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Abstract. We provide sub-quadratic clustering algorithms for generic
dissimilarity. Our algorithms are robust because they use medians rather
than means as estimators of location, and the resulting representative of
a cluster is actually a data item. We demonstrate mathematically that
our algorithms converge. The methods proposed generalize approaches
that allow a data item to have a degree of membership in a cluster.
Because our algorithm is generic to both, fuzzy membership approaches
and probabilistic approaches for partial membership, we simply name it
non-crisp clustering. We illustrate our algorithms with categorizing WEB
visitation paths. We outperform previous clustering methods since they
are all of quadratic time complexity (they essentially require computing
the dissimilarity between all pairs of paths).

1 Introduction

In a top-down view to clustering [3], the aim is to partition a large data set of
heterogeneous objects into more homogeneous classes. Many clustering methods
are built around this partitioning approach [17]. Because we are to partition a
set into more homogeneous clusters, we need to assess homogeneity. The de-
gree of homogeneity in a group is a criterion for evaluating that the samples in
one cluster are more like one another than like samples in other clusters. This
criterion is then made explicit if there is a distance between objects. The type
of clustering that we find here attempts to find the partition that optimizes a
given homogeneity criterion defined in terms of distances. Thus, this type of
clustering is also distance-based, but rather than looking for the most similar
pair of objects and grouping them together, which is the bottom-up approach of
hierarchical clustering, we seek to find a partition that separates into clusters.
Variants of the partitioning problem arise as we see different criteria for defining
homogeneity and also different measures of similarity. Then, within one variant
of the problem, several algorithms are possible. Consider the following optimiza-
tion criteria for clustering which attempts to minimize the heterogeneity in each
group with respect to the group representative.

Minimize M*(C) = Zd(ui, REP([u;, C])", (1)
i=1
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where @ > 1 is a constant, C' C U is a set of k representatives, REP[u;, C] is the
most similar representative (in C') to u; and d(-,-) is a measure of dissimilarity.
We underline that d(-,-) does not need to be a distance satisfying the axioms of
a metric. In particular, while d(u;,u;) = 0, we do not require that d(u;,u;) =
0 implies u; = u;. Also, we do not require the triangle inequality, however,
we do expect symmetry, that is d(u;, u;) = d(uj,u;). These requirements are
satisfied by all similarity measures based on computing the cosine of the angle
between attribute-vectors of positive-valued features [T6J272832]33]. Note that
these similarity functions sim(-,-) have a range in [0,1] and the corresponding
dissimilarity is d(-,-) = 1 — sim(-, ), also in the range [0,1].

Equation (1)) is not unfamiliar to statistics nor to the Data Mining commu-
nity. The case a = 2 defines the objective function that the k-MEANS method it-
eratively approximates. This case is the result of applying an analysis of variance
using total sum error squares as the loss function. The case a = 1 replaces means
by medians and the Lo loss function by the L loss function (the total absolute
error). The case a = 1 was brought over from the statistics as medoid-based
clustering [21]. However, CLARANS is a randomized interchange hill-climber in
order to obtain subquadratic algorithmic complexity. CLARANS can not guar-
antee local optimality. The best interchange hill-climber [IT] is the Teitz and
Bart heuristic [31] which requires quadratic time. Only in restricted cases, the
time complexity of this type of hill-climber has been reduced to subquadratic
time (for example, D = 2 and Euclidean distance [9]). Because medians are a
more robust estimator of location than means, an algorithm optimizing the case
a = 1 is more resistant to noise and outliers than an algorithm optimizing the
case a = 2. However, k-MEANS is heavily used because it is fast [124//34], despite
its many drawbacks documented in the literature [12].

Clustering algorithms optimizing the family of criteria given by Equation ()
search for a subset C' = {¢1,...,cx} of k elements in U. In the case a = 1, we
use medoids to denote discrete medians; that is, the estimator of location for
a cluster shall be a member of the data. Previous to the approach presented
here, the classification step for medoids performs a crisp classification. That is,
classification computes the representative REP[u;, C] of each data item u; and
each data item belongs to only the cluster of its representative. It seems that
robustness to initialization (as it happens in k-HARMONIC MEANS [34]) comes
from a combining relaxation of crisp classification with a boosting technique. It
seems that to achieve this, each data item should be able to belong to different
clusters with a degree of membership (the degree could be a probability as in
EXPECTATION MAXIMIZATION, or a fuzzy membership as in FUZZY-c-MEANS).

Thus, our contribution here is to achieve this degree of membership to dif-
ferent clusters. We will propose algorithms and then show their advantages. We
prove mathematically that they converge. We show our algorithms are generic
(the degree of membership could be a fuzzy-membership function, a harmonic
distribution, or even revert to the case of crisp-membership). We show versions
requiring sub-quadratic time by using randomization. We apply our algorithms
to a case study where other algorithms can not be used [13l[18].
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2 Non-crisp Clustering Algorithms

Consider the crisp classification step that computes REP[u;, C] for each data item
u;. It requires a simple pass through the data and O(nk) computations of d(-, -).
This results in a temporary partition of U into k clusters Uy, ...,U;. We can
generalize crisp classification by assigning a vector m; € [0,1]¥ to each u;. We
consider that the j-th entry m;; denotes the degree by which u; belongs to the j-
th cluster. In parallel with EXPECTATION MAXIMIZATION and FUZZY-c-MEANS,
we will normalize the values so that 2521 m;; = 1. Crisp classification means
the closest representative has its entry in 7 set to 1 while all other clusters have
their entry set to zero. Non-crisp classification will mean more than one cluster
has its entry different from zero.

To detail more our approach we need to introduce some notation. Given a
vector & € R*, let SORT(z) € R* denote the vector of sorted entries from @ in
non-decreasing order (entries with equal values are arranged arbitrarily). Thus,
if j < j' then SORT(x); < SORT(z);. We use the notation e; to denote the j-th
canonical vector (0,...,0,1,0,...,0) that has only the j-th entry equal to 1 and
all other equal to zero. This notation allows us to rewrite the loss function in
Equation (l) because the minimum operator in REP[u;, C] can be replaced by
el -SORT(+) as follows M*(C) = Y7, el -SORT(d(u;, ¢1), d(u;, c2), . . ., d(u;, cx)).
Moreover, we can already describe a Harmonic set of weights as the degrees of
membership. Let K = Z?Zl 1/j, the Harmonic loss function is then M (C) =
=3 (1,1/2,..,1/4, ..., 1/k)T -sorT(d(z;, ¢1), d(ui, ¢2), - . ., d(u;, k) ). More-
over, we propose here an even more general approach, and let w € R* be any
vector with non-negative entries and entries in descending order; then, the non-
crisp classification loss function with respect to w is

MY (C) = L ZwT - SORT(d(u;, ¢1), d(usy c2), ..., d(ug, cg)). (2)

(where we denote the 1-norm of a vector x as ||z|; and it equals 2521 |zk])-
Note that the first canonical vector e; and the Harmonic vector with 1/j in its
j-th entry are special cases for w. The vector 7r; giving the degree of membership
of w; is defined by m;; = d(u;, ¢j)w;/||wll1-

Recently, by using randomization several variants of clustering algorithms for
optimizing instances of the criteria in Equation ([) with a = 1 have emerged [10].
These variants are subquadratic robust clustering algorithms. These randomized
algorithms have been shown mathematically and empirically to provide robust
estimators of location [I0]. This is because randomization is not sampling. Sam-
pling reduces the CPU-requirements by using a very small part of the data, and
the accuracy suffers directly with the size of the sample. Randomization uses
the entire data available.

While those algorithms are more robust than k-MEANS to initialization, we
produce here a general family of algorithms that optimize Equation (2)) and are
even more robust to initialization.
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2.1 The EXPECTATION MAXIMIZATION Type

Our first family of randomized algorithms carries out an iterative improve-
ment as found in k-MEANS, EXPECTATION MAXIMIZATION, FUZZY-c-MEANS
and k-HARMONIC MEANS (refer to Fig. [[). The iteration alternates classifica-

ITERATIVE_STEP(C = {c1,...,ck} C U)
CLASSIFICATION_STEP(C')
Forj=1,...,k: find Uj; = {u; € U | d(us,c;) < d(u,i,cj/)j/ =1,...,k}
new C <~ RECONSTRUCTION_STEP

For j =1,...,k: new ¢; < new estimator of median for Uj

Fig.1. Body of the iteration alternating between finding a classification for the data
given a model, and finding a model given classified data.

tion of data from a current model (classification step) and model refinement
from classified data (reconstruction step). We say that is an EXPECTATION
MAXIMIZATION type because it follows the alternation between Expectation and
Maximization. That is, Expectation because in the statistical sense we estimate
the hidden information (the membership to clusters of the data items). Maxi-
mization, because we use some criteria (like Maximum Likelihood) to revise the
description (model) of each cluster.

Our task now is to describe the iterative algorithms that minimizes the non-
crisp classification loss function with respect to a vector w. The algorithm has
the generic structure of iterative algorithms. It will start with a random set C°.
The t-th iteration proceeds as follows. First we note that non-crisp classification
is computationally as costly as classification in the crisp algorithms. It essentially
requires to compute SORT of the vector of distances of the data item wu; under
consideration to each member of the current set of representatives C?. This
requires computations of d(-,-) for the k representatives. Although sorting of &
items requires klogk comparisons, it does not require any more dissimilarity
computations and in the applications we have in mind, the computations of
dissimilarity values is far more costly than the time required to sort the k values.
Thus, classification is performed by a simple pass through the data and O(nk)
dissimilarity computations. This results in a labeling of all data items in U by
a vector ranking the degrees of membership to the k clusters. That is, for each
u;, we record the rank of d(u;,c}), where ¢} is the j-th current representative.
We let RANK![j] denote the rank of u; with respect to the j-th representative at
the ¢-th classification. For example, if the first current representative is the 3rd
nearest representative to u; then RANK![1] = 3.

The reconstruction step computes new representatives. For each old repre-
sentative, we have a degree of membership of every data item. Thus, for each j =
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T .
RANKE![4]

wd(z,u;) = >, wRANK![;]4(2, u;). Thus, for example, if an item u; was ranked
first with respect to the j-th representative because it was its nearest represen-
tative, then the distance d(z,u;) in Equation (@) is multiplied by the largest
weight in w (which is the value in the first entry). Also, note that in the case of
crisp classification, all weights are zero except the largest (and the largest weight
equals 1). Thus, the minimization of fjt (z) above just corresponds to finding the
median amongst the data items in the j-th cluster. Because of this, the data item
u; such that f7(u;) is smallest will be called the j-th discrete weighted median.

To detail our algorithm further, we must describe how a new representative
1 is computed by minimization of f;(x) amongst the data items wu;. The
algorithm we introduce for this task is a randomized approximation inspired in a
sub-quadratic randomized algorithm for computation of the discrete median [10].
For this subproblem of approximating the discrete median we note that U =
{u1,...,u,} is the set of candidates (during the ¢-th iteration of the algorithm)
for finding the minimum of each function th» (z), for j=1,...,k.

However, for simplicity of the notation, in what follows we drop the super-
index t since it is understood we are dealing with the current iteration. We will
also assume that we know which representative is being revised and we denote by
OLD_MED(j) the previous approximation to the data item that minimizes f;(z)
(during the t-th iteration, OLD_MED(j) is actually c}).

Clearly, the discrete weighted median MED(j) can be computed in O(||U]||?)
computations of the dissimilarity d(-,-) by simply computing f;(z) for z =
Uuy,...,T = u, and returning the x that results in the smallest value. We will
refer to this algorithm as EXHAUSTIVE. It must be used carefully because it has
quadratic complexity on the size |U|| = n of the data. However, it has linear
complexity of ¢(d), the time to compute d(-,-). Thus, our use of randomization.

The first step consists of obtaining a random partition of U into approxi-
mately r = /n subsets Uy, ...,U, each of approximately n/r ~ \/n elements.
Then, algorithm EXHAUSTIVE is applied to each of these subsets to obtain
m(j)s = med-d(Us), s = 1,...,r. These r items constitute candidates for the
J-th discrete weighted median of U. We compute f;(m(j)s) for s =1,...,7 and
also f(OLD_MED(j)). The item that provides the smallest amongst these (at most
r 4 1) items is returned as the new approximation to the discrete median. The
algorithm has complexity O(¢(d)||U]|1/]|U]|) because EXHAUSTIVE is applied to
O(+\/||U]|) sets, each of size ©(+/||U]]); thus this requires O(¢(d)||U||\/||U]|) time.
Finally, f;(m(j)s) requires O(¢(d)||U]|) time and is performed O(1/||U]||) times.
This is also O(¢(d)||U||/||U]|) time. These types of randomized algorithms for
finding discrete medians have been shown mathematically and empirically to
provide robust estimators of location [I0]. This is because randomization is not
sampling. Randomization uses the entire data available.

We enhance the fundamental results of iterative clustering algorithms by
proving that our algorithm converges. We prove this by showing that both steps,
the non-crisp classification step and the reconstruction step never increase the
value of the objective function in Equation ().

1,...,k we seek a new representative that minimizes fj(z) = >\ e
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Lemma 1. Let RANK! be the rank vector for each u; € U (i = 1,...,n) after
the non-crisp classification step in the t-th iteration of the algorithm. Let

Mw Hle ZZMRANKt[j uza ]) (3)

i=1 j=1

k oo )
Then, the value ofm S 2 j—1 WrANK![j] (i, cﬁ-“) of the objective function
after the reconstruction step is no larger than M*(C").

Proof. First note that, by expanding the dot product wTsORT(-) and using the
RANK vector we have that Equation (2) and Equation (3)) are the same. Then, we
can reverse the order of the summation signs and also note that 1 / lw]1 is a con-
stant. Thus, the objective function is simply M*(C?) = lell Z] L fH(ch). The

reconstruction step finds new c ! such that fi( H'l) < fH), forj=1,... .k
(because the previous discrete medlan is con51dered among the candldates for a
new weighted discrete median). Thus,

n k
1 t+1
MAEY 2 o 2 2 wmangd(e .

=1 j=1

Lemma 2. The value

w(ct+1 :{ t+1 t+1 )

|w||1 Zw SORT(d(uz, ¢, d(uz, c5th), ... d(ug, cith))

after a classification step is no larger than m Sy Z?:l wraNk?[;) (Ui, c?“)
resulting in the previous reconstruction step.

1 k 41 1 k t+1
Proof. Note that szzl f]'?(cj+ ) = Y, szzl wRANKﬂj]d(chr S Up)-
Thus, we can say that the contribution of u; to the objective function before
the next classification is HwH Z?zl wRANKHj]d(c?'l, u;). Now, we know that af-

ter classification, this contribution by u; is

ol wsorT(d(u;, ), d(ug, 5, . d(ug, i),

Thus, the terms d(u;, c§+1) involved before and after non-crisp classification are
the same, it is just that after classification they are in non-decreasing order.
Since wT has entries in descending order we claim that

W SORT(d(us, i), d(ui, 5™, d(us, 6 FY)) <) wranked(cd ™, wi)

-

1

J
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whatever the order of the set {d(u;,ci™), d(u;, c5™), ..., d(u;, i)} given by
the permutation encoded in RANK![j] (note the rank is the one that resulted in
the previous classification, and we are about to perform the (¢ 4 1)-th classifica-
tion).

We prove this claim by showing that if j < j’ and d(u;, ;H) > d(u;, ETI),
but d(u;, ct c; 1) is ranked earlier than d(u;,c ]H) in the ¢t-th ranking, then we
can reduce the value of the contribution of u; by swapping the order in the
permutation of j and j’.

This is because if j < j' we have w; > wj and d(u;, i) > d(u;, )

implies wj(d(ul,c§+1) d(u“cﬁl)) > wjr (d(ul,c§+1) d(u“cﬁfrl)).

Thus, w;d(u;, i j )—|—w]/d(ul,c Y > wpd(ug, ;‘H) —|—w3d(u“c F1)). Thus,
swapping j and j' reduces the contrlbutlon of w;. This proves that the sorted
array of values reduces the contribution of u;, and this is for all u;. Thus, the
new non-crisp classification produces a ranking that can not increase the value

of the objective function.

Theorem 1. Our algorithm converges.

Proof. The domain of the objective function has size n)’ since it consists of

all subsets of size k of U. Thus, the objective function has a finite range. The
algorithm can not decrease the value of the objective function continuously.

This result is in contrast to the problem of the continuous median in dimen-
sions D > 2 and the Euclidean metric (the continuous Fermat-Weber problem)
where fundamental results show that it is impossible to obtain an algorithm
to converge [2] (numerical algorithms usually halt because of the finite pre-
cision of digital computers). Other algorithms for non-crisp classification, like
k-HARMONIC MEANS have not been shown to converge.

2.2 The Discrete Hill-Climber Type

We now present an alternative algorithm to optimizing Equation [@). The al-
gorithm here can be composed with the algorithm in the previous section (for
example, the first can be the initialization of the latter). The result is an even
more robust algorithm, still with complexity O(ny/n) similarity computations.

The algorithm in this section is an interchange heuristics based on a hill-
climbing search strategy. However, we require to adapt this to non-crisp classifi-
cation since all previous versions [SIQTTTHT2002TI31] are for the crisp classifi-
cation case. We will first present a quadratic-time version of our algorithm, which
we will name non-crisp TAB in honor of Teitz and Bart [31] original heuristic.
Later, we will use randomization to achieve subquadratic time complexity, as in
the previous section.

Our algorithms explore the space of subsets C' C U of size k. Non-crisp TAB
will start with a random set CY. Then, the data items u; € U are organized
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in a circular list. Whenever the turn belonging to a data item w; comes up, if
u; ¢ C', it is used to test at most k subsets C; = (C* U {u;}) \ {c}}. That
is, if w; is currently not a representative (medoid), it is swapped with each of
the k current medoids. The objective function M* in Equation (@) is evaluated
in M“(Cy), for j = 1,...,k and if any of these values is less than the current
M®“(C"), then the swap with the best improvement M“(C},) is accepted and
C'*t! = Cj,. In this case, or if u; € C* or if no C; improves C*, the data item u;
is placed at the end of the circular list. The turn passes to the next data item
and the algorithm halts when a pass through the circular list produces no swap.

The algorithm requires O(kn?) dissimilarity evaluations because evaluating
M« (C) requires O(n) distance evaluations and at least one pass is made through
the circular list to halt.

Our randomized TAB also partitions U into approximately r = /n subsets
Ui,...,U, each of approximately n/r ~ y/n elements. The non-crisp TAB is
applied to each of Uy,...,U,. Thus each U; is clustered into k& groups. This
requires O(kn+/n) distance calculations and results in r sets of k representatives.
Then, all the resulting rk representatives are placed in a circular list. Then non-
crisp TAB is applied in this list but the evaluation of M“(C) is performed with
respect to the entire data set U. Since the circular list has length ky/n, the
iteration achieved by the last execution of non-crisp TAB requires O(k?n+/n). If
having k2 in the complexity is a problem, then we can simply chose r = v/n/k,
and obtain an algorithm with linear complexity in k as well.

Clearly, this algorithm also converges.

3 Case Study

The literature contains many illustrations in commercial applications where clus-
tering discovers what are the types of customers [3|[4]. Recent attention for WEB
Usage Mining [30] has concentrated on association rule extraction [5/23), and ref-
erences|. There has been comparative less success at categorizing WEB-visitors
than categorizing customers in transactional data. This WEB usage mining task
is to be achieved from the visitation data to a WEB-site [29]. The goal is to iden-
tify strong correlation among users interests by grouping their navigation paths.
Paths are ordered sequences of WEB pages. Many applications can then benefit
from the knowledge obtained [ZUT6[272832]. Discovery of visitor profiles is an
important task for WEB-site design and evaluation [26/33]. Other examples are
WEB page suggestion for users in the same cluster, pre-fetching, personalization,
collaborative filtering [25] and user communities [22].

Paths are discrete structures. Several similarity measures have been defined
but they all correspond to dissimilarity between high-dimensional feature vec-
tors extracted from the paths [T6/272832I33]. Because the length of the path,
the order of the WEB pages, the time intervals between links and many other
aspects play a role in dissimilarity measures the resulting clustering problems
are high dimensional. For example, a measure that has been used for WEB-path
clustering is defined as follows [32]. Let P = {p1,...,pm} be a set of pages, and
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let the corresponding usage-feature vector USAGE,,, of user u; defined by

. |1 if p; is accessed by u;
Usaaey,[j] = {0 Otherwise.

Then, USAGE(u;, uir) = USAGE,, -USAGE,, /| USAGE,, |||[USAGE,,, || is the Usage
Similarity Measure (the cosine of the angle between the usage-feature vectors).

Clearly the dimension of the vectors involved is the number m of pages in the
WEB-site, typically a number higher than 10 and usually much larger. Moreover,
the Usage Similarity Measure is the simplest of the dissimilarity measures since
it does not consider order, length or time along a visitation path. Other more
robust dissimilarity measures are more costly to evaluate and imply feature
vectors in even higher dimensions.

Also, the discrete nature of paths removes vector-based operations, like av-
erages (means). Thus, while it is possible to compute the average of two feature
vectors like (USAGE,, + USAGE,,, )/2, it is not clear that the result is the feature
vector of a path (a path with such feature vector may actually be infeasible
given the links between pages). Also, spaces defined by dissimilarity measures
are different form Euclidean spaces, since for all feature vectors v, the similarity
between v and itself is maximum (1); however, it is also maximum between v
and any scalar transformation Av of the vector itself, for all constants A > 0.

These two challenges obstruct the use of many clustering algorithms for find-
ing groups on WEB visitors based on their visitation paths (including k-MEANS
and FUZzY-c-MEANS). The algorithms proposed to date [7J16127/2832] are all
of quadratic time complexity (they essentially require computing the dissimilar-
ity between all pairs of paths). These clustering efforts, although not scalable,
have demonstrated the extensive benefits and sophisticated applications emerg-
ing from identifying groups of visitors to a WEB-site.

The implementation of O(n/n) time results in a dramatic improvement in
CPU-time resources. Our implementation is much faster than previous matrix-
based algorithms [13]. Just for the Usage dissimilarity metric the Matrix-Based
algorithm requires over 18,000 CPU seconds (5 hrs!) with 590 users while our
algorithms in crisp mode requires only 83 seconds (just over a minute) and in
harmonic mode it requires 961 second (16 minutes). These results are on the
same data set of logs identified with visitor and sessions used by Xiao et al [32].
Namely, we used the WEB-log data sets publicly available from the Boston
University Computer Science Department.

To evaluate the quality of the clustering synthetic data sets are useful because
it is possible to compare the results of the algorithms with the true clustering.
Typically, synthetic data is generated from a mixture or from a set of k represen-
tatives by perturbing each slightly. The quality of the clustering is reflected by
the proportion in which the clustering algorithm retrieves groups and identifies
data items to their original group.

We reproduced to the best of our ability the synthetic generation suggested
for the same task of clustering paths used by Shahabi et al [28]. Our crisp-version
has already been shown to provide much better results than matrix-based al-
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ternatives [13] for the usage dissimilarity measure. In what follows, we discuss
results comparing our harmonic EM type algorithm (w™ = (1,1/2,...,1/k) and
its crisp EM type version (wm = e]) [14]. We used the usage-dissimilarity mea-
sure and other two measures, the frequency measure and the order measure [32].
The order measure is the same as the path measure [2§]. Because our algorithms
start with a random set of representatives, they were run each of them 5 times
and confidence intervals are reported with 95% accuracy [14]. There are several
issues we would like to comment on our results [I4]. The first is that we were
surprised that actually what the literature has claimed on the issue of features
from paths towards dissimilarity measures is not reflected in our results. In fact,
the more sophisticated the dissimilarity measure, the poorer the results. Quality
was much more affected by the dissimilarity measure used than by the size of the
data set or the clustering algorithm used. Our non-crisp algorithm does better,
but we admit that for this data set the results are not dramatic. In fact, they are
probably less impressive if one considers the CPU-time requirements [I4]. The
harmonic version is slower. It requires a factor of O(k) more space and O(klog k)
administrative work. However, the observed CPU times confirm the O(nlogn)
nature of our algorithms and that dissimilarity evaluation is the main cost. In
fact, the usage and frequency dissimilarity functions can be computed in O(p),
where p is the average length of paths. However, the order dissimilarity function
requires §2(p?) time to be computed.

We note that the confidence intervals for the harmonic version are smaller
than for the crisp version. This indicates that harmonic is more robust to ini-
tialization. To explore further this issue we also performed on some initial ex-
periments regarding the robustness to initialization of our algorithms. The ex-
periment consisted of evaluating the discrepancy in clustering results between
independent executions (with a different random seed) of the same algorithm.
In our results [14] there is much less variance with the harmonic version. Given
that the initialization is random, this suggests the algorithm finds high quality
local optima with respect to its loss function. However, more thorough experi-
mentation is required to confirm this suggestion.

We also point out that in parallel to k-MEANS, EXPECTATION MAXIMIZA-
TION, and k-HARMONIC MEANS, our harmonic EM type algorithm may place
two representatives very close together attracted by the same peak in frequency.
However, the theoretical foundation provided here allows also to detect this and
apply the “boosting” techniques as suggested for k--HARMONIC MEANS [34].

4 Final Remarks

We presented the theoretical framework for sub-quadratic clustering of paths
with non-crisp classification. The experiments are not exhaustive [I4] but they
illustrate that there are benefits to be obtained with respect to quality with
non-crisp classification. Moreover, they also reflect that there are trade-off to be
investigated between the complexity of the dissimilarity function and its compu-
tational requirements. We indicated the possibility of hybridization between the
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discrete hill-climber type and the EM type. However, because our EM-methods
are generic on the vector w they offer a range of diversity for the computational
requirements in this regard. For example, one can imagine a k’-nearest neighbor
classification with k' < k. The vector w would have entries equal to zero from the
(k' +1)-th entry onwards. The nonzero entries can then be a harmonic average of
the &’ nearest neighbors or some other combination. Thus, this is a classification
that incorporates the supervised-learning technique of nearest-neighbors [6] and
reduces smoothly to crisp-classification with k" closer to 1.

We have illustrated the new clustering methods with similarity measures
of interests between WEB visitors. Similarity measures proposed for analysis
WEB visitation [T6/2728/32l33] pose a high-dimensional non-Euclidean cluster-
ing problem. This eliminates many clustering methods. Previously [13], we (and
others [18]) provided a more detailed discussion of why density-based or hierar-
chical methods are unsuitable to clustering paths. Our methods here are fast and
robust. They are applicable to any similarity measure and can dynamically track
users with high efficiency. Moreover, we have generalized fuzzy-membership or
probabilistic membership to non-crisp classification.
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