Incorporating Dimensions in XML and DTD*

Manolis Gergatsoulis', Yannis Stavrakas'?, and Dimitris Karteris'

! Institute of Informatics & Telecommunications,
National Centre for Scientific Research (N.C.S.R.) ‘Demokritos’,
153 10 Aghia Paraskevi Attikis, Greece.
2 Knowledge & Database Systems Laboratory
National Technical University of Athens (NTUA), 157 73, Athens, Greece.
{manolis,ystavr}@iit.demokritos.gr
dkart@tee.gr

Abstract. In this paper we investigate various aspects of representing
multidimensional information in the frame of the WWW. Multidimen-
sional XML (MXML) is an extension of XML suitable for representing
data that assume different facets, having different value or different struc-
ture, under different contexts. In Multidimensional XML, elements and
attributes may depend on a number of dimensions, that define worlds
under which variants of those elements or attributes hold. Moreover, we
propose an extension of DTD that takes dimensions into account and
is suitable for describing the logical structure of MXML documents. We
also present a graph data model for MXML, and show how MXML can
be reduced to conventional XML for a given world.

Keywords: Multidimensional Languages, Semistructured Data, XML,
Web Databases.

1 Introduction

XML is a markup language suitable for data representation and exchange over
the Web [3]. XML resembles HTML, but unlike HTML, it focuses on the struc-
ture of data rather than on presentation. XML can be seen either from a document-
centric perspective or from a data-centric one. The document-centric view orig-
inates from SGML, the markup language that inspired the design of XML, and
sees XML as a way to embed in a Web document information about its structure.
The data-centric perspective has been adopted by those that perceive XML as
a data exchange language over the Web. From this perspective the emphasis is
on querying and on describing the relationships between pieces of data, in a way
similar to a database schema.

Although the main characteristic of XML is its extensibility in terms of defin-
ing new element types at will, it falls short when it comes to representing multidi-
mensional information, that is, information that presents different facets under

* This work has been partially supported by the Greek General Secretariat of Research
and Technology under the project “Executable Intensional Languages and Intelligent
Applications in Multimedia, Hypermedia and Virtual Reality” of I[TENE.A’99.

different contexts. As a simple example imagine a report that needs to be rep-
resented at various degrees of detail and in various languages. A solution would
be to create a different XML document for every possible combination. Such
an approach is certainly not practical, since it involves excessive duplication of
information. What is more, the different variants are not associated as being
parts of the same entity. The problem of varying entities is especially present in
the frame of the WWW, where information providers cannot assume too much
about the background context of the information consumers. Therefore, there
is need for data models and languages suitable for representing and exchanging
multidimensional data over the Web.

Ideas on how this problem can be handled are given in [11,10], where a for-
malism, called Multidimensional XML (MXML), is presented. MXML extends
XML by allowing context specifiers to qualify elements and attribute values,
and specify the contexts under which the document and its components have
meaning. MXML was influenced by Intensional HTML (IHTML) [12], a Web
authoring language, based on and extending ideas proposed for a software ver-
sioning system [9]. IHTML allows a single Web page to have different variants
and to dynamically adapt itself to a given context.

In this paper, a) we motivate the use of and specify MXML syntax and
semantics by reviewing and further extending the formalism presented in [11,10],
b) we clarify how the structure and the content of MXML elements and attributes
depend on dimensions, ¢) we propose an extension of Document Type Definition
(DTD) that takes into account dimensions and can be used to describe the logical
structure of MXML documents, d) we present a data model for MXML, called
MXMLGraph (MXMLG in short) and discuss some properties of MXML, and
e) we show that, given a specific world, it is possible to obtain a conventional
XML document, which constitutes the facet of the MXML document under that
specific world.

2 Incorporating Dimensions in XML Documents

In a multidimensional XML document (MXML document in short), dimensions
may be applied to elements and attributes. An element whose content depends on
one or more dimensions is called multidimensional element. An attribute whose
value depends on one or more dimensions is called multidimensional attribute.

2.1 Dimensions and Worlds

The notion of world is fundamental in MXML. A world represents an environ-
ment under which data in a multidimensional document obtain a meaning. A
world is determined by assigning values to a set of dimensions.

Definition 1. Let § be a set of dimension names and for each d € S, let Dy,
with Dq # 0, be the domain of d. A world W is a set of pairs (d,u), where
d € 8 and u € Dy such that for every dimension name in S there is exactly one
element in W.

MXML uses context specifiers that specify sets of worlds. Context specifiers
qualify the variants (or facets) of multidimensional elements and attributes, re-
lating each variant to the set of worlds under which the variant becomes the
holding one for the corresponding multidimensional entity. Two context speci-
fiers are called mutually exclusive if they specify disjoint sets of worlds.

2.2 The Syntax of Multidimensional XML

The syntax of XML 1s extended as follows in order to incorporate dimensions.
In particular, a multidimensional element has the form:

<Q@element name attribute specification>
[context specifier_1]
<element name attribute_specification_1>
element content._1
</element name>

[/]

[context specifier W]
<element name attribute_specification N>
element content N
</element name>

[/]

</@element name>

A multidimensional element is denoted by preceding the element name with
the special symbol “@”, and encloses one or more context elements that constitute
facets of that multidimensional element, holding under specific worlds specified
by the corresponding context specifier. Context elements have the same form as
conventional XML elements. All context elements of a multidimensional element
have the same name which is the name of the multidimensional element.

To declare a multidimensional attribute we use the following syntax:

attributename = [context specifier_1] attributewvalue_1 [/]

[context specifiermn] attributewvaluen [/]

Therefore, a multidimensional attribute is assigned a set of context-value
pairs. Each context-associated value becomes the holding value of the attribute
under the worlds specified by the corresponding context specifier.

A context specifier is of the form:

dimension_1_specifier, ..., dimensionm_specifier
where dimension_i_specifier, 1 < i <m,is a dimension specifier of the form:
dimensionname specifier_operator dimension.value_expression

A specifier_operator is one of =, ! =, in, not in. If the specifier_operator is
either = or ! =, the dimension_value_expression consists of a single dimension
value. Otherwise, if the specifier_operator is either in or not in, the dimension
value expression is a set of values of the form {valuey,... valuey}.

A context specifier may also be the reserved word “default”, where [default]
represents all worlds not covered by the context specifiers of the same entity. Fi-
nally, the context specifier [] represents the set of all possible worlds.

Ezxample 1. A part of an imaginary menu of a restaurant described in MXML.

<restaurant>
<menu>
<salad name = "Chef’s salad" vegetarian = [season = summer]'"yes"[/]
[season '= summer]'"no"[/] >
<@comment>

[language = English, detail = low]
<comment> A traditional salad. </comment>
[/]
[language = English, detail = highl]
<comment>
A salad, with a long history which
is connected with the tradition of the town.
</comment>
[/]
[language = French, detail in {low, high}]
<comment> Une salade regionale traditionelle. </comment>
[/]
</Qcomment>
<@price>
[season = summer] <price> 3 USD </price> [/]
[default] <price> 4 USD </price> [/]
</@price>
<ingredient> tomato </ingredient>
<@ingredient>
[season '= summer] <ingredient> bacon </ingredient> [/]
</@ingredient>
<ingredient> olive oil </ingredient>
<@ingredient>
[occasion = special]
<ingredient special_supplier=[season in {spring, summer}]"spl"[/]
[default]"sp2"[/] >
<name> special sauce </name>
<remarks> Must order three days in advance </remarks>
</ingredient>
[/]
[default] <ingredient> normal sauce </ingredient> [/]
</@ingredient>
</salad>
</menu>
<supplier scode="spl'">
<name> John Smith </name> <address> 234 XYZ Street </address>
</supplier>
<supplier scode="gp2"> ... </supplier>
<\restaurant>

2.3 Dimensions Applied to Elements

While multidimensional elements can only contain context elements, context
elements may contain other multidimensional elements, conventional elements,
or any combination of the two in an arbitrary depth. Context elements of the
same multidimensional element are not required to have the same content, or
even to conform to the same structural constraints. Therefore, dimensions can
affect the content of an element in every aspect, be it its structure or its value.

The effect of context in element value: Consider the element comment
in Example 1, which is a multidimensional element whose value depends on
the dimensions language and detail. The context specifier of the third con-
text element of comment is [language = French, detail in {low, high}],
and represents possible worlds where language = French and detail = low
or language = French and detail = high. In all these worlds, the value of
comment is “Une salade regionale traditionelle”.
The effect of context in element structure: Context specifiers also affect
the element structure. For example, the fourth ingredient element in Example 1
contains the subelements name and remarks for the context [occasion=speciall,
but for all the other contexts, 1.e. for all other possible values of the dimension
occasion (implied by [default]), it contains no subelements.

Notice that it is not necessary for a multidimensional element to have context

elements for every possible world. For example, the multidimensional element
<@ingredient>
[season != summer] <ingredient> bacon </ingredient> [/]

</@ingredient>
in Example 1, has no facet for the context [season = summer].

Finally, a multidimensional element or attribute whose only facet holds under
every possible world, can be substituted by a conventional element or attribute.

2.4 Dimensions Applied to Attributes

Each context element can have its own (conventional or multidimensional) at-
tributes, exactly as it can have its own (conventional or multidimensional) child
elements. Within the same multidimensional element, context elements may have
different attributes, exactly as they may have different child elements. Notice
that in Example 1, a salad ingredient has the attribute special _supplier
for the context [occasion=speciall, but for any other context (denoted by
[default]) ingredient has no attributes.

Attributes of type “ID”, “IDREF” and “IDREFS” can be attached to con-
text and conventional elements. By using attributes of types “IDREF” and
“IDREFS”, context and conventional elements are able to point to multidi-
mensional, conventional, or context elements. Multidimensional elements can
be attached only attributes of type “ID”; hence, although multidimensional ele-
ments can be pointed to by IDREF attributes, they cannot themselves point to
other elements.

The IDREF attribute special_supplier in the fourth ingredient of Ex-
ample 1, has the value "sp1" for the context [season in {spring, summer}]
and the value "sp2" for all the other contexts (represented by [default]), thus
pointing to different elements depending on the value of the dimension season.

2.5 Well-Formed MXML

The notion of well-formed MXML is an extension of the notion of well-formed
XML. In addition, to the XML well-formedness criteria an MXML document
must also exhibit the property of context well-formedness, which is defined below.

Definition 2. An MXML document D 1is said to be context-deterministic iff
for every multidimensional element (attribute) M in D the following condition
holds: If c1,ca,..., ¢, are the context specifiers qualifying the context elements
(attribute values) of M then ¢; is mutually exclusive with ¢; for all i # j.

In a context-deterministic MXML document each multidimensional element
or attribute has at most one holding facet under any specific world.

Definition 3. An MXML documents D is said to be context well-formed iff it
is context deterministic and the following conditions hold: 1) For every multi-
dimensional element there exists at least one context element, and 2) For every
multidimenstonal attribute there exists at least one facet of that attribute.

Context well-formedness ensures that for every multidimensional entity there
is at least one world under which this entity has meaning (a holding facet).

3 Multidimensional DTD

In XML, a Document Type Definition (DTD) [3] is used for defining constraints
on the logical structure of a document. In this section, we propose an extension
of DTD, called Multidimensional DTD, that takes dimensions into account and
is suitable for describing the logical structure of MXML documents.
Dimension Declarations: Dimensions are declared in MDTD through dimen-
ston declarations of the form:

<!DIMENSION dimensionname dimension_domain>
Using dimension declarations we can declare a dimension and associate with 1t
a set of possible values. For example, the declaration

<!DIMENSION language {English, French}>

denotes that ‘language’is a dimension name and constraints its possible values
to elements of the set {English, French}.

In the frame of this paper we assume finite dimension domains, described
by enumerating their elements. Other ways of representation, as well as infinite
domains, may also be useful, however they fall out of the scope of this paper.
Multidimensional Element Declarations: Element declarations of conven-
tional DTD are also used in MDTD for conventional elements. Another con-
struct, called multidimensional element declaration, is introduced, to deal with
context dependent elements. The syntax of the new construct is:

<!MULTIELEMENT element name associated.dimensions type._decl>.

The dimensions on which a multidimensional element depends on are declared
in ‘associated dimensions’. For example, in the following declaration:

<!MULTIELEMENT comment {language, detail} (#PCDATA)>
comment is declared to be a multidimensional element which depends on the
dimensions language and detail.

Multidimensional element declarations allow separate constraints for the con-

text elements of a multidimensional element. For example in:
<!MULTIELEMENT ingredient {season, occasion}

[occasion = special] ((name, remarks?) | #PCDATA) [/]
[default] (#PCDATA) [/1>

the type of the element ingredient is declared to be either (name, remarks?)
or (#PCDATA) whenever the value of the dimension occasion is special; in any
other case, the type of the element ingredient is declared to be (#PCDATA).

Attribute Declarations: Attribute declarations have been extended to take
into account multidimensional attributes. In the declaration

<V'ATTLIST salad name CDATA #REQUIRED

vegetarian {season} CDATA #IMPLIED>

the element salad is declared to have two attributes, namely name and vegetarian.
The value of the attribute name does not depend on dimensions, while the value
of the attribute vegetarian depends on the dimension season.

Attribute declarations allow to declare that an attribute is present under
some contexts, while it is absent under other contexts. For example, in

<!ATTLIST ingredient

[occasion=speciall special supplier {season} IDREF #REQUIRED [/]>

the element ingredient is declared to have the attribute special _supplier
only for the contexts where the value of the dimension occasion is special;
in this case, the attribute must exists for every possible value of the dimension
season. In all other contexts the element ingredient has no attributes.

Ezample 2. A MDTD for the MXML document of Example 1.

<!DOCTYPE restaurantDTD [
<!DIMENSION language {English, French}>
<!'DIMENSION detail {low, high, exhaustive}>
<!'DIMENSION season {spring, summer, fall, winter}>
<!DIMENSION occasion {special, normall}>
<!ELEMENT restaurant (menu | supplier)*>
<VELEMENT menu (salad+, first+, maindish+, dessert+)>
<!'ELEMENT salad (comment?, price, ingredient*)>
<'ATTLIST salad name CDATA #REQUIRED
vegetarian {season} CDATA #IMPLIED>

<!'MULTIELEMENT comment {language, detaill} (#PCDATA)>
<!MULTIELEMENT price {season} (#PCDATA)>
<!MULTIELEMENT ingredient {season, occasion}

[occasion = special] ((name, remarks?) | #PCDATA) [/]

[default] (#PCDATA) [/1>
<!ATTLIST ingredient

[occasion = special] special_supplier {season} IDREF #REQUIRED [/]>
<!ELEMENT name (#PCDATA) >
<!ELEMENT remarks (#PCDATA)>
<!ELEMENT supplier (name, address)>
<!'ATTLIST supplier scode ID #REQUIRED> 1>

4 A Data Model for MXML

Graph based data models are often used to represent XML data [1,5,4,6]. In
this section, we propose a data model, called Multidimensional XML Graph (or

MXMLG), suitable for modelling MXML documents. MXMLG provides nodes
and edges of appropriate type for representing multidimensional information.

Definition 4. Let CS be a set of context specifiers and D, D, T be three sets
called element names, attribute names, and text values respectively. A multi-
dimensional XML graph G = (N, E,r,CS,D., Dy, T) is a finite directed edge-
labelled graph such that:

1) N = Npe U Nee U Ny U Ny U Ny where Nppe, Neey, Npa, No and Ny are
disjoint sets of nodes, called multidimensional element nodes, context element
nodes, multidimensional attribute nodes, (context) attribute nodes, and text
nodes respectively.

2) E=FE.UE,UF..UFE.;UE.UFE; where Eo C Neg X De X (Nee U Npye) is a
set of edges called element edges, Fy C (Nee U Npme) X Dy X (Ng U Nppy) is a set
of edges called attribute edges, Fee C Npe X CS X Nee, 1s a sel of edges called
element context edges, Fqe C Npa X CS x Ny is a sel of edges called attribute
context edges, E, C Ny X (Nee UNpe) is a set of edges called attribute reference
edges, and By C (Ng U Nee) X Ny is a set of edges called text edges.

3) L : Ny = T is a labeling function for text nodes.

4) v is a specific node in N, called the root node such that: a) Each node in
the graph is reachable from r, and b) G' = (N, E. U By U Eee U Eqe U Ey) is a
tree rooted at r.

MXMLG can also represent conventional XML documents since XML can
be considered as a special case of MXML.
The MXMLGraph for the document of Example 1 is shown in Figure 1.

5 Properties of MXML

Context Propagation: A context specifier gives the explicit context of the
entity that qualifies. When element or attributes are combined to form an MXML
document, the explicit context of an entity does not alone determine the worlds
under which that entity holds, since when an entity e, is part of another entity
e1, then es can have substance only under the worlds that e; has substance.
This can be conceived as if the context under which e; holds i1s inherited to
es. The context propagated in that way is combined with (constraint by) the
explicit context of each element to give the inherited context for that element.
For determining the inherited context of an attribute, the explicit context of the
attribute is used to constrain the inherited context of the element that contains
the attribute. The inherited contexts can be considered as the “real” contexts
for elements and attributes in the frame of the document where they occur.
Reducing MXML to XML: Each MXML document represents in fact a set
of conventional XML documents. Given a world w, an MXML document can be
reduced to a conventional XML document which 1s the facet of the multidimen-
sional document under w. The reduction process is defined in the procedure that
follows, where for convenience we consider the MXMLG graphs G and G’ that
correspond to the MXML and XML documents respectively.

multidimensional elementnode
restaurant
multidimensional atribute node MXML Graph

element node

it nce &§ii:::~**H\
supplier.
menu
text node =~
name scode

element/attribute/text edge @
address R
element/attribute context edge salad « SN
N
attribute reference edge N scode R
\ \
\ address \
o |
name. L B |
T 1
|

“Chef's salad”
season:summer\/egelanan John

Smith 234 XYZ

| |eeern

i
|
v

spl
)
!
comment ingredient sp2
@ 0 e mgrememmg,ed.em 0 e
ingredient /
ryes” /
0 L&] ll ll e] =] Le]
season= summer devauu = defa\m
g default season S“mms' occasion=special
" detailztow de‘a” n flow, high} default
language=English, season in {spring, summer}
detail=high default
ecial_supplier
remarks
“tomato” upagone "olive oil" \
A tra‘d\tluﬂﬁﬂ "Asdadwitha "Unesalade +3Uspr ., Tdpr @
salad long history which regionale
is connected to traditionelle.” “normarsauce” ;;fcce‘?‘ “Must order three

the tradition of the days in advance”

town."

Fig. 1. The Multidimensional XML Graph for Example 1.

Procedure reduceMXMLG(G, w, ()

Step 1: Remove all context edges (e,C,e’) from G for which v € Ug where
(d,v) € wand (d,Uc) € C. Then remove all subgraphs not accessible from r.

Step 2: For every element/attribute context edge of the form (p,C,q), in the
graph G’ obtained in step 1, do the following: Let (e1,l1,p), ..., (ex, Lk, p) be all
edges in G leading to p. Then replace each (e;,;,p), for i = 1,...,k by an edge
(ei,1i, q) of the same type. Remove the edge (p,C, ¢) and the node p.

Step 3: Prune all subtrees which have no text leaf node.

A system that implements the above process and demonstrates a number of
examples is presented in [7].

Validity of MXML Documents: The validity of an MXML document is
defined with respect to an MDTD, and is an extension of the notion of validity for
conventional XML documents. Given a world w, it is possible to apply a process
similar to the one presented above, and reduce an MDTD to a conventional DTD
that holds under w. An MXML document M is valid with respect to an MDTD
under a world w, if the conventional XML document D obtained by reducing M
for that particular world w is valid with respect to the DTD that is the MDTD
facet under w. An MXML document is valid with respect to an MDTD if it is
valid with respect to that MDTD under every possible world.

6 Discussion and Motivation for Future Work

Investigating potential applications of MXML is an interesting direction. The
representation of time-dependent information using MXML is promising [8],
since various notions of time can be seen as MXML dimensions. The use of
MXML to encode geographical information, where objects depend on dimensions
like scale and theme is another area that we examine. Other schema languages
for MXML, could also be investigated. Research on query languages for XML is
especially active [1,2,5], however, in this paper we do not consider query lan-
guages for MXML. A query @ on an MXML document D can be seen as a pair
(Qu,w) where @, is a query on the conventional XML document which is the
facet of D under the world w. The development of a “multidimensional query
language” especially designed for the MXML data model is in our immediate
plans.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIG-
MOD Record, 29(1), March 2000.

3. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(XML) 1.0 (second edition). http://www.w3.org/TR/REC-xml, October 2000.

4. J. Clark and S. DeRose. XML Path Language (XPath), Version 1.0 (W3C Rec-
ommendation). http://www.w3.org/TR/xpath, 1999.

5. A. Deutch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A query
language for XML. http://www.w3.org/TR/NOTE-xml-ql, 1999.

6. M. Fernandez and J. Robie. XML Query Data Model (W3C Working Draft 11
May 2000). http://www.w3.org/TR/query-datamodel, 1999.

7. M. Gergatsoulis, Y. Stavrakas, D. Karteris, A. Mouzaki, and D. Sterpis. A Web-
based System for Handling Multidimensional Information through MXML. [t will
be presented at 5th Fast-European Conference on Advances in Databases and In-
formation Systems (ADBIS), Vilnius, Lithuania, September 2001.

8. T. Mitakos, M. Gergatsoulis, Y. Stavrakas, and E. V. loannidis. Representing
time-dependent information in multidimensional XML. Proc. of the 23rd Int. Conf.
“Information Technology Interfaces” (ITI’01), Pula, Croatia, June 2001.

9. J. Plaice and W. W. Wadge. A New Approach to Version Control. IEFFE Trans-
actions on Software Engineering, 19(3):268-276, 1993.

10. Y. Stavrakas, M. Gergatsoulis, and T. Mitakos. Representing context-dependent
information using Multidimensional XML. In J. Borbinha and T. Baker, editors,
Research and Advanced Technology for Digital Libraries (ECDL’00), Proceedings,
Lecture Notes in Computer Science (LNCS) 1923, pages 368-371. Springer, 2000.

11. Y. Stavrakas, M. Gergatsoulis, and P. Rondogiannis. Multidimensional XML. In
P. Kropf, G. Babin, J. PLaice, and H. Unger, editors, Distributed Communities on
the Web, Third International Workshop (DCW’2000), Lecture Notes in Computer
Science (LNCS) 1830, pages 100-109. Springer-Verlag, 2000.

12. W. W. Wadge, G. D. Brown, M. C. Schraefel, and T. Yildirim. Intensional HTML.
In Proc. of the 4th Int. Workshop on Principles of Digital Document Processing
(PODDP ’98), LNCS 1481, pages 128-139. Springer, March 1998.

