it and checks that it really 
encrypts to  c. 

COMMITMENT SCHEMES WITH COMPUTATION ALLY UNBOUNDED BOB. The 
above scheme can work only if Bob is computationally bounded, so he can not 
break the encryption. If Bob has unbounded computational power, then Alice 
needs to commit in a way that yields no information (in the information theo- 
retic sense) about her message. Of course, in this case there are many different 
messages that correspond to the same commitment. Thus, Alice must be com- 
putationally bounded, so she can not find any of the other messages. This is the 
case that we address in this paper. 

RUNNING-TIME. Although it is known that commitment schemes exists based 
on “weak” assumptions, the implementations of such schemes are still based on 
either the hardness of factoring or the hardness of discrete log. In the discrete-log 
based implementations, a typical operation requires a modular exponentiation 
which is a relatively expensive operation. Thus these implementations are usually 
less efficient than the factoring-based ones, where a typical operation requires 
only modular multiplication. The scheme that we present in this paper is of the 
latter kind. 

1.1 Previous Work 

Commitment schemes were first formulated by Blum in the context of flipping 
coins over the telephone. The problem which is considered in this context is 
committing to a single bit. The first implementation of a bit-commitment scheme 
for unbounded Alice and bounded Bob (which was based on the hardness of 
discrete log) was suggested in [BM81] (as cited in [Blu82]). A different technique 
based on the hardness of factoring was embedded in [GM84]. 

The first bit-commitment scheme for the case where Bob is computation- 
ally unbounded was described by Blum in [Blu82]. This scheme is based on the 
hardness of factoring. In the same paper Blum also introduced the use of “Blum 
integers” (i.e., product of two primes, both congruent to  3 mod 4), which were 
used in many other papers since, including this one. 

Since then there has been a large body of research regarding the bit commit- 
ment problem. In particular, it was shown that such bit commitment schemes 
exist in various models, based on various assumptions. For example, see [NaoSO, 
DamSO, BC91, DPP94, IOS941. 

In [NaoSO], Naor also considered the problem of committing to long mes- 
sages in the case of unbounded Alice and bounded Bob. Based on the existence 
of pseudo random generators, he describes a very elegant commitment scheme 
for long strings which only uses O(n)  bits to commit to a string of length n 
(where the constant in the O(-) does not depend on the security parameter of 
the system). 

In addition, there have been much work on using various bit-commitment 
schemes within cryptographic protocols and zero-knowledge proofs. For example, 
see [BM84, GMW91, BCC88, BM090, NOVY921. 



86 

1.2 Contributions of This Paper 

In this paper we address the problem of committing to (possibly long) messages 
where Alice is bounded and Bob is unbounded. Although it is possible to use 
bit-commitment schemes to commit to a longer message by committing to each 
bit separately, the performance of such schemes is quite bad: The protocols for 
bit commitment require k bits of commitment for every message bit (in a system 
with security parameter k). If the message is long, then sending and storing such 
a large commitment may be a problem. 

COMMUNICATION, ROUNDS AND RUNNING-TIME EFFICIENCY. We present a 
scheme where the length of the commitment string does not depend on the length 
of the  message. The number of bits it takes Alice to commit to any string equals 
the security parameter of the system, regardless of the length of that string. Our 
scheme is also efficient in terms of round complexity. Each part of the scheme 
consists of a single round. 

The scheme we present in this paper uses the Goldwasser-Micali-Rivest claw- 
free permutation pairs ([GMRM]) which are based on the hardness of factoring. 
As was mentioned above, each operation in the scheme consists of a modular 
multiplication, which can be performed in time almost linear in the size of the 
numbers involved. The scheme requires one or two multiplications for every 
character in the message. 

SIMPLE INITIALIZATION. Our scheme has an advantage over other factoring- 
based schemes even when committing to just one bit. In many of the known 
factoring-based schemes, the composite numbers which are used in the scheme 
must be “Blum integers’’ (i.e., they have to be products of two primes, both 
congruent to 3 mod 4). If the numbers are not of the right form, then the 
security of both parties may be compromised. 

Therefore these schemes require additional tools to ensure that the numbers 
are of the right form (such as using zero-knowledge proofs). These tools are 
typically very expensive, so the schemes become less efficient. 

We present a new technique which eliminates the need for such expensive 
initialization steps. Our scheme is unique in that the use of “Blum integers’’ 
effects only the security of Bob. Thus, we can simply let Bob choose the number 
and send it to Alice, knowing that the security of Alice does not depend on 
which number was chosen. 

1.3 Organization of the Paper 

The rest of this paper is organized as follows: In Sect. 2 we define the notion of 
a commitment scheme. In Sect. 3 we present our factoring-based scheme which 
uses the claw-free permutation pairs due to [GMR88]. We first present a very 
simple implementation and then show how it can be modified to allow simple 
initialization. 

In Sect. 4 we show how we can generalize our scheme and implement it using 
any construction of claw-free families of permutations. 



87 

2 Commitment Schemes 

THE SYNTACTIC STRUCTURE OF A COMMITMENT SCHEME. A commitment 
scheme is a two phase protocol between two parties, Alice and Bob. Both parties 
share a common input, lk (for some integer k) which indicates the security 
parameter of the system. Besides lk, Alice also has another input, u, which 
is the message string to which she wants to commit herself. When used inside 
some other protocol, the parties may also have other inputs which represent their 
history at the point where the commitment scheme in being invoked. 

The scheme itself consists of two phases: The commit phase and the reveal 
phase. The parties execute the commit phase first and the reveal phase at some 
later time. Typically, when used in another protocol, there will be some other 
parts of that protocol between the commit and the reveal phases. 

During the commit phase Alice sends to Bob a commitment string c and 
during the reveal phase Alice sends to Bob a reveal string r .  From c and r Bob 
computes the message u and then checks that u is consistent with c and r .  

In the construction which we present below we need an “initialization phase” 
before we can use the scheme. This phase is independent of the message u which 
Alice wants to commit to. In fact, we can execute the initialization phase only 
once and then use the system to commit to many different messages. Alter- 
natively, we can add the initialization to the commit phase and execute it as 
part of the protocol. In the implementations that we discuss in this paper, the 
initialization can be executed quite efficiently. 
THE SEMANTICS OF A COMMITMENT SCHEME. Intuitively, the commit phase 
has the effect of sending the message from Alice to Bob in a locked box. Bob 
does not yet know anything about the contents of the message, but Alice can 
not alter the message anymore. The reveal phase has the effect of giving Bob 
the key and revealing the message inside the box. 

The definition of what it means for Bob “not to know anything about u”, 
and for Alice “not to be able to alter u” depends on the computational power 
of the parties. In the context of this paper, Alice is bounded to probabilistic 
polynomial-time and Bob has unbounded computational power. Thus, we require 
the following properties 
Meaningfulness: If both Alice and Bob follow their parts in the protocol, 

then the message u which Bob computes from (c ,  r )  after the reveal phase 
is equal to Alice’s input message. 

Security: The communication between Alice and Bob in the commit phase 
gives no information (in the information-theoretic sense) about u. 

Non-Ambiguity: It is computationally infeasible for Alice to generate a com- 
mitment string c and two reveal strings r ,  r‘ such that in the reveal phase, 
Bob would compute one message u from (c ,  r ) ,  a different message u’ # u 
from (c, P’) and would accept both (6, c,  r )  and ( d ,  c, r’). 
This means that for any probabilistic polynomial-time algorithm, the prob- 
ability of generating c, r, r’ as above when given the input lk (the security 
parameter) is negligible. 



88 

3 A Factoring-Based Implementation 

In this section we present a specific implementation which uses the claw-free 
permutation families due to [GMR88]. 

3.1 

Let p and q be two primes such that p = 3 
denote N %f p . q. We start by defining two functions 

The Goldwasser-Midi-Rivest Claw-Fkee Permutation Pairs 

(mod 8), q = 7 (mod 8), and 

def 2 
fiv,o(z) = z (mod N )  and ~ N , I ( z )  gf 4z2 (mod N )  

Then, for any string s = b I b z . . . b , ,  we define ~ N , ~ ( x )  kf f i v , a , ( . - .  fN,a,(z)-**) .  
It is easy to see that both f ~ , o  and f ~ , 1  are permutations over the squares mod 
N ,  which implies that for any s the function fN,, is also a permutations over 
the squares mod N .  

3.2 

The following is a simple commitment scheme that uses the GMR construction. 
We assume that Alice and Bob uses some standard encoding function E m ,  with 
the property that for no two messages g # u’ is Enc(u) a prefix of Enc(d) .  

Initialization: Alice and Bob “choose at random” a composite N with k: bits 

Commit phase: Given a message u, Alice computes s = Enc(a) .  Then she 

Reveal Phase: Alice sends both ~7 and z to Bob. Bob computes s = Enc(g) 

Using the GMR Construction for Commitment 

of the above form. We discuss this phase in more details below. 

picks a random element z E ZY, and sends y = fiv,$(z2) to Bob. 

and verifies that y = f ~ , ~ ( t ~ ) .  

To show that this is a commitment scheme we need to show two things: 

Claiml. The  value of y does no2 give any information about u 

Proof .  (sketch) Since both f ~ , l  and f ~ , o  are permutations, then so is f ~ , ,  for 
any s. Thus, for every y (which is a square mod N )  and every s there exists 
exactly one square mod N 2 such that y = ~ N , ~ ( z ) .  This implies the claim. 

0 

Claim 2. If i t  is infeasible t o  fac tor  composite numbers of the above f o r m ,  then 
i t  i s  infeasible f o r  Alice t o  generate on input N two  strings s, s’ (none of which 
i s  a prefix o f t h e  other)  and x,x‘ E 2; such that f ~ , , ( z ~ >  = ~N,,I(X’~), 

This claim was proven in [GMRSS] (Theorem 1)  and a generalization of it was 
0 proven in [Dam881 (Theorem 2.8). 



89 

3.3 Efficiency of the Scheme 

The amount of communication in the commit phase is independent of 6. Alice 
always send exactly k: bits to Bob (where k. is the number of bits in N ) .  In the 
reveal phase, Alice sends the message u and k more bits. 

In terms of running time, to compute the commitment string Alice needs to 
perform one or two modular multiplications for every bit in s (which presumably 
has about the same length as u). Using construction similar to [Dam88], we can 
use larger families of permutations to reduce the number of multiplication to 
one or two per byte (or even word) of s. However, we pay for this by having to 
keep many more bits to describe these larger families of permutations, and by 
having to choose one of these families in the initialization phase. 

3.4 Implementing the Initialization Phase 

The main problem with the above scheme is the implementation of the initial- 
ization phase. Clearly, it is important to choose the composite number N in such 
a way that Alice will not be able to factor it easily. Notice that it doesn’t matter 
whether Bob knows the factorization of N or not. 

One idea is to let Bob choose N in the appropriate way and send it to Alice. 
But if Alice doesn’t know the factorization of N ,  how can she verify that N it 
is really a product of two primes which are 3 mod 4 (which is the property that 
makes the functions f ~ , o ,  f ~ , l  permutations) ? 

At first glance this may not look like a real problem. After all, Alice can 
choose the starting point 2 at random, so she may be able to hide B from Bob 
even if these functions are not permutations. Unfortunately, this is not the case. 

Consider for example N = 5 and a message of one bit b. It is easy to see that 
for any element 2 E 2; we have f5,0(z2) = 1 and f5,1(zZ) = 4. Thus Bob can 
recover the message from the commitment string. 

To solve this problem Bob can choose N and then prove (by means of a 
zerwknowledge proof) to Alice that it is of the right form. However this zero- 
knowledge proof can be expensive in terms of both running time and communi- 
cation. Moreover, some zero-knowledge proofs use commitment schemes as basic 
primitives. 

It will therefore be desirable to have a system where choosing a “bad N” 
does not help Bob getting any information about B. We present such a system 
below. 

3.5 

The only difference between the following scheme and previous one is that after 
computing y = f ~ , , ( x ’ ) ,  Alice squares y k more times (where k is the number 
of bits in N )  and sends the result to Bob. The new scheme is: 

Initialization: Bob picks at random an odd k-bit composite number N which 
is a product of two large primes, one congruent to 3 mod 8 and the other 
congruent to 7 mod 8. Bob sends N to Alice, who just verifies that N is odd. 

A Modification of the GMR-Based Scheme 



90 

Commit phase: Given a message u, Alice computes s = Enc(a). Then she 

Reveal Phase: Alice sends both u and I to Bob, Bob computes s = E n c ( u )  
picks a random element z E Z& and sends y = f ~ , o ~ ~ ( x ’ )  to Bob. 

and verifies that y = fN,pS(z2). 

It is easy to see that if Bob picks N according to the protocol then it is still 
infeasible for Alice to find two different messages with the same commitment 
string (if factoring is hard). 

The hard part is to show that even if Bob tries to “cheat” by picking a ‘(bad” 
N ,  he still does not get any information about u from the commitment string. 

3.6 

Let N be an odd integer and denote the number of bits in N by k. We model 
Bob’s view of the protocol as an experiment in which Alice picks a string u E 
(0,l)’ according to some distribution D (D represents the knowledge that Bob 
has about u).  Then Alice computes s = Enc(u),  picks at random an element 
z E Z> and sends y = f ~ , o ) ~ ~ ( t ’ )  to Bob. 

Denote by S, X the random variables which take on the values of s, t respec- 
tively in the experiment above. The following lemma asserts that y does not give 
any information about s if we do not know x .  

Proof of Security for the Modified Scheme 

Lemma3. For any element y E 2; such that P I [ ~ N , ~ ~ ~ ( X ~ )  = y] > 0 and for 
any string s we have 

See  Appendix A for a detailed proof. The idea is that all the information 
which y = f ~ , ~ ( x ~ )  gives about s depends only on a property that we call 
the “tag of y mod N ” .  Moreover, by repeated squaring we force the tag of 
y = ~N,O)C~(Z~) to be some constant which does not depend on s or 2. Thus, y 
does not give any information about s. 

Unfortunately, the formal proof is somewhat lengthy. On the up side, it con- 
tains some number-theoretic lemmas which may be interesting in their own right. 

4 Using General Claw-Free Permutation Families 

In this section we show how the above scheme can be generalized to use any 
construction for claw-free permutation families. 

4.1 Claw-Free Families of Permutations 

The notion of claw-free permutations families which we use here is a little more 
general than the one in [GMR88] but still not as general as in [DamSS]. A con- 
struction of claw-free permutation families consists of the following components: 



91 

1. A constant r which indicates the number of permutations in each family. 
2 .  A set INDEXk for all k E N .  Every string in INDEXk is an index of a 

family with security parameter k .  INDEXk is polynomial-time samplable 
given 1’. 

3. For every k and every index r E INDEXk there is a domain Dom, that 
is associated with r .  It is convenient to assume that if r E INDEXk then 
 DO^, E (0, 

4. For every k and every index r E INDEXk we have a family of functions 
FT = {f(r,~), f(t,l), * , f ( T , T - l ) }  such that all the f(,,i)’s are permutations 
over Dorn,, and there is an efficient algorithm COMPUTE(r ,  i, Z) which 
computes f r , i ( Z )  given T,  i and an element 2 E  DO^,. 

5 .  What makes these families claw-free is that the following task is infeasible: 
Given lk and a random element r E INDEXk,  find i # j and two elements 

Dom, is polynomial-time samplable given r. 

Z, y E  DO^, such that f T , i ( t )  = fT,j(y). 

Notice that the set “legal indexes” in the above definition may or may not be 
polynomial-time recognizable (i.e. INDEX = U k  INDEXI,  may or may not 
be in BPP). For example, for the GMR construction it is not known whether 
INDEX E BPP. On the other hand, it is easy to come up with a simple 
construction based on the hardness of discrete-log for which INDEX E BPP.  
As it turns out, if we have a construction for which INDEX E BPP,  then 
the initialization phase for the scheme which we present below becomes much 
simpler. 

4.2 Commitment-Schemes and Claw-Free Permutation Families 

Assume that we have a construction of claw-free families of permutations. For 
any index r and string s = blbz - - b, we denote by f T , s  the function f T , a ( ~ )  gf 
f T , b ,  (. . * fT,bn(Z) a - .). Here is how we use the claw-free families to implement a 
commitment scheme. On common input 1‘: 

Initialisation: Alice and Bob pick a family of permutations with security pa- 
rameter k (by choosing a random index r € INDEXk) .  We discuss ways to 
implement this phase below. 

Commit phase: Given a message ~7, Alice computes s = Enc(a). Then she 
picks a random element I: E Dorn, and sends y = f,,*(z) to Bob. 

Reveal Phase: Alice sends both u and t to Bob. Bob computes s = Enc(a) 
and verifies that y = f,,*(~). 

Notice that if we have families with more than two permutations, we can use 
techniques similar to those in [Dam881 to save time by viewing s as a string 
over an alphabet with more than two symbols: For example, if we have 256 
permutations in each family we can view s as a sequence of bytes. This way we 
only need to apply f(,,.). once for every byte in s rather than once for every bit. 

The proof that this is indeed a commitment scheme is similar to the proofs 
of Claims 1 and 2. 



92 

4.3 Implementing the Initialization Phase 

We consider two different cases here: 
Case 1: INDEX E BPP for this construction. In this case Bob can simply 
choose a random index r E INDEXk and send it to Alice. Alice can verify that 
T is indeed an index of some permutation family. 

Notice that Alice doesn’t care how T was chosen. The fact that all the func- 
tions fT,,(.) are permutations over Dom, is enough to ensure that Bob does not 
get any information about s from the commitment string. On the other hand, it 
is in the best interest of Bob to pick T at random, since the infeasibility condition 
only applies when T is chosen at random. 
Case 2: INDEX @ BPP for this construction. In this case Alice can not verify 
that the functions f7,i(-) are permutations, so Bob may choose 7 so as to be able 
to extract information about s from f7,$(x). 

In this case the parties either need to rely on a trusted party that will pick 
r for them, or Bob can prove to Alice that r is indeed in INDEXk.  Another 
possibility is to modify the scheme itself (as we did in the GMR-based imple- 
mentation) to eliminate this problem. 

5 Acknowledgments 

I thank Silvio Micali for many helpful ideas and discussions and Shafi Goldwasser 
for several very helpful comments. I also thank the MIT dental-service for making 
me wait for an hour on the dentist chair, in which time I came up with the idea 
for this paper. 

References 

[BC91] 

[BCCSS] 

[Blu82] 

[BM81] 
[BM84] 

[BM090] 

[DamSS] 

G. Brassard and C. Crkpeau. Quantum bit commitment and coin toss- 
ing protocols. In A.J. Menezes and S. A. Vanstone, editors, Proceedings 
C R Y P T 0  90, pages 49-61. Springer-Verlag, 1991. Lecture Notes in Com- 
puter Science No. 537. 
G. Brassard, D. Chaum, and C. Cr6peau. Minimum disclosure proofs of 
knowledge. JCSS, 37(2):156-189, 1988. 
M. Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, 
pages 133-137. IEEE, 1982. 
M. Blum and S. Micali. Coin flipping into a well. Unpublished, 1981. 
M. Blnm and S. Micali. How to generate cryptographically strong sequences 
of pseudo-random bits. SIAM J. Computing, 13(4):850-863, November 
1984. 
M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical 
zero-knowledge. In Proc. 22nd ACM Symposium on Theory of Computing, 
pages 494-502, Baltimore, Maryland, 1990. ACM. 
I.B. Damghrd. Collision free hash functions and public key signature 
schemes. In David Chaum and Wyn L. Price, editors, Proceedings of EU- 
ROCRYPT 87, pages 203-216. Springer-Verlag, 1988. Lecture Notes in 
Computer Science No. 304. 



93 

[Dam901 I.B. Damgird. On the existence of a bit commitment schemes and zero- 
knowledge proofs. In G. Brassard, editor, Proceedings C R Y P T O  89, pages 
17-29. Springer-Verlag, 1990. Lecture Notes in Computer Science NO. 435. 
I.B. Damgkd, T.P. Pedersen, and B. Pfitzmann. On the existence of sta- 
tistically hiding bit commitment schemes and fail-stop signatures. In DOU- 
glas R. Stinson, editor, Proceedings CRYPTO 93, pages 250-265. Springer, 
1994. Lecture Notes in Computer Science No. 773. 

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270- 
299, April 1984. 

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure 
against adaptive chosen-message attacks. SIAM J. Computing, 17(2):281- 
308, April 1988. 

[GMWSl] 0. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but 
their validity or all languages in N P  have zero-knowledge proof systems. 
Journal of the ACM, 38(1):691-729, 1991. 
T. Itoh, Y. Ohta, and H. Shiuya. Language dependent secure bit commit- 
ment. In Yvo G. Desmedt, editor, Proceedings CRYPTO 94, pages 188-201. 
Springer, 1994. Lecture Notes in Computer Science No. 839. 
M. Naor. Bit commitment using pseudo-randomness. In G. Brassard, edi- 
tor, Proceedings CRYPTO 89, pages 128-137. Springer-Verlag, 1990. Lec- 
ture Notes in Computer Science No. 435. 

[NOVY92] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero- 
knowledge arguments for np can be based on general complexity assump- 
tions. In Ernest F. Brickell, editor, Proceedings C R Y P T O  92, pages 196- 
214. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740. 

[DPP94] 

[IOS94] 

[NaoSO] 

A A Proof of Lemma3 

Before we can prove Lemma 3 we need to  develop some number-theoretic tools 
and notations. 

A . l  

Let p = qe be an odd prime-power (that is, q is an odd prime and e is a positive 
integer). Denote by $ ( p )  the order of the multiplicative group 2; and denote by 
m the largest integer such that 2” divides 4 ( p ) ,  Also, let g be some “canonical” 
generator in Z i  (e.g. the smallest generator in Z;). 

Definition4. Let z be an  element in 2; and let 4 be the discrete log of z base 
g. (i.e., g‘ I z mod p). The  tag of z mod p is the residue of l mod 2m. We denote 
it by TAGp(%). That is, 

Tags of Elements Modulo Prime-Powers 

where [2:Iy denotes the residue of 2: mod y. The  following properties are imme- 
diate from the definition of the tag: 

Claim5. Let p be an odd p r i m e  power  and m be the largcst integer such ihai 
2m divides $ ( p ) .  



94 

1. If w,z,y,z  E 2; such that TAG,(w) = TAG,(z), TAG,(y) = TAG,(z) 

2. An element z E 2; i s  a square mod p ifl it has an even tag. 
3. IfTAG,(z) = 0 then so i s  TAGp(z2). 
4,  For any z E Zf:  and any i 2 rn, TAGp(zZ i )  = 0. 
5. Let z be Q square mod p and denote i ts  tag by  TAG,(z) = 2’r where r i s  

some odd integer and 1 5 i 5 rn. Then, one square root of z has l a g  2i-1r 
and the other has tag [2’-lr + 2m-1] 2.. . 

then TAG,(wy) = TAG, ( t z ) .  

The following corollaries describe the behavior of the tags under the funct,ions 
fp,s (and their inverses): 

Corollary6. If p is an odd prime-power, x , y  are elements in Zp* such that 
TAGp(2) = TAGp(y) and s is any siring, lhen TAGp( fp,r(t) ) = TAG,( fp,s(y) ). 

Corollary 7. If p is an odd prime-power and z is an element in Z; then the tags 
of the pre-images of z under both fp,o(*) and fp,l(.) (if there are any) depend 
only on the tag of z .  

Corollary8. If p i s  a prame power, p < 2k, then for any element x E Zp”, any 

string s and any i 2 k, TAG, (fp,otS(x)) = TAG, (fp,b(x)2’) = 0 

The following is the main technical lemma in the proof 

Lemma9. Let p be an odd prime-power and lei  y, z E Zp”, so that TAG,(y) = 
TAG,,(z). Then for any string s we have 

#{z E 2; : fp&) = Y} = #{. E 2; 1 fp,s(Z) = Z I  

where # A  denotes the number of elements in the set A. 

Proof. Let s = b o . .  .b,,-l be a string and consider the “pre-images-tree” w.r.t. 
s that is rooted at an element z (i.e., the children of t are its pre-images under 
fP,bo, their children are their pre-images under fp,b, etc.). An element in this 
tree is an internal node if it is a square mod p and its distance form the root is 
less than n. Otherwise, it is a leaf. 

Notice that this is indeed a tree in the sense that all the elements at distance 
i from the root are distinct. We will now show that if y and z have the same 
tag then their trees w.r.t. 8 are isomorphic. This means, in particular, that the 
number of elements at distance n from the root is the same in both trees, which 
implies Lemma 9. The notion of pre-images-tree becomes formal in the following 
definition: 

Definitionlo. Let p be an odd prime power, let z E 2; and let s = bo . . .b,-l  E 
(0,l)”. The pre-images-tree w.r.t.  s which is rooted at z is a directed graph 
TZ+ = (V, E )  where 

V = { ( i , x )  : 0 5 i < n, z E Zi,  and fp,bo...b,-,(t) = z }  

E = {(i, Y) (i + 1,x)  : Y = f p , b . ( Z ) I  



95 

To see that this is a directed rooted tree, notice that (0, z )  has in-degree 0, every 
other node has in-degree 1, and there is a path from (0, z )  to every other node 
in the graph. Now we can prove Lemma 9 by proving a stronger lemma 

Lemma11. For every string s and every two elements y, z E 2; such that 
TAGp(y) = TAGp(%), there as an isomorphism between Ty,8 and TZ+ which also 
preserves the tags. That is, there exists a function I : Ty,s -+ Tz,s which satisfies 
the following properties: 

1. I is  an isomorphism between the graphs Ty,s and TE,s (notice that this implies 

2. I f  I ( ( i ,  z)) = ( i ,  z') then TAGp(z)  = TAGp(z'). 
that I always maps nodes in level i in Tv,s t o  nodes in level a in TzBs). 

In particular, it follows that the number of nodes in level n in both trees is the 
same, which implies Lemma 9. 

Proof. The proof is by induction over n (the number of bits in 8 ) .  It consists of 
a straightforward implementation of Corollary 7 above. deiails omitied. 0 

A.2 

Definition12. Let N be an odd integer, and let z E 2:. Denote N's  prime 
factorization by N = p1 . . . pt  where p 1 ,  . . . , p l  are powers of distinct primes. The 
tag o f z  mod N is the vector ( 2 1 ,  . .  . , te)  where ti is the tag of z mod p i .  

Notice that for an element 2 E 2; and a string s we have [ ~ N , ~ ( z ) ] ~ ,  = 
fp,,s([z]pi) for all k. Therefore, from Corollary 8 we get 

Corollary13. If N < 2k, then f o r  any element x E Z;, any string s and any  
i 2 k we have TAGN ( f ~ p . , ( ~ ) )  = ( O , O , .  . - ,  0). 

and from Lemma 9 we get 

Claim14. Let N be an odd integer and let y , z  E Zl;, so that TAGN(~) = 
TAGN(z) .  Then f o r  any string s we have 

Tags of Elements Modulo Composites 

#{. E 2;; : f N , s ( t )  = y} = #{x E 2; : f N , s ( z )  = z }  

Proof. Follows since for all y E Zh 

#{z E zk : f N , s ( Z )  = Y) = n#{z E zi, : fp, ,s([2]p,)  = ( [dp. ) )  
a 

0 
From Corollary 13 and Claim 14 we get 

Lemma15. Let N be an odd k-bit integer, and let s be any string. Then, f o r  
every element y E 2;; with t a g  (0 , .  . . , 0 )  we have 

where $ ( N )  i s  the order Zh and TO is the number of elements in 2;; with tags 
(0,. . . , 0). 



96 

Proof. From Corollary 13 we know that fiv,or8(z2) has tag (0, * * ,  0) for all I E 
Zk. Therefore the pre-images of all the y's with tag (0, .. . , 0) cover all 2%. From 
Claim 14 we know that all these pre-images have the same size, which mean 
that this size is exactly 4(N)/To (we can apply Claim 14 since fN,o~s(z2) = 

0 
fN,OkSO(2)). 

A.3 Back to Lemma 3 

Recall the experiment of Lemma 3. Alice has an k-bit odd integer N .  She picks 
a string c E {0,1}* according to  some distribution D ,  computes s = Enc(a) ,  
picks at random an element z E Z k ,  and computes y = f ~ , o l r ~ ( z ~ ) .  

We denoted by S, X the random variables which take on the values of S, x 
respectively. The lemma asserts that the value of y does not give any information 
about s. Since Alice picks x randomly in Z;t regardless of s, then S and X are 
independent. Therefore, from Lemma 15 we get 

Corollary16. For any element y such thud T A G N ( ~ )  = (O,*..,O) and any 
string s 

x ,s  
Pr [S = s and f N , o r s ( ~ 2 )  = y] 

= Pr [S = s] .% [X E {x E zY, : fN,oks(t2) = y}] = P,' [S = s] - 
S TO 

Notice also that if T A G N ( ~ )  # (0, + .  . ,0)  then Prx,s [ f N , o k s ( x 2 )  = y] = 0. This 
implies that for every y for which Prs,x [ f N , o k s ( x 2 )  = y] > 0 we have 

X,S S 

1 

Pr [S = s I f N , o k s ( x 2 )  = y] = Pr [S = s] 

which is what we need. 


	Efficient Commitment Schemes with Bounded Sender and Unbounded Receiver
	Introduction
	Previous Work
	Contributions of This Paper
	Organization of the Paper

	Commitment Schemes
	A Factoring-Based Implementation
	The Goldwasser-Midi-Rivest Claw-Fkee Permutation Pairs
	Using the GMR Construction for Commitment
	Efficiency of the Scheme
	Implementing the Initialization Phase
	A Modification of the GMR-Based Scheme
	Proof of Security for the Modified Scheme

	Using General Claw-Free Permutation Families
	Claw-Free Families of Permutations
	Commitment-Schemes and Claw-Free Permutation Families
	Implementing the Initialization Phase

	Acknowledgments
	References
	A A Proof of Lemma3
	Tags of Elements Modulo Prime-Powers
	Tags of Elements Modulo Composites
	Back to Lemma 3




