
Integrating View Schemata Using an Extended
Object Definition Language?

Mark Roantree1 Jessie B. Kennedy2 Peter J. Barclay2

1 School of Computer Applications, Dublin City University, Dublin, Ireland.
{mark.roantree@compapp.dcu.ie}

2 School of Computing, Napier University, Edinburgh, Scotland.

Abstract. View mechanisms play an important role in restructuring
data for users, while maintaining the integrity and autonomy for the
underlying database schema. Although far more complex than their re-
lational counterparts, numerous object-oriented view mechanisms have
been specified and implemented over the last decade. These view mecha-
nisms have served different functions: view schemata for object-oriented
databases; object views of relational (and other) database systems, and
the formation of federated schemata for distributed information systems.
In the latter category there is still a significant amount of research re-
quired to construct a view language powerful enough to support federated
views. Such a language (or set of languages) should support not only
object views, but also a wrapper specification language for external in-
formation sources, and a set of restructuring and integration operators.
Furthermore, with the advent of standard models and technologies such
as CORBA for distribution, ODMG for storage, and XML for web pub-
lishing, these languages should be based upon, or cooperate with, these
standards. In this research, we present a view mechanism which retains
the semantic information incorporated in ODMG schemata, provide a set
of operators which facilitate the restructuring and integration necessary
to merge schemata, and provide wrappers to heterogenous systems such
as legacy systems, ODBC databases, and XML data sources.

1 Introduction

The concept of a federation of databases [17] is one where heterogeneous data-
bases (or information systems) can communicate with each other through an
interface provided by a common data model. In our case, the common data
model is the ODMG model, the standard model for object-oriented databases
since 1993 [6]. The most common architecture for these systems is as follows: data
resides in many (generally heterogeneous) information systems or databases; the
schema of each Information System (IS) is generally translated to an O-O for-
mat, and this new schema is called the component schema; view schemata are
defined (subsets of the component schema) that are shared with other systems;
these view schemata are exported to a global or federated server where they are

? Supported by Forbairt Strategic Research Programme ST/98/014

integrated to form many global or federated schemata. Please refer to [4] for a
fuller description of object-based federated database systems.

This paper is structured as follows: in the remainder of this section, we pro-
vide a motivation and discuss related work; in §2, ODMG view and wrapper
languages are presented; in §3, two schemata are integrated using the view lan-
guage; in §4, a description of the implementation takes place; and finally in §5,
some conclusions are offered.

1.1 Background and Motivation

The OASIS project [11] dealt with the federation of healthcare systems using
an ODMG model as canonical model. While the ODMG model provides the
semantic power suggested in [16] for federated data models, and offered a stan-
dard which suited forward interoperability, it lacked fundamental features re-
quired for integrating information systems. The model must (at least) provide
a view system, a facility for wrappers to external information systesms, and in-
tegration operators which facilitate the construction of federated schemata in
(structurally) different ways. Furthermore, all of these features should be pro-
vided in the data definition language of the database: in this case ODMG’s
Object Definition Language. In the case of the view specifications, the view lan-
guage must be capable of retaining as much semantic information as possible,
and thus, a view which results in a single virtual class is not sufficient. Instead,
the view should resemble a subschema that retains information regarding inheri-
tance and relationships between classes. Furthermore, this view mechanism must
be powerful enough to support the restructuring of the subschema specification
for any schema integration step. The contribution of this research is to provide
extensions to the ODMG metamodel to support virtual subschemata and their
components; extend the Object Definition Language (ODL) to support wrap-
per and semantically-rich view specifications; and provide an architecture and
services to support the transfer, integration and display of view schemata.

1.2 Related Work

Our research requires the development of an object-oriented view mechanism
which provides operators capable of restructuring the object-oriented schema
hierarchy. A number of view mechanisms have emerged for object-oriented data-
bases in the past. Older views mechanisms concentrated on the construction of
a single virtual class, a representation which loses vital (for the schema inte-
gration process) semantic information. Although later view mechanisms such as
[15][7][18] provide a means of defining virtual schemata, they use proprietary
object models (which hinder interoperability) and do not include valuable re-
structuring operators such as those described in [10]. Recent work which offers a
view mechanism can be found in [1] where they also adopt the usage of modern
standards (XML) to offer an object-based view mechanism.

2 View Language Syntax

In this section, the syntax of the ODLv language is presented by illustrating the
important production rules and providing a brief overview of operations. Space
restrictions prevent a detailed discussion of the language, although this can be
found in [14]. The ODMG provides the Object Definition Language (ODL) for
defining base schema: we have defined the ODLv specification language for views,
and the ODLw specification language for wrappers.

The main subschema production (not shown here) contains a number of
SchemaSegment productions which in turn contains productions to import base
and virtual classes, restructure imported classes, and export those classes which
comprise the view schema. In the following BNF expressions, assume identifier
to be a single identifier; qualifier dcl to be an identifier with a qualifier (eg.
class.property); and double qualifier dcl to be an identifier with two quali-
fiers (eg. viewname.class.property).
In definition 1, some idea is provided of the types of operations permitted at

the property level: renaming of properties; hiding of properties, and the deriva-
tion of new attributes. Note that the first two operations are for attributes and
relationships, and the third property is for attributes only.

Definition 1: property dcl:
“property”

(property rename dcl)?

(property hide dcl)?

(property derive dcl)?

Each class declarator contains three productions: the class operation pro-
duction, the class rename production, and the class filter production.

Definition 2: class dcl:
“class”
(class operation dcl)?

(class rename dcl)?

(class filter dcl)?

The rename expression can be used to rename classes. The class filter dcl
is used to include an OQL query for the chosen class, and this topic of virtual
class extents is discussed fully in §3.2. Each operator inside the operation ex-
pression falls into one of two categories: restructuring and integration operators.

2.1 Restructuring Operators

The view mechanism contains five restructuring operators: aggregate, expand,
subclass, superclass, and flatten. Of the five operators, the first two opera-
tors, aggregate and expand, deal with association relationships, and the remain-
ing three operators, subclass, superclass and flatten, deal with hierarchi-
cal relationships. For space reasons we will discuss three operators: aggregate,

expand and subclass. Of the remaining two, the superclass operator is used
to create a new superclass from an existing class, and the flatten operator is
used to collapse or fold a superclass into one of its subclasses.

Definition 3: class aggregate dcl:
identifier := “aggregate”
(identifier (,identifier)*)

“from” qualifier dcl
(“as” identifier)?
(“to” identifier)?

The aggregate operator (in definition 3) forms a new class from an exist-
ing set of attributes inside a single class. These properties are replaced with
a relationship inside the original class. The operator ¤ denotes an aggregate
operation, and the expression B(b0) ¤ A(a0,a1,..ai) states that a new class
A is formed from an existing class B using properties a0 to ai, with a0 and b0
representing the newly formed relationship properties.

Definition 4: class expand dcl:
“expand” double qualifier dcl

The expand operator performs the reverse operation to the aggregate oper-
ator. This operation is achieved by expanding the named relationship property
inside one class into the full set of properties. The operator ¢ denotes an expand
operation, and the expression B(b0) ¢ A(a0,a1,..an) states that the class A
will disappear, and that properties a1 to an are placed inside class B. As a side-
effect of this operation, the relationship properties b0 and a0 will be hidden.

Definition 5: class subclass dcl:
identifier := “subclass” (identifier (, identifier)*)
“from” qualifier dcl

The subclass operator creates a new subclass from an existing class by
removing n properties from the existing class and placing them inside the newly
defined subclass. A new ISA relationship is formed between the new subclass
and the original class. The operator indicates a subclass operation, and the
expression B A(a1,..,ai) states that a new class A is formed from properties
a1 to ai, and the new class A is a subclass of B. As a side effect the properties
a1 to ai are hidden from the class B.

2.2 Integration Operators

The view mechanism contains five integration operators: join, ojoin, superjoin,
osuperjoin, and nulljoin. For space reasons, we will cover two of them in de-
tail, together with rules for managing conflicts. A full description can be found
in [14].

Definition 6: class join dcl:
“join” qualifier dcl
“from” qualifier dcl, qualifier dcl
“on” identifier
(link dcl)*

(with dcl)*

The operator ⊗ indicates a join operation, and the expression C←B(b0) ⊗
A(a0) states that a new class C is formed from classes A and B, using the joining
predicate a0=b0. The join operator merges two classes by placing all properties
from the original classes inside a single virtual class. If the two classes have more
than one attribute in common, then the view mechanism assumes that these will
have equal values (i.e. they are compared in a pairwise fashion). If not, it will
be either necessary (in the view specification) to rename one attribute, elect one
value in preference to the other, or redefine one attribute so that both values are
equal. Conflict resolution is discussed shortly.

Definition 7: class superjoin dcl:
“superjoin” qualifier dcl
“from” qualifier dcl, qualifier dcl
“on” identifier
(link dcl)*

(with dcl)*

The superjoin operator is used to connect two classes through the common
overlap of a subset of their attributes. The superjoin is a composite operator:
it is a combination of the join and superclass primitive operators. The re-
sult is three classes: the new superclass containing common attributes, one new
subclass containing the remaining attributes of the first source class, and a sec-
ond new subclass containing the remaining attributes of the second source class.
The operator is used to indicate a superjoin operation, and the expression
C←B(b1,..,bi) A(a1,..,ai) states that a new class C is formed from classes
A and B using i properties (b1 to bi) from B and (a1 to ai) from A. As a side-effect,
both existing classes A and B, will lose these properties, although both will in-
herit them from the new superclass C. An outerjoin operation (osuperjoin) is
also available.

Definition 8: link dcl and with dcl:
“link” identifier := identifier
“with” (with rename rule | with subclass rule | with prefer rule |
with redefine rule) ;

In definition 8 the link and with declarators are shown. The link declarator
is used to bind two attributes with different names so that they can be used as a
joining predicate. The with declarator is used where two attributes may be used
in the joining predicate, but for reasons of semantics or structural differences,
have different local values.

— The rename rule can be used to rename one of the attributes, and thus,
remove it form the joining expression.

— The subclass rule is used only with the superjoin operation, and is used
again, to eliminate those attributes from the joining expression. This time,
it is achieved by placing both attributes in opposite subclasses (after a
superjoin).

— The prefer rule is used only for secondary joining attributes. For example,
if PatientID is the joining property, but both classes also contain an address
property in common, this would form part of the join (or superjoin) oper-
ation. By using the prefer rule to favour one attribute over the other, the
join operation will unite both attributes, and where a conflict of addresses
takes place, one address value is preferred over the other.

— The redefine rule is used to redefine a property where both schemata are
known to employ different numerical formats. For example, if one database
uses Fahrenheit and the other Celsius, a numerical expression can be applied
to values of one schema before the join operation.

2.3 The ODLw Language

For completeness, a brief overview of the wrapper language is provided now.

Definition 9: The ODLw wrapper statement

“wrapper” identifier (RW)?

{ (class dcl)+ }

A single wrapper statement is used to map one ODMG schema to a non-
ODMG IS. Each statement map comprise multiple class declarations which
represent the mapping of an ODMG class to some entity in the IS. A wrapper
is marked as read-write (RW) only if it supports some form of locking, thus
allowing update transactions.

Definition 10: class dcl:

“class”{
name dcl

(attribute dcl)?

(relationship dcl)?}

A class dcl production comprises a name declaration and any number of
attribute and relationship declarations. The local entity may map to more than
one ODMG class where inheritance is not used in the local IS. The remaining
productions provide mapping names for entities and their properties and are
described in depth in [14].

3 View Language Usage

In this section a sample integration process demonstrates the usage of the view
language. Assume that two local ISs have undergone the local schema transfor-
mation stage, and now exist as ODMG schemata. Our implementation assumes
that data always resides in the local system, and that the ODMG schemata act
as wrappers, defined using the ODLw language. When defining views, it is nec-
essary to understand the issue of generating extents for virtual classes, and this
is based on pivotal classes and the fact that an object preserving semantics is
employed.
Pivotal Classes. A view comprises one or more schema segments, where

a segment is a subset of the base (or some underlying virtual) schema. When
a view segment contains multiple classes, one class must be nominated as the
pivotal class, which subsequently determines the extent for all classes in the view
segment in which it is contained. A pivotal class may use a filter to reduce the
extent of objects for each virtual class in the view segment. If the subschema
contains multiple schema segments, each segment must have its own pivotal class
and extent. If no extent is specified, then the extent of the base pivotal class(es)
is used.
Object Preserving Semantics. No new identifiers are ever constructed as

a result of a new virtual object. Where a virtual class is derived from a single base
class, the base class identifier is used, and the onus is on the view mechanism to
provide access to the virtual class (and not the base class which has the same
oid). Every attribute and relationship property in the view schema is connected
to a base class equivalent, thus facilitating the updating of view properties. There
is one notable exception. Since an attribute may be a collection of literals, it is
unclear how individual elements in such a collection can be updated since they
contain no identifiers. This weakness in the ODMG model was highlighted in
[19], and must be rectified in order to facilitate updates.

3.1 Schema Integration with ODLv

This research is based on the integration of healthcare systems and examples
are used to define views on a Patient Administration Systems (PAS) and a HIV
System. Note that for global (or federated) views, there cannot be base classes,
as the architecture (described in §4) assumes that the Federated Kernel has
no database schema, and is used only for importing schemata from component
systems, and the definition of federated schemata. In example 1, a local view is
defined to retrieve the set of Patients having bloodtype A, and the Consultants
to which they have links.

Example 1. Defining a simple class filter:
database PAS

subschema PasLocal5 {
SchemaSegment{

ImportBase Patient, Consultant;

Restructure {
use Patient

class {
rename Patient as aPatient

filter aPatient where BloodType =‘A’ }
};

Export PasLocal5.aPatient, PasLocal5.Consultant; };
};

The target database is named; this view (named PasLocal5) contains only
one schema segment, which itself contains two classes of which the Patient class
is the pivotal class.
In example 2, an example of an aggregate operation is shown. Some view

expressions (database name and schema segment) have been omitted for space
reasons.

Example 2. Defining an aggregate class:
subschema AddressData {

ImportBase Person, Patient;

Restructure {
use Patient

class {
Residence := aggregate (Street,City,PostCode)

from Patient as resides to PatLink }
};

Export AddressData.Person, AddressData.Patient, AddressData.Residence; };

In example 3 a join operation is used to merge two views: one from the PAS
database and the second from the HIV database. The joining class is the Patient
class and in this case it is assumed that PatientID (PAS) and MRN are identical
(HIV); the Quantity field (used to indicate medication level) must be identical
to join objects from both view extents, but Quantity is recorded in ounces in the
PAS databases, and in grams in the HIV database. Finally, only Patients with
bloodtype O are required in this view.
In figure 1 both the local (imported) schemata, and the federated schema are

illustrated, and in example 3 the schema definition is presented.

Example 3. Defining the federated schema in figure 1:
subschema Fed {

ImportVirtual Pas.Patient, Pas.Person, Pas.Consultant, Pas.Drug, Hiv.Patient,

Hiv.Person, Hiv.Episodes;

Restructure {
use Pas.Patient, Hiv.Patient

class {
join Patient from Pas.Patient, Hiv.Patient on PatientId

link PatientId := MRN;

with Pas.Patient.Quantity = Quantity / 0.03527;

Person

Patient ConsultantDrug

Person

Patient Episodes

rsi
name
address

rsi
name
address

bloodtype
ward

PatientID
Quantity

DrugRef
Name
Desc

StaffID
speciality
shift

MRN
Quantity
Date_in

EpisodeRef
Date
Details

A) PAS Schema B) HIV Schema

Person

Patient Consultant
Drug

rsi
name
address

PatientID
bloodtype
ward
Quantity
Date_in

DrugRef
Name
Desc

StaffID
speciality
shift

Episodes
EpisodeRef
Date
Details

C) Integrated Schema

Fig. 1. Integration of PAS and HIV Schemata.

filter Patient where bloodtype = ‘O’; }
};
Export Fed.Person, Fed.Patient, Fed.Consultant, Fed.Drug, Fed.Episodes; };

An exhaustive collection of sample views containing all of the operators,
defined at both local and global levels are provided in [14]. In the following
section, a discussion on the generation of virtual class extents is presented.

3.2 Generating Virtual Class Extents

To generate the extents for virtual classes (using an object-preserving semantics),
it is necessary to take the extent of the base class, and apply some predicate to
generate the virtual extent. Where a class is a specialised class, an extent is
generated for the specialised class, and all of its superclasses. Note that for the
Patient instance in figure 1, its Person abstract instance will have the same
‘unique’ identifier: it is the same object, but in different roles.
Before discussing how virtual class extents are generated, it is necessary to

understand how a similar method would generate base class extents. It is neces-
sary at this point to introduce the concept of shallow and deep extents: a shallow
extent (Es) is the set of all objects constructed specifically for that class; and a
deep extent (Ed) is the set of all objects and subclass objects constructed for a
given class. The full (deep) extent of a class C with i subclasses S is given below.

General Expression for Base Class Extent:

Ed(C) = Es(C) ∪ Ed(S1) ∪ Ed(S2) ∪ ... ∪ Ed(Si)

This generalised expression states that the deep extent Ed for the base class
C can be expressed as the shallow extent Es for C plus the union of the deep
extents (ΣEd) of all of subclasses S of C. Furthermore, each deep extent Ed can
be reduced to a set of shallow extents Es through recursive procedures. Thus, in
our perception, a class may have multiple extents, and each shallow extent can
be generated by applying simple “select *” queries against each individual class.
In general, the generation of extents for virtual classes is similar to that of

base class extents, except that a filter function f() must be applied to the class
which affects the class extent1. Every class in the segment is directly or indirectly
connected to the pivotal class and has their extent affected by the filter.

General Expression for Virtual Class Extent:

Ed(f(VC)) = Es(f(VC)) ∪ Ed(f(VS1))
∪ Ed(f(VS2)) ∪ ... ∪ Ed(f(VSi))

However, unlike base class extents, the extent generating queries are applied
to the classes to which these virtual classes are mapped. These may be base or
virtual classes, and the mappings may be one-to-one or one-to-many, depending
on the operation used to define the current virtual class. Thus, the shallow extent
for virtual class VC is the union of the extents of the classes to which it is mapped,
with each extent subsequently passed through the filter function f().
The join operation in example 3 results in a federated view comprising five

classes, where two classes are join classes. The view mechanism executes a join
operation on the Patient class (explicit in the view definition) and a subsequent
(implicit) join operation on the superclass Person since both arguments (Patient
classes) in the join operation have the same superclass. Where join classes have
superclasses with the same name, they are eliminated from the view schema
unless both are identical, or one is preferred over the other [14]. The deep extents
for all five view classes are generated as follows:

Ed(f(Fed.Drug)) = Es(f(Fed.Drug))
Ed(f(Fed.Episodes)) = Es(f(Fed.Episodes))

Ed(f(Fed.Consultant)) = Es(f(Fed.Consultant))
Ed(f(Fed.Patient)) = Es(f(Fed.Patient))

Ed(f(Fed.Person)) = Es(f(Fed.Person)) ∪ Ed(f(Fed.Patient)) ∪ Ed(
f(Fed.Consultant))

The shallow extents for view classes are taken as the extents for those classes
to which they are mapped. Thus for the Person and Patient view classes this is
a binary mapping, and both will have multiple extents. Thus, the shallow extent
for the Patient class will be redefined as:

Es(f(Fed.Patient)) = Es(f(Pas.Patient) ∪ f(Hiv.Patient))
1 In base classes a filter function f() is also applied, but this will always be ‘select *’.

Now we apply the concept of any class having multiple extents to virtual
classes, and use it to simplify the generation of extents. Once the extents have
been generated, the view representation can be used to hide or restructure prop-
erties to adhere to the view definition.

4 Architecture and Implementation

In this section we provide implementations details of the view architecture and
services. The federated architecture used the ODMG model as a canonical model
with the result that the component schema, its local views, the federated schema,
and its global views, are all defined using the extended ODMG model and spec-
ification languages. The schema repository was extended to accommodate view
metadata [12], and processors for both view and wrapper specifications were
implemented using ANTLR [2], to define the productions, C++ to code the se-
mantic actions for each production, and Versant [20] as the ODMG database
implementation.

user-defined
object instances

ODMG-defined
metadata types

(describe database schema)

Extension metadata types
(describe view schemata

& object wrappers

Database Schema Repository Schema

Local IS

Database ODL
Process

Wrapper
Service

Model Transformation
Process

ODL
file

wrapper
definition

View
Service

view
definition

Fig. 2. Service Architecture for local Information Systems.

The process for integrating a new system requires a number of steps.

— An ODMG database is constructed with a schema representing the data to
be shared with the federation. This hand-crafted step uses external research
(such as [3][8]) to generate the component ODMG schema.

— A wrapper definition is specified using the ODLw language which maps en-
tities and properties from the ODMG schema to the schema of the partici-
pating IS. The wrapper specification is passed through the Wrapper Service

(see figure 2) which writes meta-objects to the (extended) schema repository
of the ODMG database. The Object Manager can now extract data from the
local IS when ODMG queries are generated.

— A different Object Manager is required for each data model. In our imple-
mentation, XML and ODBC object managers were constructed to build a
federation of relational databases and XML data sources.

— Views are defined using the ODLv language, and passed through the View
Service (see figure 2) which generates meta-objects as described in [14].

— An extraction process transfers views from participating systems (through
their ODMG schema) to a federated kernel. This extraction process can
employ one of four protocols: ODMG vendor-specific, ODMG generic, XML
and CORBA protocols [13].

— At the federated kernel the ODLv language is again used to define views,
although in this case, these specifications will use views imported from sep-
arate ISs.

— A View Display Service has been implemented to display views from local
or global schemata.

Note that none of the three final steps are illustrated in figure 2. Outside the
local operations shown in the illustration, is a Federated Kernel, which begins as
an ‘empty’ ODMG database, used to import all of the locally defined views.

5 Conclusions and Future Research

Our research is focused on the creation of federations of healthcare systems.
Traditionally, these systems have existed as large legacy systems often build
using unlikely combinations of technologies (one such system was a COBOL
application running on an old Unix platform). Recently, ODBC and XML inter-
faces have been built as wrappers to many of these systems, illustrating the fact
that users now demand easy-to-use access methods, built using standard tech-
nologies. Our federated architecture uses a combination of different standards
(ODMG and CORBA) to provide the federated middleware to facilitate the inte-
gration of these, still heterogenous, information sources. These systems required
complex view mechanisms in order to facilitate the needs of global (or feder-
ated) schema construction. Our motivation to build our own view mechanism
(view languages and services) was based on the fact that older systems em-
ployed proprietary models and software tools in federated schema construction.
As a result, we specified a view layer for ODMG databases which allows both
the creation of ODMG wrappers to multiple Information System types, and the
construction of both local and global (semantically-rich) views. To demonstrate
the view mechanism’s usability, we implemented a prototype which contains all
of the functionality required to construct federated schemata. The only limita-
tion is that the Object Manager which resides between the ODMG Component
Schema and the local IS can interact with ODBC databases and XML data stores
only. Further Object Manager implementations are required for alternative ISs.

Current research is twofold: the incorporation of behaviour in ODMG views,
and ‘safe’ update views. The former uses a combination of ODMG database
technology, the ODLv view language, and distributed object technology to make
class methods available at the Federated Kernel. The latter looks at the wrapper
definitions, and then at combinations of view definitions to determine which
federated views can allow updates safely.

References

1. Abiteboul S. On Views and XML. SIGMOD Record 28:4, pp. 30-38, ACM Press,
1999.

2. ANTLR Reference Manual. http://www.antlr.org/doc/ 1999.
3. Batini C., Lenzerini M. and Navathe S. A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys, 18:4, December 1986.

4. Bukhres O. and Elmagarmid A. (eds.), Object-Oriented Multidatabase Systems,
Prentice Hall, 1996.

5. Cattel R. et. al. (eds.) (2000). The Object Data Standard: ODMG 3.0, Morgan
Kaufmann.

6. Cattell R. and Barry D. (eds), The Object Database Standard: ODMG 2.0. Morgan
Kaufmann, 1997.

7. Dos Santos C., Abiteboul S. amd Delobel C. Virtual schemas and bases. Advances
in Database Technology (EDBT94), pp. 81-94, Springer, 1994.

8. Fahrner C. and Vossen G. Transforming Relational Database schemata into Object-
Oriented schemata According to ODMG-93. Proceedings of 4th International Con-
ference on Dedictive and Object-Oriented Databases (DOOD 95), pp 429-446,
LNCS 1013, 1995.

9. Jordan D. C++ Object Databases: Programming with the ODMG Standard. Addi-
son Wesley, 1998.

10. Motro A. Superviews: Visual Integration of Multiple Databases. IEEE Transac-
tions on Software Engineering, 13:7, 1987.

11. Roantree M., Murphy J. and Hasselbring W. The OASIS Multidatabase Prototype.
ACM Sigmod Record, 28:1, March 1999.

12. Roantree M., Kennedy J., and Barclay P. Using a Metadata Software Layer in
Information Systems Integration. Proceedings of 13th Conference on Advanced In-
formation Systems Engineering (CAiSE 2001), pp. 299-314, LNCS 2068, June 2001.

13. Roantree M., Kennedy J., and Barclay P. Interoperable Services for Federations
of Database Systems. To appear in 5th East-European Conference on Advances in
Databases and Information Systems (ADBIS 2001), Vilnius, September 2001.

14. Roantree M. Constructing View Schemata Using an Extended Object Definition
Language. PhD Thesis. Napier University, November 2000.

15. Rundensteiner E. Multiview: A Methodology for Supporting Multiple Views in
Object-Oriented Databases. Proceedings on the 18th International Conference on
Very Large Databases (VLDB’92), pp 187-198, 1992.

16. Saltor F., Castellanos M. and Garcia-Solaco M. Suitability of Data models as
Canonical Models for Federated Databases. ACM SIGMOD Record, 20:4, 1991.

17. Sheth A and Larson J. Federated Database Systems for Managing Distributed,
heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22:3, pp
183-236, ACM Press, 1990.

18. Scholl M., Schek H. and Tresch M. Object Algebra and Views for Multi-
Objectbases. In Distributed Object Management, Özsu, Dayel & Valdiurez (eds),
pp. 353-374, Morgan Kaufmann, 1994.

19. Subieta K. Object-Oriented Standards: Can ODMG OQL be extended to a Pro-
gramming Language? Proceedings of the International Symposium on Cooperative
Database Systems for Advanced Applications, pp. 546-555, Japan, 1996.

20. Versant Corporation. Versant C++ Reference Manual 5.2, April 1999.

