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Abstract. The eXtensible Markup Language (XML) opens the possi-
bility to start anew, on a solid technological ground, the ambitious goal
of developing a suitable technology for the creation and maintenance
of a virtual, distributed, hypertextual library of formal mathematical
knowledge. In particular, XML provides a central technology for stor-
ing, retrieving and processing mathematical documents, comprising so-
phisticated web-publishing mechanisms (stylesheets) covering notational
and stylistic issues. By the application of XML technology to the large
repositories of structured, content oriented information offered by Logi-
cal Frameworks we meet the ultimate goal of the Semantic Web, that is
to allow machines the sharing and exploitation of knowledge in the Web
way, i.e. without central authority, with few basic rules, in a scalable,
adaptable, extensible manner.

1 Introduction

Existing logical systems are not suitable for the creation of large repositories
of structured mathematical knowledge accessible via Web. In fact, libraries in
logical frameworks are usually saved in two formats: a textual one, in the spe-
cific tactical language of the proof assistant, and a compiled (proof checked)
one in some internal, concrete representation language. Both representations are
clearly unsatisfactory, since they are too oriented to the specific application: the
information is not directly available, if not by means of the functionalities of-
fered by the system itself. This is in clear contrast with the main guidelines of
the modern Information Society, the recent emphasis on content and the new
frontier of the so called “Semantic Web.1” The goal of the Semantic Web is to
pass from a “machine readable” to a “machine understandable” encoding of the
information: establishing a layer of machine understandable data would allow
automated agents, sophisticated search engines and interoperable services and
will enable higher degree of automation and more intelligent applications.
In contrast with current encodings of mathematical information (e.g. in digi-

tal libraries), which are “machine-readable” but not “machine-understandable”,
Logical Frameworks offer huge repositories of structured, content oriented in-
formation, naturally providing a major arena for the Semantic Web and its
technologies. The point is to allow access to this mathematical knowledge in the

1 Semantic Web Activity, http://www.w3.org/2001/sw.
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“Web way”, i.e. without central authority, with few basic rules, in a scalable,
adaptable, extensible manner.
The first, mandatory step in this direction is the direct encoding of the li-

braries in XML, which has recently imposed as the main tool for representation,
manipulation, linking and exchange of structured information. But of course the
broad goal of the Semantic Web goes far beyond the trivial suggestion to adopt
XML as a neutral specification language for the “compiled” versions of the li-
braries, or even the observation that in this way we could take advantage of a
lot of functionalities on XML-documents already offered by standard commercial
tools. Here is a short list of the added-value offered by the XML approach:

Standardization. Having a common, application independent, meta-language
for mathematical proofs, similar software tools could be applied to different
logical dialects, regardless of their concrete nature. This would be especially
relevant for all those operations like searching, retrieving, displaying or au-
thoring (just to mention a few of them) that are largely independent of the
specific logical system.

Publishing. XML offers sophisticated web-publishing technologies (Stylesheets,
MathML, . . . ) which can be profitably used to solve, in a standard way, the
annoying notational problems that traditionally afflict formal mathematics.

Searching and Retrieving. The World Wide Web is currently doing a big
effort in the Metadata and Semantic Web area. Languages as the Resource
Description Framework or XML-Query are likely to produce innovative tech-
nological solutions in this field.

Interoperability. If having a common representation layer is not the ultimate
solution to all interoperability problems between different applications, it is
however a first and essential step in this direction.

Modularity. The “XML-ization” process should naturally lead to a substantial
simplification and re-organization of the current, “monolithic” architecture
of logical frameworks. All the many different and often loosely connected
functionalities of these complex programs (proof checking, proof editing,
proof displaying, search and consulting, program extraction, and so on) could
be clearly split in more or less autonomous tasks, possibly (and hopefully!)
developed by different teams, in totally different languages. This is the new
content-based architecture of future systems.

In this article we present our project on the use of XML technology for the
development and maintenance of distributed repositories of formal mathematical
knowledge: the Hypertextual Electronic Library of Mathematics (HELM2).

2 The eXtensible Markup Language

Perhaps, the best way to introduce XML in few lines is to take a look at a simple
example. The following XML document is a possible encoding of the definition
of the inductive type of natural numbers in Coq [3].

2 http://www.cs.unibo.it/helm.

http://www.cs.unibo.it/helm
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE InductiveDefinition

SYSTEM "http://www.cs.unibo.it/helm/dtd/cic.dtd">

<InductiveDefinition noParams="0" params="">

<InductiveType name="nat" inductive="true">

<arity><SORT value="Set"/></arity>

<Constructor name="O"><REL value="1" binder="nat"/></Constructor>

<Constructor name="S">

<PROD>

<source><REL value="1" binder="nat"/></source>

<target><REL value="2" binder="nat"/></target>

</PROD>

</Constructor>

</InductiveType>

</InductiveDefinition>

XML gives a method for structuring data in a text file. Roughly speaking, the
XML specification says that a XML document is made of tags (words bracketed
by ’<’ and ’>’), attributes (of the form name="value") and text. Tags are used to
delimit elements. Elements may appear in one of the following two forms: either
they are non-empty elements, as InductiveDefinition or InductiveType (they
can contain other elements or text), or they are empty elements, as SORT or REL.
The previous example contains no text: this is a peculiarity of really formal
encodings, where every bit of knowledge has a specific intelligence worth to be
encapsulated in markup.
The XML specification defines a XML document to be well-formed if it meets

some syntactical constraints on the use of tags and attributes. For example, non-
empty elements must be perfectly balanced. For this reason, someone can think
of tags of non-empty elements as labeled brackets for structuring the document.
XML lets the user specify his own grammar by means of a Document Type

Definition (DTD), a document which defines the allowed tags, the related at-
tributes and which is the legal content for each element. The XML specification
just defines the validity of a XML document with respect to a given DTD. This
is why XML is a meta-language that can be instantiated to a potentially infinite
set of languages, each with its own DTD.
For example, here is a DTD fragment for the previous XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>

...

<!ENTITY % term ’(LAMBDA|CAST|PROD|REL|SORT|APPLY|VAR|META|IMPLICIT|

CONST|LETIN|MUTIND|MUTCONSTRUCT|MUTCASE|FIX|COFIX)’>

...

<!ELEMENT InductiveDefinition (InductiveType+)>

<!ATTLIST InductiveDefinition

noParams NMTOKEN #REQUIRED

params CDATA #REQUIRED

id ID #REQUIRED>

<!ELEMENT InductiveType (arity,Constructor*)>

<!ATTLIST InductiveType

name CDATA #REQUIRED
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inductive (true|false) #REQUIRED>

<!ELEMENT Constructor %term;>

<!ATTLIST Constructor name CDATA #REQUIRED>

...

A InductiveDefinition element may contain one or more InductiveType
elements, each InductiveType contains an arity followed by a possibly empty
sequence of Constructors, and a Constructor is an arbitrary term (an ENTITY
is a macro declaration). The attributes of InductiveDefinition are noParams,
params and id, while name is the only attribute of Constructor. The keyword
REQUIRED states that an attribute cannot be omitted when using its related tag.

References to Documents. Documents and resources in general must have a name
in order to be accessible over the Web. This is accomplished via the use of URIs
(Universal Resource Identifiers) as defined in [6]. A generic URI is made of a
formatted (structured) string of characters whose intended meaning is associ-
ated by the applications managing it. URLs (Uniform Resource Locators) are
a particular kind of URIs specifically designed to name resources accessed by
means of a given standard protocol (for example the HTTP protocol). URLs
consist of a first part identifying the protocol and a host followed by a second
part to locate the resource on it.
URLs can be resolved by standard processing tools and browsers, but suf-

fer from problems of consistency: moving the target document leads to dangling
pointers; moreover, being physical names, they cannot be used to identify a whole
set of copies located on different servers for fault-tolerance and load-balancing
purposes. URIs, instead, can be designed as logical names, leaving to applica-
tions the burden of resolution to physical names. So, for examples, the URI
“cic:/Coq/Reals/Rdefinitions/R.con” could be used as a logical name for
the axiom which defines the existence of the set R of real numbers in the stan-
dard library of the Coq Proof Assistant; then, an application is required to map
the URI to a physical name (an URL) as

http://coq.inria.fr/library/Reals/Rdefinitions/R.con.xml

3 The HELM Project

The overall architecture of our project is depicted in Fig. 1.
Once XML has been chosen as the standard encoding format3 for the li-

brary, we must face the problem of recovering the already codified mathematical
knowledge. Hence, we need new modules implementing exporting functionalities
toward the XML representation for all the available tools for proof reasoning.
Currently, we have just written such a module only for the Coq proof assistant
[3]. In the near future, we expect that similar exporting functionalities will be
provided by the developers of the other logical systems. We will describe the
exporting issues in Sect. 4.

3 A standard format, not a standard language! In other words, the standardization we
are pursuing is not at the logical level, but at the technological one.

http://coq.inria.fr/library/Reals/Rdefinitions/R.con.xml


HELM and the Semantic Math-Web 63

Coq

Search

. . .

Stylesheet
ProcessorEngine

Program
ExtractorChecker

Type

Textual WebGraphical
BrowserInterfaceInterface

Lego Hol Mizar

StylesheetsXML

Fig. 1. Architecture of the HELM Project.

To exploit and augment the library, we need several tools to provide all
the functionalities given by the current “monolithic” proof assistants, such as
type-checking, proof searching, program verification, code extraction and so on.
Moreover, we can use the available well-developed and extensible tools for pro-
cessing, retrieval and rendering of XML-encoded information. In particular, to
render the library information, we advocate the use of stylesheets, which are a
standard way of associating a presentation to the content of XML files. This
allows the user to introduce new mathematical notations by simply writing a
new stylesheet. In Sect. 5 we shall briefly discuss our implementation of a type-
checking tool, while in Sect. 6 stylesheets are addressed in details.
The user will interact with the library through several interfaces that inte-

grate the different tools to provide an homogeneous view of the functionalities.
We are developing two interfaces, described in Sect. 7.
Because of the particular nature of the library, we have also provided a suit-

able model of distribution, which is discussed in more detail in Sect. 8.

4 Exporting from Coq

Coq is one of the most advanced proof-assistants, based on a very rich logical
framework called the Calculus of (Co)Inductive Constructions (CIC). The great
number of functionalities (proof editing, proof checking, proof searching, proof
extraction, program verification) have made the system, whose last stable release
is V6.3.1, very big and complex. In fact, the only practical way to work with the
information encoded in Coq is that of writing a new module that extends the
system gaining access to its internal representation.
A new release of Coq, called V7, is being now developed with the precise

aim to reduce the implementation complexity; notwithstanding this, finding the
right information inside the system itself is not a trivial task: first, information
is encoded in Coq’s data structures which change among different versions of
the system; second, the required information is often not directly available. For
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example, when a file is loaded in V6.3.1, its path is forgotten, while we would
like to export files in directories reflecting the logical structure of the library.
In the rest of this section we only focus on the implementation of the export-

ing module4 for version 6.3.1 which is a representative example of the difficulties
that could be faced when exporting from an existing proof-assistant without the
collaboration of its development team.

4.1 Relevant Information to Be Exported

To design the module, the first difficulty has been the identification of which
information is worth to be exported. We have chosen not to export:

Parsing and pretty-printing rules. Parsing rules should depend only on the
proof engine. To be able to use other proof engines different from Coq we
cannot rely on Coq’s own rules. Similarly, pretty-printing rules should de-
pend only on the users choice and the type of available browser.

Tactics-related information. These, too, are proof engine dependent. More-
over, we do not think that the tactics used to do a proof are really meaningful
to understand the proof itself (surely, they are not the real informative con-
tent). In fact, the level of tactics and the level at which a proof should be
understood are not the same: what some simple tactics do (as “Auto” that
automatically search a proof) is not at all obvious. Moreover, the sequence of
tactics used is clearly reflected in the λ-term of the proof; hence it is possible
to add as an attribute to a sub term the name and parameters of the tactic
used to generate it.

Redundant information added by Coq to the terms of CIC. Coq adds
in several places a lot of information to CIC terms in order to speed up
the type-checking. For example, during the type-checking of an inductive
definition, Coq records which are the recursive parameters of its inductive
constructors; this information is then used during the type-checking of fix
functions to ensure their termination. This is an example of a clearly redun-
dant information, surely useless for browsing purposes or for indexing, but
necessary to every proof-checker implementation. Other times, instead, the
added information is important only for browsing purposes. For example,
sometimes the user asks the system to infer a type and probably does not
want to view the inferred type thereafter.
So, we have decided to export a first core of information, roughly correspond-
ing to the only one available at the logical level, according to a principle of
minimalism: no redundant information should be exported. If the principle
were not followed, in every application loading an XML file we would have to
add checks to verify the consistency of the redundant (and possibly useless!)
information. In Sect. 4.2 we will see how this does not prevent us to link in
a precise way additional information to the core one.

4 The module is fully working and has been used to export the whole library provided
with the Coq System, yielding about 64 Mb of XML (2 Mb after compression).
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The remaining, interesting information could be structured into three different
levels that we have clearly separated in the XML representation. The first one is
the level of terms. Terms (or expressions) can never appear alone, but only as part
of an object definition. In Coq, the terms are CIC λ-expressions, i.e. variables
(encoded as DeBrujin indexes), λ-abstractions and applications, product types
and sorts, augmented with a system of inductive types in the spirit of the ones
of Martin-Löf, comprising (co)inductive types and constructors, case analysis
operators and inductive and co-inductive function definitions. The whole level is
extremely dependent on the logical framework.
The second level, that uses the previous one to encode both bodies and types,

is the one of objects. Every object is stored into a different file. The files are
structured into directories that corresponds to sections in Coq, i.e. delimiters of
the scope of a variable. Sections are also used in Coq to structure a large theory
into sub-theories. In HELM, the former usage is retained, while theories are
described in another way (see the third level). In Coq, the objects are constants,
representing definitions, theorems and axioms, (the former two have both a type
and a body, while the latter has a type only), variables, (co)inductive definitions
(such as nat for the natural numbers) and proofs in progress.
The last level is the level of theories which is completely independent of the

particular logical framework. In our idea, a theory is a (structured) mathematical
document containing objects taken almost freely from different sections. Writing
a new theory should consist in developing new objects and assembling these
new objects and older ones into the mathematical document. It is during the
creation of a theory that objects must also be assigned the particular, semantical
meaning used to classify them, for example into lemmas, conjectures, corollaries,
etc. Theories, that are described in different XML files, do not include the objects
directly, but refers to them via their URIs.
The following is an example of theory file with two sections, the first one

delimiting the scope of variables A and B.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Theory SYSTEM "http://www.cs.unibo.it/helm/dtd/maththeory.dtd">

<Theory uri="cic:/Coq/Init/Logic">

<!-- Require Export Datatypes -->

<DEFINITION uri="True.ind"/>

<DEFINITION uri="False.ind"/>

<DEFINITION uri="not.con"/>

<SECTION uri="Conjunction">

<DEFINITION uri="and.ind"/>

<VARIABLE uri="A.var"/>

<VARIABLE uri="B.var"/>

<THEOREM id="id1" uri="proj1.con"/>

<THEOREM id="id2" uri="proj2.con"/>

</SECTION>

<SECTION uri="Disjunction">

<DEFINITION uri="or.ind"/>

</SECTION>

</Theory>
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All the URIs, but that of Theory, are relative URIs; so, the absolute URI of
id1 is “cic:/Coq/Init/Logic/Conjunction/proj1.con”. In the example you
can also see the usage of sections to bound the scope of variables: the scope of
A and B is the section Conjunction.
It is important to note that at the theory level, sections are not used to

structure the document into, for instance, chapters, paragraphs and so on; many
kind of (XML) markup languages have just been developed to do so. Accordingly
to the spirit of XML, our theory markup will be freely and modularly intermixed
with other kinds of markup, such as XHTML;5 so, our language will play for
mathematical theories the same role of MathML for mathematical expressions
and SVG6 for vectorial graphics. The added value of using the theory level
(instead of directly embedding the object markup) is that, while enriching the
semantics of the objects of the previous level, it could also be used to enforce
some constraints as, for example, on the scope of variables or on the links between
theorems and lemmas.

4.2 Auxiliary Information and Metadata

In this paragraph we address the problem of the association of additional and
possibly redundant information to the one exported using the Coq module. The
purpose of this added information is to enable or facilitate specific functionalities
such as rendering, searching, indexing and so on.7

A simple observation suggests that such information could be naturally as-
sociated either to the whole object definition (e.g. the name of the author of a
theorem) or to a particular node of a λ-term (e.g. the tactic used to generate
it or an informal description of its meaning). So, we can easily store the addi-
tional information in a distinct XML file and use XLink technology to relate
it to the appropriate XML element in the corresponding logical-level document.
Moreover, in the specific case of metadata, we can benefit from the Resource De-
scription Framework (RDF, [11] [12]), which provides a general model for repre-
senting metadata as well as a syntax for encoding and exchanging this metadata
over the Web. In several cases, this meta-information can be extracted from the
document, for instance by means of XSL Transformations. It is important to
note that, in this approach, no modification at all is required to the DTDs or to
the source document. As a side effect, an application can consult just the XML
files holding the information it really needs, without having to parse, check for
consistency and finally ignore non-interesting information.

5 http://www.w3.org/TR/xhtml1.
6 http://www.w3.org/TR/SVG.
7 For instance, a major example of such additional information, which is essential for
rendering purposes, are the intermediate conclusions inside complex proofs (see [4]),
which are typically omitted (as redundant) in a Curry-Howard representation of
proofs as λ-terms.

http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/SVG
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5 Proof-Checker

In order to verify that all the needed core information was exported from Coq,
we have developed a stand-alone proof-checker for CIC objects, similar to the
Coq one, but fairly simpler and smaller thanks to its independence of the proof
engine. It is the first example of a tool working directly on the XML encoding.
With respect to other proof-checkers (as the one of Coq), it is fairly standard

but for the peculiar management of the environment: usually, proof-checkers are
used to check whole theories, i.e. sequence of definitions or proofs. Each time
a definition is checked, it is added to the environment and then it is used in
subsequent type-checking. So, every theorem is always checked with the same,
statically defined environment. Our proof-checker, instead, builds the environ-
ment (a cache, actually) “on-demand”: every time a reference to another object
not present in the environment is found, the type-checking is interrupted, pro-
cessing the new object first. Checks are introduced in order to avoid cycles in
the definitions, corresponding to an inconsistent environment.

6 XSL Transformations and MathML

XSLT [17] is a language for transforming XML documents into other XML doc-
uments. In particular, a stylesheet is a set of rules expressed in XSLT to trans-
form the tree representing a XML document into a result tree. When a pattern
is matched against elements in the source tree, the corresponding template is
instantiated to create part of the result tree. In this way the source tree can be
filtered and reordered, and arbitrary structure can be added. A pattern is an
expression of XPath [16] language, that allows to match elements according to
their values, structure and position in the source tree.
XSLT is primarily aimed to associate a style to a XML document, generating

formatted documents suitable for rendering purposes, thus providing a standard
tool for processing and transforming XML mathematical document, according
to alternative notations and encodings.
A natural encoding for mathematics on the Web is MathML [8], an instance of

XML for describing the notation of a mathematical expression, capturing both its
structure and content. MathML has, roughly, two categories of markup elements:
the presentation markup, which describes the layout structure of mathematical
notation, and the content markup, that provides an explicit encoding of the
underlying mathematical structure of an expression.
Although the target of MathML is the encoding of expressions (so it can-

not describe mathematical objects and documents), the MathML Presentation
Markup can be considered as a privileged rendering format, providing a standard
on the web already implemented by several applications.
The choice of MathML content markup as an intermediate representation

between the logic-dependent representation of the mathematical information and
its presentation is justified by several reasons:
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– Even if the content markup is restricted to the encoding of a particular set
of formulas (the ones used until the first two years of college in the United
States), it is extensible and flexible.8

– Passing through this semi-formal representation will improve the modularity
of the overall architecture: many specific logical dialects can be mapped into
the same intermediate language (or into suitable extensions of it). Moreover
several stylesheets can be written for this single intermediate language to
generate specific rendering formats.

– The characteristic of portability of MathML content markup can be exploited
for cutting and pasting terms from an application to another.

– MathML content markup can capture the usual informal semantics of well-
known operators, as for example the disjunction, marking them with the
corresponding content elements (e.g. or). Their different formal content is
preserved by means of backward pointers to the low level specification.

A feasible alternative to MathML content is provided by OpenMath9 (see
the MathML [8] recommendation for a discussion about the two approaches).
As depicted in Fig. 2, there are two sequential phases of stylesheets applica-

tion: the first one generates the content representation from the CIC XML one;
the second one generates either the MathML presentation markup or the HTML
markup (and possibly others presentational formats as well).

CIC XML OBJECTS HTML/MATHML PRES.

MATHML PRES.MATHML CONTENT

XML OBJECTS

CIC XML TERMS

XSLTXSLT

HTML

HTML

Fig. 2. Transformations of CIC XML Files: The backward arrows represent
links from the content and presentation files to the corresponding CIC XML
files.

The following is an example of content markup

<apply>

<csymbol>app</csymbol>

<ci definitionURL=

"cic:/Coq/Init/Logic/Conjunction/and_ind.con">and_ind</ci>

<ci>A</ci>

<ci>B</ci>

8 The most important element for extensibility purposes is csymbol, defined for con-
structing a symbol whose semantics is not part of the core content elements provided
by MathML, but defined externally.

9 http://www.openmath.org.

http://www.openmath.org
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<ci>A</ci>

<lambda>

<bvar><ci>H0</ci><type><ci>A</ci></type></bvar>

<lambda>

<bvar><ci>H1</ci><type><ci>B</ci></type></bvar>

<ci>H0</ci>

</lambda>

</lambda>

<ci>H</ci>

</apply>

The main problems related to the definition of content stylesheets are:

– Objects, in general, cannot be considered as terms. Hence, we have added
to the MathML content markup a XML level to describe the level of objects
(using different namespaces [9]).

– Operators which are not covered by the MathML content base set are en-
coded by means of the csymbol element.

– The standard semantics of MathML content elements is only informally de-
fined in the specification. In HELM, formal semantics of content elements is
enforced, wherever it is possible, by means of pointers to the XML files of
their corresponding CIC definitions.

As you can see in Fig. 2, we produce MathML content and presentation in
two distinct steps. The only way to combine and link together content and
presentation in compliance to the MathML specification consists of using the
semantics element. This content element is quite ambiguous, a kind of “bridge”
between content and presentation; moreover, it is currently ignored by all the
browsers supporting MathML. For us, the next natural improvement will consist
of having content and the associated presentations in different files, one for the
content expression and one for each presentation. Then we need to relate a
presentation expression and subexpressions to the respective content expression
and subexpressions. This can be achieved in a standard way using the machinery
of XLink and XPointer [14,15].
The above solution has been also exploited for the implementation of the

links of Fig. 2 for linking the content and presentation markup to the corre-
sponding source CIC XML terms. In this way the user can browse the MathML
presentation and also modify it: the changes will have effect on the corresponding
CIC XML file.
An example of MathML presentation markup generated after the second

phase is:

<mrow>

<mo stretchy="false">(</mo>

<mi>and_ind</mi><mphantom><mtext>_</mtext></mphantom>

<mi>A</mi><mphantom><mtext>_</mtext></mphantom>

<mi>B</mi><mphantom><mtext>_</mtext></mphantom>

<mi>A</mi><mphantom><mtext>_</mtext></mphantom>

<mrow>
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<mo color="Red">&lambda;</mo>

<mi>H0</mi> <mo>:</mo> <mi>A</mi> <mo>.</mo>

<mrow>

<mo color="Red">&lambda;</mo>

<mi>H1</mi> <mo>:</mo> <mi>B</mi> <mo>.</mo>

<mi>H0</mi>

</mrow>

</mrow>

<mphantom><mtext>_</mtext></mphantom><mi>H</mi>

<mo stretchy="false">)</mo>

</mrow>

To generate presentation markup from the corresponding content markup, we
use, among others, a stylesheet, compliant with the last specification of MathML,
written by Igor Rodionov.10 This stylesheet, written in collaboration with the
MathML Working Group, transforms MathML content markup in MathML pre-
sentation one.
We must solve several problems regarding the presentation output:

– We have had to associate an output to every object and to every csymbol
defined in the content phase.

– We have modified the MathML stylesheet to implement the policy of line-
breaking and alignment for long terms: our choice consists of using tables
made of multiple rows. The mtable element is specifically designed to arrange
expressions in a two-dimensional layout and in particular it provides a set
of related elements and attributes to achieve proper alignment and line-
breaking.

As we have said above, MathML is not the only format exploited: another
presentation format is HTML, due to the wide-spreading of browsers for it and
its native hypertextual nature. Thanks to the modular architecture (see Fig. 2),
many other formats could be added too.
Finally, note that the general architecture gives the possibility of applying

stylesheets of arbitrary complexity. For example, we have developed stylesheets
to render proofs in natural language, in the spirit of [5].
We will exploit the same modular architecture of the object level at the

level of theories. At this level we can use the same presentation formats of the
previous levels; on the contrary, there is no standard language for describing
theories at the content level. So we will develop a new (XML) language that
will be largely independent of the specific foundational dialect and could aspire
to play the same role MathML plays for mathematical expressions. An already
existent corresponding proposal for OpenMath is OMDoc [10]. A possibility
could consist of achieving the integration of our proposal with an extension to
MathML of OMDoc, giving a common standard way to represent the structure
of a mathematical document.

10 Computer Science Department of the University of Western Ontario, London,
Canada.
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7 Interfaces to HELM

Two of the main goals of HELM are the easiness in augmenting and browsing
the library:

1. Every user with a small amount of HTTP or FTP space should be able to
publish a document.

2. Every user with a common browser should be able to browse the library.

To fullfil these aims, we must face the actual state of technology:

1. Currently, almost all of the Internet users have a web space, but usually
without being allowed to run any kind of program on the server, even simple
CGIs. So no intelligence can be put on the publisher side.

2. The browser technology is rapidly evolving in such a way that we expect
in a few time to have browsers able to understand MathML and, probably,
even to apply XSLT stylesheets. At the moment, though, if we require the
browser to be standard, then we have to put the intelligence on the other
side, i.e. on the server.

Therefore, where can we put the intelligence? A first answer is the creation of pre-
sentation sites able to retrieve documents from distribution sites, process them
(e.g. applying stylesheets) and return them to the users in the user requested
format.
In a first prototype of presentation site we relied on the capabilities of Co-

coon, a XML server-based web-publishing framework, for the processing of the
requested documents. Recently we adopted a more modular and more reusable
solution, consisting in having a completely separate component, a servlet indeed,
for the application of stylesheets. This component is designed to receive HTTP
requests of stylesheet application, sending the result of the transformation as
the reply of the request. In this way, ordinary browsing tools can access the pro-
cessed documents simply by invoking the servlet with a proper URL containing
both a reference to the source document to be processed, the list of stylesheets
to be applied and possibly a sequence of parameters. In this way the number
and order of the stylesheets can be changed at any invocation and their behavior
may be affected by the value of the parameters passed by the client. Moreover,
the documents, the stylesheets and the DTDs are not constrained to reside on
the same host of the processor, thus over-passing the greatest limitation of the
Cocoon-based framework.
Though this solution is perfect for browsing11 and doing simple elaborations,

it gives the user too strict interaction possibilities, which are required for more
complex tasks (as the creation of new theories, for example). Hence, more ad-
vanced interfaces with such capabilities are required. These interfaces must be
run on the user’s machine and should, at least, be able to provide all the pro-
cessing functionalities of the presentation servers. At the same time, they should
11 An on-line library of Coq V7 theories can be found at the address

http://phd.cs.unibo.it/helm/library/. Each document is rendered on-the-fly
either to HTML or to MathML.

http://phd.cs.unibo.it/helm/library/
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also overcome the limitations of standard browsers through the addition of new
interaction possibilities.
Since our preferential browsing language is MathML, our interface should at

least be able to render its presentation markup. Unfortunately, there are no sat-
isfactory implementations available yet. Moreover, we also need to interact with
the MathML rendered files, for example for editing. Not only forms of interaction
with this kind of markup have never been proposed before, but we also need to re-
flect the changes on the source files of the XSLT rendering transformations. This
has led us to the development of a brand new engine with rendering and editing
capabilities for documents embedding MathML presentation markup. The en-
gine, which is also able to export rendered MathML documents to Postscript, is
designed to be stand-alone and it is freely available as a Gtk widget.12

We have integrated our widget, the proof-checker and the external XSLT
processor into a minimal interface that we are going to extend with editing
functionalities.

8 The Model of Distribution

Mathematical documents have some peculiar properties. First of all a mathe-
matical document should be immutable: the correctness of a document A that
refers to a document B can be guaranteed only if B does not change. Notwith-
standing this, new versions of a mathematical document could be released (for
example if a conjecture is actually proved). Secondly, a user cannot be forced
to retain a copy of his document forever, even if other documents refer to it.
So, it should be possible for everyone to make a copy of a document and also
distribute it. When more than a copy is available, the user should be able to
download it from any suitable server (for example, from the nearest one). This
implies that documents could not be referred to via URLs, but only with logical
names in the form of URIs. A particular naming policy should then be adopted
to prevent users to publish different documents under the same URI.
To fulfill these requirements, we have adopted almost the same model of dis-

tribution of the Debian packaging system APT13 which has similar requirements
(a package could not be modified, but only updated, it is available on different
servers, could be downloaded from the user preferred server).
Every document is identified by an URI. For example, the URI that references

an inductive definition (“.ind”) in the subsection Datatypes of the subsection
Init of the section Coq is “cic:/Coq/Init/Datatypes/nat.ind”. Similarly,
the URI “theories:/Coq/Init/Datatypes.theory” refers to the mathematical
theory named Datatypes located in the subdirectory Init of the directory Coq.
In order to translate the URI to a valid URL, a particular tool, named getter,

is needed. It takes in input an ordered list of servers and an URI and returns
the URL of the document on the first server in the list supplying it. Each server

12 The widget is now a package of the forthcoming Debian distribution.
See http://www.cs.unibo.it/helm/mml-widget/ for further details.

13 http://www.debian.org.

http://www.cs.unibo.it/helm/mml-widget/
http://www.debian.org


HELM and the Semantic Math-Web 73

publishes a list of the URIs of the documents it provides along with their corre-
sponding URL.
In order to flexibly allow communication between the components of HELM

architecture, the interface provided by the getter is the one of an HTTP dae-
mon, pre-dating the ideas of the SOAP working draft [13]: when a document is
required, its logical name is resolved in an URL, the document is downloaded, it
is processed if needed14 and finally it is returned to the client and it is possibly
locally stored for caching purposes. If the machine hosting the getter is also a
distribution site, then, once cached, a document could also be added to the list
of documents the server exports. In such a way, often referred to or simply in-
teresting documents spread rapidly over the net, downloading times are reduced
and the author can freely get rid of his copy of the document if he does not need
it any more. This architecture imposes no constraints on the naming policy: up
to now we have not chosen or implemented one yet. To face the issue, one pos-
sibility can be the choice of having a centralized naming authority, even if other
more distributed scenarios will surely be considered.

9 Conclusions and Further Developments

In this paper we have presented the current status of the HELM project, whose
aim is to exploit the potentiality of XML technology for the creation and main-
tenance of large repositories of structured, content oriented information offered
by Logical Frameworks, sharing and processing knowledge in compliance with
the main philosophy of Web, i.e. without central authority, with few basic rules,
in a scalable, adaptable, extensible manner.
Due to our methodology (HELM is independent of Coq), the extension of

the library to other logical frameworks and systems does not look problematic.
We are soon going to develop:
Tools for indexing and retrieval of mathematical documents, based on meta-

data specified in the Resource Description Framework (RDF, see [11]). RDF
provides a foundation for processing meta-data, complements XML, and im-
proves interoperability between applications that exchange information on the
Web.

Tools for the (re)annotation of mathematical objects and terms: the intuitive
meaning of these entities is usually lost in their description in a logical framework.
Even their automatically extracted presentations in a natural language are often
unsatisfactory, being quite different from the typical presentation in a book. We
believe that a feasible solution is giving the user the possibility of enriching terms
with annotations given in an informal, still structured language.

Tools to provide functionalities missing from monolithic proof assistants, such
as proof-extraction of proof-editing.

14 For example, typical processing are deflating compressed files or the resolution of
relative URIs contained in the document to absolute ones.
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