Autoplex: Automated Discovery of Content for
Virtual Databases

Jacob Berlin and Amihai Motro

Information and Software Engineering Department
George Mason University, Fairfax, VA 22030
{jberlin,ami}@gmu.edu

Abstract. Most virtual database systems are suitable for environments
in which the set of member information sources is small and stable.
Consequently, present virtual database systems do not scale up very
well. The main reason is the complexity and cost of incorporating new
information sources into the virtual database. In this paper we describe
a system, called Autoplex, which uses machine learning techniques for
automating the discovery of new content for virtual database systems.
Autoplex assumes that several information sources have already been
incorporated (“mapped”) into the virtual database system by human
experts (as done in standard virtual database systems). Autoplex learns
the features of these examples. It then applies this knowledge to new
candidate sources, trying to infer views that “resemble” the examples.
In this paper we report initial results from the Autoplex project.

1 Introduction

The integration of information from multiple databases has been an enduring
subject of research for over twenty years (for example, [16,7,10,5,21,27,26,2,11]).
Indeed, while the solutions that have been advanced tended to reflect the re-
search approaches prevailing at their time, the overall goal has remained mostly
unchanged: to provide flexible and efficient access to information residing in a
collection of distributed, heterogeneous and overlapping databases (more gener-
ally, other kinds of information sources may be considered as well).

A common approach to this problem has been to integrate the independent
databases by means of a comprehensive global scheme that models the infor-
mation contained in the entire collection of databases. This global scheme is
fitted with a mapping that defines the elements of the global scheme in terms of
elements of the schemes of the member databases. Algorithms are designed to
interpret queries on the global scheme. Such global queries are translated (using
the information captured in the mapping) to queries on the member databases;
the individual answers are then combined to an answer to the global query.
The global scheme and the scheme mapping constitute a virtual database; the
main difference between a virtual database and a conventional database is that
whereas a conventional database contains data, a virtual database points to other
databases that contain the data (Figure 1). An important concern is that this

C. Batini et al. (Eds.): CoopIS 2001, LNCS 2172, pp. 108-122, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Autoplex: Automated Discovery of Content for Virtual Databases 109

User
'Y

Query <—¢ Schema .
Virtual

translation
and answer database

assembly «—' Mapping

S

‘ Wrapper ‘ ‘ Wrapper‘ ‘ Wrapper ‘
Source 1 Source 2 Source n

Fig. 1. Typical architecture for integrating heterogeneous information sources

query processing method be transparent; i.e., users need not be aware that the
database they are accessing is virtual.

Although there are a number of recent systems that follow this general
scheme, for example [4,13,22], none of these systems scale up to an environment
in which the number of potential sources is very large, and which is constantly
changing (such as the World Wide Web). The primary limitation is that the
process of incorporating new member schemes into the global scheme is complex
and costly. Consequently, such systems tend to be useful only when the com-
munity of member databases is small and stable. Indeed, it is commonly agreed
upon in this field and the related field of data warehousing that future research
should find ways to automate the integration and maintenance process [14,25].

Given the vast amount of information available and the cost of locating and
incorporating such information into a virtual database, we have been developing
a system, called Autoplex, for discovering member schemes and incorporating
them into the global scheme with only limited human effort. Based primarily on
Bayesian learning, the system acquires probabilistic knowledge from examples
that have already been integrated into the virtual database. Our approach thus
follows a supervised learning paradigm. From the acquired probabilistic knowl-
edge, the system can discover “content contributions” in new, previously unseen
information sources. Although not treated in detail in this paper, we believe this
approach can also be used to maintain the contribution definitions in a dynamic
environment where the underlying schemes may change over time.

The authors are unaware of any prior work that attempts to automate the
discovery and mapping of new data sources. Two recent works, however, share
with Autoplex the general goal of accelerating the mapping process. In [15] a neu-
ral network-based method is described, that classifies attributes of data sources.
This important integration step is also part of the Autoplex discovery process.

110 Jacob Berlin and Amihai Motro

The recent Clio system [18] introduces an interactive process that facilitates the
mapping of a given source (such as a legacy database) to a target schema. How-
ever, mappings are derived from prespecified source-target relationships (called
value correspondences). The translation of heterogeneous data is also the sub-
ject of [1,19]. These approaches, too, are based on prespecified correspondence
rules. It must be mentioned that file translation, schema mapping, and database
restructuring are ancient database problems, with seminal work, often-ignored,
done over 25 years ago (for example, [17,24,23]).

The remainder of this paper is organized as follows. Section 2 states the
problem formally, and provides an overview of the architecture. Section 3 dis-
cusses how probabilistic knowledge is acquired from the examples. Section 4
discusses how that knowledge is used to discover a contribution from a new
source. Section 5 describes the experimental environment and initial results. Fi-
nally, Section 6 concludes with a brief discussion of proposed future work. A
fuller discussion may be found in [6].

2 Basic Issues and Assumptions

In this section we describe the framework of this project, and we outline the
overall architecture of Autoplex. Our work is conducted within the framework
of the Multiplex virtual database system, but is of general applicability to most
such systems. We begin with a brief description of Multiplex.

2.1 Multiplex

The multidatabase system Multiplex [22] is an example of a virtual database sys-
tem. The basic architecture of Multiplex is fairly simple. The virtual database
consists of a global scheme (described in the relational model) and a mapping
table. Each entry in this table is called a contribution and consists of two expres-
sions. The first expression is a view (expressed in SQL) of the global scheme; the
second expression is a query to one of the member databases (expressed in the
language of that system). The first expression is called a global view; the second
expression is called a local view. The result obtained from the second expression
is assumed to be a materialization of the view described in the first expression.
The complexity of these expressions can vary greatly: they could range from a
complex calculation, to a statement that simply denotes the equivalence of two
attribute names.

2.2 Statement of the Problem

In its most general form, a contribution is a pair of arbitrary view expressions:
one on a member scheme, the other on the global scheme. For reasons of com-
plexity, Autoplex places limitations on these expressions. Specifically, it assumes
that the global view is a single global relation, and that the local view is a
selection-projection expression on a single relation. The challenge of Autoplex
can be stated in terms of the Multiplex system as follows. Given:

Autoplex: Automated Discovery of Content for Virtual Databases 111

1. A relation scheme R = (Xi,...,X,,). This is the virtual database. Each
column X; of R is labeled as either required or optional.

2. A set of contribution examples, each consisting of a relation scheme S =
(Y1,...,Yy), a relation instance s of scheme S, and a selection-projection
expression e on relation S that defines a contribution to R.

3. A new, previously unseen relation scheme T' = (Z1, ..., Z,,) and a relation
instance t of T. We shall often refer to T" as a candidate relation.

Determine: Whether T' contains an acceptable contribution to R, and if so,
find the expression e; that defines it. An acceptable contribution is one that
satisfies all required columns in R and exceeds a predetermined threshold.

2.3 Autoplex Architecture

A high level overview of the Autoplex architecture is shown in Figure 2. This
architecture includes two main components: a learner and a classifier.

The learner. The Bayesian learner is given the virtual relation scheme R
and a set of contribution examples. Each such example consists of a local relation
scheme S, an instance of this scheme s, and a selection-projection expression e
on scheme S. The extension of this expression in the instance s generates tuples
for the virtual relation. The Bayesian learner uses this information to acquire
probabilistic knowledge on features of the examples. This knowledge is stored
on secondary storage in efficient data structures for future use.

The classifier. A candidate relation scheme T and instance ¢ are provided
by a new local database as inputs to the Bayesian classifier. This classifier uses
the acquired probabilistic knowledge to infer a selection-projection view that
defines a contribution of 7" to R.

Contribution
examples

@ S 1:51:¢ 1)
Bayesian Virtual database
@ (Sy52:¢9) learner R

@ (Sppspsen) Probabilistic
knowledge

Candidate
relation Bayesian

classifier
(T.0)

€

t

Fig. 2. Autoplex architecture

112 Jacob Berlin and Amihai Motro

2.4 Classification Methodology

In Figure 2, classification is a single process. More precisely, classification com-
prises four different phases. Given a candidate relation 7" and a global relation R,
in the first phase the classifier considers each column of T" and each column of R
and determines the probability that the former is an “instance” of the latter.
In the second phase, the classifier finds an assignment of the local relation to
the global relation that maximizes total column probabilities. At this point, if
successful, the classifier has found a projection of the candidate relation that
offers the best “match.”

The rows of this projection now must be pruned to retain only those rows
that “resemble” rows in the examples. In the third phase, the classifier parti-
tions the instance ¢ into two sets of rows: those that should be included in the
contribution and those that should be excluded from it. Because the new con-
tribution should be usable even after the extension of the candidate relation is
updated, an intensional description of the included rows is desirable. In phase
four, a classification tree algorithm is used to derive a selection predicate that
conforms to the set of included rows.

The final output from this entire process is a selection-projection expression,
or False in the event an acceptable contribution could not be found. Our ap-
proach is biased to search within the space of projections and selections on the
candidate relation. Furthermore, our approach is greedy in that we search for
a projection followed by a selection. Clearly, other approaches could produce
better results. For example, a better projection may be found if some rows are
first removed from the candidate. Furthermore, a better mapping may be found
if we allow transformations of the values in the candidate (such as conversions
of measurement units). Our approach represents a reasonable tradeoff between
the advantage of more a powerful search (which will discover additional contri-
butions) and the need to keep the problem tractable. More general mappings
are currently under investigation (see Section 6).

3 Learning from Example Contributions

Learning from example relations is accomplished in two stages. First, we acquire
probabilistic knowledge on the “behavior” of columns (to be used in determining
the projective transformation of a candidate relation). Next, we acquire prob-
abilistic knowledge on the “behavior” of rows (to be used in determining the
optimal selective transformation of a candidate relation). In this section, we ad-
dress both of these procedures in order. We begin with a brief survey of the
Bayesian concepts that will be used throughout this work.

3.1 Bayesian Framework

Our discussion is mostly conventional in the application of Bayes Theorem to
machine learning. In machine learning terminology, the problem of associating

Autoplex: Automated Discovery of Content for Virtual Databases 113

a new instance with one of previously learned classes is called classification. Let
P(c) be the prior probability that classification ¢ holds before observing any
data, let P(D) represent the unconditional probability of observing data D, and
let P(D|c) represent the conditional probability of observing the data D given
that the classification ¢ holds. Bayes Theorem states:

P(c|D) = % . (1)

P(c|D) is referred to as the posterior probability of ¢, because it reflects
the probability of classification ¢ after the data D has been observed. In ma-
chine learning problems, we wish to find the best classification. Translated into
Bayesian terms, we wish to find the classification with the greatest posterior
probability given the data. Since the probability of the data P(D) is common
for all classifications, the most probable classification is the one that maxi-
mizes the numerator in Equation 1. Letting D be a sequence of attribute values

(d1,da,...,d,) and C a set of possible classifications (c1, co, ...,), we wish to
determine the classification ¢; € C' such that V¢; € C and ¢; # ¢;,
P(dl,dg, ey dn|Cl)P(CZ) 2 P(dl, dg, ey dn‘Cj)P(Cj) . (2)

The terms in Equation 2 do not produce probabilities since we have removed
the denominator; however, the terms can be easily converted to probabilities by
normalization. For our purposes, we shall make the naive assumption that data
values are conditionally independent given the classification. This assumption
is the basis for the well-known Naive Bayes classifier. Both theoretical and ex-
perimental results show that even when the independence assumption does not
hold, the Naive Bayes classifier performs comparable to or better than other
more sophisticated approaches in many problem domains [20,12,8]. The key to
this paradox is that good classifications can be made from this approach even
when the estimated probabilities are wrong. From the independence assumption,
we can rewrite Equation 2 as

H (di|ei) > P(c;) H (dilc;) - (3)

Equation 3 is useful in our problem domain for several reasons. First, since
we assumed conditional independence, the number of probability terms that we
need to estimate has been reduced to a manageable level. Second, the equation
is robust to noise since observed data only causes incremental changes to our
estimates. Finally, the equation is robust to missing features since we simply
ignore the conditional probability terms for the missing features. All of these
aspects of Equation 3 make a Bayesian approach towards automated discovery
of contributions attractive.

3.2 Learning Column Behavior

Our strategy is to learn the “behavior” of each column X of R and, upon en-
countering a new column Z, determine the posterior probability that the new

114 Jacob Berlin and Amihai Motro

column is in the class of X, given the data values of Z. For this, we use a collec-
tion of Naive Bayes (NB) classifiers: one classifier for each column X. Building a
collection of classifiers instead of just one gives us the ability to determine that
a candidate column should not be mapped to any of the columns of R or that it
may be mapped to more than one column of R.

To construct a classifier for column X we need to learn the prior probability
P(X) that an arbitrary column maps to X, and, for each column, the conditional
probability of that column among the columns that were mapped to X. Following
our assumption of conditional independence among the values of a column, the
latter is substituted by the conditional probability P(v|X) that an individual
column value v occurs in the set comprising the values in columns that were
mapped to X. Together, these will allow us to calculate the right hand side
of Equation 3 and subsequently the best classification for the column Z. The
learning algorithms are discussed next.

Learning Prior Probabilities P(X), the probability that an arbitrary col-
umn maps to X, is estimated by the proportion of columns in the entire set of
examples that have been mapped to X.

Learning Conditional Probabilities In estimating conditional probabilities
we distinguish between values that are words and values that are numbers. The
algorithm for learning conditional probabilities for words is shown in Table 1.
This algorithm is similar in spirit to the typical Naive Bayes approach for docu-
ment classification discussed in [20]. For a text column X, the positive examples
come from all the text columns of examples that are mapped to X. The negative
examples for the same X come from all the text columns of examples that are
not mapped to X.

Table 1. Algorithm for learning column conditional probabilities

V «— All distinct words in all the example relations S
For each text column X in R:
Initialize bag variables P and N to (.
For each text column Y in all example relations S:
If Y is mapped to X
P — P U{All words in Y}
else
N «— N U{All words in Y}
For each word value v in V:
Cp < Number of times v appears in P
C'n < Number of times v appears in N
P(]X) —

Cn+1
P(v[=~X) — mif

Autoplex: Automated Discovery of Content for Virtual Databases 115

P(v|X), the probability that a vocabulary word v occurs in a column mapped
to X, is estimated by the proportion of the occurrences of v among words from
columns that are mapped to X. This ratio is adjusted with the m-estimate to
prevent zero probability terms which would dominate all calculations. We assume
uniform priors for the words and weight them by the size of the vocabulary.

To estimate the probabilities of numeric values, we assume that these val-
ues conform to some distribution function; currently, a normal distribution is
assumed. The learning phase consists simply of calculating the mean and stan-
dard deviation for the positive and negative examples. For a numeric column X,
the positive examples come from all the numeric columns of examples that are
mapped to X. The negative examples for the same X come from all the numeric
columns of examples that are not mapped to X. Given a numeric value from a
candidate column, we can now calculate the conditional probabilities by using
the probability density function for the normal distribution.

3.3 Learning Row Behavior

Our learning process is similar to that for column behavior, except that now our
evidence is rows of data instead of columns of data. In the learning phase we shall
examine the rows of each example relation S (noting which rows were selected
and which were discarded). Upon encountering a new table (whose columns have
already been matched successfully to the columns of R) we shall use our acquired
knowledge to determine, for each row, whether it should be selected or not.

To determine whether a row of a future table should contribute to R, we
need to learn the prior probability P(R) that an arbitrary row is a contributor
to R, and, for each row (a sequence of values), the conditional probability of
that row within the set of selected rows. Again, following our assumption of
conditional independence among the components of a row, we learn instead the
conditional probabilities P(v|R) that an individual row component v occurs in
the set comprising the values taken from the same column position in all the
selected rows. Together, these will allow us to calculate the right hand side of
Equation 3 and subsequently the appropriate classification for each row.

Learning Prior Probabilities P(R), the probability that an arbitrary row
would contribute to R, is estimated by the proportion of rows in the entire set
of examples that were selected.

Learning Conditional Probabilities For textual columns, we use the algo-
rithm in Table 2 to learn the conditional probabilities of words. This algorithm
is similar to the one in Table 1, except that now we process rows of data. For
numeric columns, we again assume a normal distribution on the values and cal-
culate the mean and standard deviation for the examples. For both textual and
numerical values, positive examples are drawn from the set of rows that satisfy
the selection predicate of the contribution. Negative examples are drawn from
the set of rows that do not satisfy the selection predicate.

116 Jacob Berlin and Amihai Motro

Table 2. Algorithm for learning row conditional probabilities

For each text column X of R:
V « All distinct words from all example columns mapped to X
Initialize bag variables P and N to (.
For each example S and its selection predicate o:
For each row t from s:
For each column Y of S that was mapped to X:
If t satisfies o
P — PULt[Y]
else
N «— N Ut[Y]
For each word value v in V:
Cp < Number of times v appears in P.
Cn < Number of times v appears in V.
PolR) — S

Cn+1
P(v|=R) — 1§

4 Discovering New Contributions

Given a candidate relation, discovery is accomplished in two phases. First we
search for a projective transformation of the candidate relation to match the
global relation R. If successful, we then search for a selective transformation to
be applied subsequently. We shall discuss each of these procedures in order.

4.1 Projective Transformations

Discovering a projective transformation of a candidate relation is a two-step
process. For each column of the candidate relation and for each column of the
virtual relation we use a Naive Bayes (NB) classifier to estimate the probability
that the columns match. This information is represented in a bipartite weighted
graph, and a graph algorithm is applied to find the optimal overall matching
of the candidate relation to the virtual relation. This optimal mapping is our
projective transformation.

The process for estimating probabilities is shown in Table 3. Because we
assume conditional independence among the values (even when this assumption
is inaccurate), the outcome of this algorithm may not be strictly the probability
of a match; hence, we use the notation P.

The output of the NB mapping algorithm is a bipartite graph in which the
columns of T"and R are represented by nodes in two partitions, each column map-
ping is represented by an edge and the mapping probabilities are edge weights.
The simplest way to approach optimality is to look for a maximum weighted
matching in this bipartite graph [9]. After removing “weak” edges that fall be-
low a user specified threshold, we search the graph for a subset of the edges that

Autoplex: Automated Discovery of Content for Virtual Databases 117

Table 3. Estimating the probabilities for columns of 7" matching columns of R

For each column X in R:
For each column Z in a candidate relation 7'
Let v1,...,v, be the values of Z.
P(match) = P(X) [], P(vi|X)
P(-match) = P(=X) [, P(vi|-X)
Normalize P(match) and P(—match) to sum to 1.
Output [:’(match) as probability that Z maps to X.

connects nodes in one partition to the nodes in the other partition such that no
two edges share a node and the sum of the weights is maximal. The classifier
uses a polynomial-time algorithm [3] to find the maximum weighted matching.
This matching is then translated into a relational algebra expression that defines
the projective contribution of T" to R.

4.2 Selective Transformations

Discovering a selective transformation of a candidate relation is also a two-step
process. First, we partition the rows of the candidate into a set of contributing
rows and a set of non-contributing rows, and we label the rows accordingly.
Next, we apply a classification tree algorithm to the labeled rows, to learn a set
of rules that defines the partition; these rules are then converted to a selection
predicate. A more detailed discussion follows.

Labeling Rows of a Candidate Table Given a candidate relation, we use
the acquired probabilistic knowledge to partition its set of rows to those that
should be selected and those that should be discarded. We use the algorithm in
Table 4 to estimate the probability that a candidate row should be included as
a contribution to R. Rows that have a probability greater than a user-specified
threshold are labeled as members of the contributing set; the remaining rows are
labeled as members of the non-contributing set.

Table 4. Estimating the probabilities for rows of T' contributing to R

For each row t in a candidate relation 7'
P(R[t) = P(R)], P(vi|R)
P(=RJt) = P(~-R)[], P(i|~R)
Normalize P(R|t) and P(—R|t) to sum to 1.
Output P(R|t) as probability that row ¢ contributes to R.

118 Jacob Berlin and Amihai Motro

Inferring Selection Predicates We use a standard classification tree algo-
rithm (J48 from the WEKA machine learning package [28]) to find a selection
predicate that defines the contributing set of rows. Before applying the candi-
date rows to the classification tree learner, some preprocessing is necessary to
initialize the learning algorithm with the column names, column types, and the
set of values for each column.

The learned classification tree represents a disjunction of conjunctive rules on
the column values. These rules partition the data according to their labels. Since
the classification tree considers all of the columns of the candidate, it is likely
that the tree will use the unmapped columns of the candidate in the set of rules.
This is interesting because it allows us to define selection predicates on columns
that are neither in the virtual database nor in the example contributions.

For our problem, we are interested in the rules that define the contribut-
ing rows. Through simple string parsing, we build a selection predicate as a
disjunction of the conjunctive rules that identify contributing rows.

5 Experimentation

We built a prototype in the Java programming language to test the ideas in this
paper. This prototype is not yet integrated with a complete virtual database
system, such as Multiplex. Specifically, the experimental data was collected off-
line from the World Wide Web and stored locally in relational database tables.

5.1 Measures of Performance

To measure performance, the outputs of Autoplex are regarded as four types of
Boolean decisions:

1. Column Mapping: For each combination of a candidate column and a virtual
column, decide whether or not the columns match.

2. Table Mapping: For each combination of a candidate table and a virtual
table, decide whether or not the tables match.

3. Tuple Partitioning: For each tuple in a candidate table, decide whether to
assign it to the contributing set or to the non-contributing set.

4. Tuple Selection: After we infer a selection predicate from the partitioned
tuples, decide for each tuple whether or not it satisfies the selection predicate.

Obviously, the last two decisions are made only if we have made a positive
table mapping decision. For each type of decision, the output falls into four
disjoint categories:

A. Decision is True and the correct answer is True (true positives).

B. Decision is False and the correct answer is True (false negatives).
C. Decision is True and the correct answer is False (false positives).
D. Decision is False and the correct answer is False (true negatives).

Autoplex: Automated Discovery of Content for Virtual Databases 119

The ratio |A|/(]A| + |C|) is the proportion of true positives among the cases
thought to be positive; i.e. it measures the accuracy of Autoplex when it de-
cides True. The ratio |A|/(|A| + |B]) is the proportion of positives detected by
Autoplex among the complete set of positives; i.e. it measures the ability to
detect positives. Specifically to our application, the former ratio measures the
soundness of the content that has been discovered, and the latter ratio measures
the completeness of the discovery process. These two ratios are known from the
field of information retrieval as precision and recall, but we shall refer to them
here as the soundness and completeness of the discovery process. Thus, we can
measure the soundness and completeness of column mapping, table mapping,
tuple partitioning, and tuple selection.

5.2 Setting Up the Experiment

To experiment with the prototype, we defined a virtual database for computer
retail information with the following relations:

1. Desktops = (Retailer, Manufacturer, Model, Cost, Availability)
2. Monitors = (Retailer, Manufacturer, Model, Cost, Availability)
3. Printers = (Retailer, Manufacturer, Model, Cost, Availability)

Italicized attributes denote primary keys. The Retailer attribute is derived
from the information source (for example, we use the web address). For the
purposes of our experiment, the primary keys are required for a candidate to be
accepted as a contribution to the virtual database. All other fields are optional.

Data for this experiment was taken from the web sites of 15 different com-
puter retailers (e.g. Gateway, Egghead, etc). The data was collected off-line
from HTML web pages and imported into relational database tables accessi-
ble through the ODBC protocol. The data from each retailer was imported into
a single local table and then mapped to one or more virtual tables through
selective and projective transformations.

To experiment with this data, we used a procedure from data mining called
stratified threefold cross-validation [28], which we briefly describe. Each of the
15 web sources was manually mapped into our virtual database by using a map-
ping table as discussed in Section 2.1. We partitioned the 21 mappings in our
mapping table into three folds of approximately equal content. Using two folds
for learning and one fold for testing, we repeated the experiment for the three
possible combinations of folds. To measure the soundness and completeness of
the discoveries, the information in the mapping table was assumed to be the
correct mapping of these sources.

5.3 Results

Table 5 shows the soundness and completeness for the four types of decisions
made by Autoplex. A perfect sequence of decisions would result in Soundness =
Completeness = 1. It is interesting to note that soundness and completeness

120 Jacob Berlin and Amihai Motro

for column mapping are approximately equal. This behavior is caused by the
matching constraint of the weighted bipartite graph algorithm (no two edges
may share a node). Due to this constraint, an incorrect decision to map two
columns typically causes both a false positive and a false negative.

Table 5. Soundness and completeness for column mapping decisions

| Category | A | B | C | D | Soundness | Completeness |
Column Mapping | 74 |17 | 17 | 660 0.81 0.81
Table Mapping 18 (3| 0 | 24 1.00 0.86
Tuple Partitioning | 969 | 60 | 117 | 612 0.89 0.94
Tuple Selection 967 | 62 | 104 | 625 0.90 0.94

Soundness and completeness for table mapping are higher than column map-
ping due to our constraint that all required columns of the virtual table must be
mapped to make a positive table mapping decision. Given a candidate table and
a virtual table that should not be mapped, we must determine that only one of
the required virtual columns should not be mapped to any of the columns in the
candidate to prevent a false positive. Thus, false positives in column mapping do
not entail false positives in table mapping. Furthermore, optional columns that
are not mapped do not cause a false negative for table mapping.

Table 5 also shows the performance for tuple selection is slightly better than
the performance for tuple partitioning. This improvement is due to the pruning
strategy employed by the J48 classification tree algorithm that learns selection
predicates. Pruning prevents the overfitting of noise in partitioned sets of tu-
ples. This strategy works well in our experiment because we have errors in the
partitioned sets of tuples that are used for classification tree learning.

6 Conclusion

In this paper we described a novel approach to virtual databases, aimed at solving
a serious limitation of all such systems: the cost and complexity of incorporating
new data sources into the global system. This limitation hampers scalability,
in effect restricting the virtual database paradigm to applications in which the
community of sources is relatively small and stable.

The results of our initial experimentation are encouraging enough to support
our main thesis of automatic discovery of content for virtual databases. Among
the many research issues that are on our agenda, we discuss briefly four issues.

Support more general views. The ideal virtual database system can map
a local source to a global database by matching arbitrary views of the local
scheme with arbitrary views of the global scheme. In the version of Autoplex we
described, the local view is a selection-projection of a single relation, and the
global view is simply a relation. Our first priority is to support more general
views, and we mention here two examples: (1) Allow local and global views

Autoplex: Automated Discovery of Content for Virtual Databases 121

that involve joins; i.e., discover content in a join of two local relations, and
discover content for a join of two wvirtual relations. (2) Discover content that
becomes suitable for a virtual database after an appropriate transformation;
e.g., a local column would be mapped if it matches a virtual column after a
linear transformation (such as the conversion of Fahrenheit to Celsius).

Use intensional information. The features considered in this paper were
purely extensional. Yet, intensional information, such as integrity constraints on
the virtual database, could be used to improve the discovery process. Roughly
speaking, with extensional features, discoveries are based on “similarity” to ex-
ample data. With intensional features, discoveries would also be based on the
satisfaction of constraints. We are confident that the future incorporation of
intensional features will improve the performance of Autoplex.

Assurance Contributions in Autoplex are adopted with different levels of
assurance in their suitability. These levels of assurance should be remembered
so that answers to database queries could be annotated accordingly. The initial
work in this research focused on the statistical performance of the discovery
process using standard cross-validation techniques. This work will be extended
to combine the statistical performance of the discovery process with confidence
measures of individual discoveries to produce a meaningful assurance measure.

Application to data warehouses. The premise of virtual databases is
closely related to that of data warehouses, in that both create global repositories
that integrate data from multiple, heterogeneous data sources. The techniques
described in this paper have the potential for developing a type of data ware-
house, which (after a preliminary phase of design and learning) is populated and
maintained automatically by “crawlers” that periodically visit the data sources.

References

1. S. Abiteboul, S. Cluet, and T. Milo. Correspondence and translation for heteroge-
neous data. Proc ICDT, pages 351-363, 1997. 110

2. R. Ahmed, P. De Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A. Litwin, A. Rafii,
and M. C. Shan The Pegasus heterogeneous multidatabase system. IEFE Com-
puter, 24(12):19-27, 1991. 108

3. Algorithmic Solutions. The LEDA Users Manual (Version 4.2.1), 2001. 117

4. Y. Arens. Query Reformulation for dynamic information integration. Journal of
Intelligent Information Systems, 6:99-130, 1996. 109

5. C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of method-
ologies for database schema integration. Computing Surveys, 18(4):323-364, Dec
1986. 108

6. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual
databases. Technical Report ISE-TR-00-04, George Mason University, August
2000. 110

7. U. Dayal and H. Hwang. View definition and generalization for database integration
in a mutlidatabase system. IEEE ToSE, SE-10(6):628-644, November 1984. 108

8. P. Domingos and M. Pazzani. Conditions for the optimality of the simple Bayesian
classifier. Proc ICML, pages 105-112, 1996. 113

122

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Jacob Berlin and Amihai Motro

7. Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys, 18(1):23-38, March 1986. 116

D. Heimbigner and D. McLeod. A federated architecture for information manage-
ment. ACM TolS, 3(3):253-278, July 1985. 108

Y. Kambayashi, M. Rusinkiewicz, and A. Sheth, editors. Proc RIDE-IMS, 1991.
108

P. Langley, W. Iba, and K. Thompson. An Analysis of Bayesian Classifiers. Proc
of the Tenth National Conference on Al pages 223-228, 1992. 113

A. Levy. Data model and query evaluation in global information systems. Journal
of Intelligent Information Systems, 5(2):121-143, September 1995. 109

A. Levy, C. Knoblock, S. Minton, and W. Cohen. Information integration. /IEFE
Intelligent Systems, 13(5):12-24, 1998. 109

W-S. Li and C. Clifton. Semantic integration in heterogeneous databases using
neural networks. In Proc VLDB, pages 1-12, 1994. 109

W. Litwin. MALPHA: A relational multidatabase manipulation language. In Proc
ICDE, pages 86-93, 1984, 108

A. G. Merten and J. P. Fry. A data description language approach to file transla-
tion. In Proc of ACM-SIGFIDET, 1974. 110

R. Miller, L. Haas, and M. Herndndez. Schema mapping as query discovery. Proc
VLDB, pages 77-88, 2000. 110

T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. Proc VLDB, pages 122-133, 1998. 110

T. Mitchell. Machine Learning. McGraw-Hill, 1997. 113, 114

A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transac-
tions on Software Engineering, SE-13(7):785-798, July 1987. 108

A. Motro. Multiplex: a formal model for multidatabases and its implementation.
Proc NGITS, pages 138-158, 1999. 109, 110

S. B. Navathe and J. P. Fry. Restructuring for large databases: three levels of
abstraction. ACM ToDS, 1(2), June 1976. 110

J. A. Ramirez, N. A. Rin, and N. S. Prywes. Automatic generation of data conver-
sion programs using a data description language. In Proc ACM-SIGFIDET, 1974.
110

E. A. Rundensteiner, A. Koeller, and X. Zhang. Maintaining data warehouses over
changing information sources. Communications of the ACM, 43(6):57-62, 2000.
109

P. Scheuermann, C. Yu, A. Elmagarmid, H. Garcia-Molina, F. Manola, D. McLeod,
A. Rosenthal, and M. Templeton. Report on the workshop on heterogeneous
database systems. SIGMOD Record, 19(4):23-31, December 1990. 108

A. P. Sheth and J. A. Larson. Federated database systems for managing
distributed, heterogeneous and autonomous databases. Computing Surveys,
22(3):183-236, Sep 1990. 108

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 2000. 118, 119

	Autoplex: Automated Discovery of Content for Virtual Databases
	Introduction
	Basic Issues and Assumptions
	Multiplex
	Statement of the Problem
	Autoplex Architecture
	Classification Methodology

	Learning from Example Contributions
	Bayesian Framework
	Learning Column Behavior
	Learning Prior Probabilities
	Learning Conditional Probabilities

	Learning Row Behavior
	Learning Prior Probabilities
	Learning Conditional Probabilities

	Discovering New Contributions
	Projective Transformations
	Selective Transformations
	Labeling Rows of a Candidate Table
	Inferring Selection Predicates

	Experimentation
	Measures of Performance
	Setting Up the Experiment
	Results

	Conclusion

