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Department of Computer Science, P.O. Box 26
FIN-00014 University of Helsinki, Finland

{elomaa,matti.kaariainen}@cs.helsinki.fi

Abstract. Branching programs are a generalization of decision trees.
From the viewpoint of boosting theory the former appear to be expo-
nentially more efficient. However, earlier experience demonstrates that
such results do not necessarily translate to practical success. In this pa-
per we develop a practical version of Mansour and McAllester’s [13] algo-
rithm for branching program boosting. We test the algorithm empirically
with real-world and synthetic data. Branching programs attain the same
prediction accuracy level as C4.5. Contrary to the implications of the
boosting analysis, they are not significantly smaller than the correspond-
ing decision trees. This further corroborates the earlier observations on
the way in which boosting analyses bear practical significance.

1 Introduction

The weak learning model or boosting theory [16,6] has been able to offer an
analytical explanation for the practical success of top-down induction of decision
trees (subsequently DTs for short) [9,12]. Earlier attempts to explain the success
of DT learning in theoretical models have not been successful. Even though
the weak learning framework may better suit analyzing and designing practical
learning algorithms than the PAC model and its variants, one must exercise care
in drawing conclusions about the practical implications of boosting analyses [4].
In this paper we provide further evidence to support meticulous consideration.

A branching program (BP) is an abstract model of computation that takes
the form of a directed acyclic graph (DAG). BPs have been well-studied in
theoretical computer science. In this paper we view them as classifiers. In empir-
ical machine learning a similar representation formalism — decision graphs — has
been studied to some extent [14,10,11]. BPs are a strict generalization of DTs.
Thus, their learning in computational learning frameworks is hard [5,1].

Mansour and McAllester [13] devised a boosting algorithm for BPs. The main
advantage obtained by using BPs rather than DTs is that their training error is
guaranteed to decline exponentially in the square root of the size of the program.
When DT learning algorithms are viewed as boosting algorithms, the training
error declination is only polynomial in the size of the tree [9,12]. The learning
algorithm for BPs is basically very similar to the algorithms used in top-down
induction of DTs [3,15]. It greedily searches for good splits of the nodes in the
last level of the evolving program. The central difference between a BP and a
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DT is that in the former branches may grow together, while in the latter two
separate branches never unite.

In this paper we experiment with a practical learning algorithm based on
the results of Mansour and McAllester [13]. We clarify the algorithm and test
it with data sets from the UCI Repository [2] and some synthetic data. In the
experiments BPs attain the same overall prediction accuracy level as unpruned
DTs. Domain specific differences, though, are observed; in particular, on some
synthetic domains the differences are clear. BPs appear to be slightly smaller
than unpruned DTs, but there is no clear difference.

In Section 2 we recapitulate weak learning and boosting, introducing at the
same time the framework used subsequently. We also review Kearns and Man-
sour’s [9] analysis of DT learning as a boosting algorithm. Section 3 presents
the boosting algorithm for BPs and the motivation behind its details. We also
briefly touch the related work of learning decision graphs. In Section 4 empirical
experiments with the BP algorithm are reported. The results are contrasted with
those obtained by C4.5. Lessons learned from the experimentation are reflected
upon in Section 5. Finally, we present the concluding remarks of this paper.

2 Weak Learning, Boosting, and Decision Tree Induction

Let f be a boolean target function over an input space X. A set H of base
classifiers or predicates on X fulfills the β-weak learning hypothesis (with respect
to f), where β ∈ (0, 1/2], if it contains, for any distribution D on X, a classifier
h ∈ H such that

PrD{ h(x) 6= f(x) } ≤ 1
2

− β.

In other words, the weak learning hypothesis guarantees the existence of a pred-
icate with a predictive advantage of at least β on f over random guessing.

Boosting algorithms exploit the weak learning hypothesis by combining many
different predicates from H on different filtered distributions of the original sam-
ple. Thus, they amplify the small predictive advantages over random guessing
iteratively to obtain a combined function, whose training error is less than any
desired error threshold [16,6]. A natural type of boosting algorithm is a voting
algorithm, which uses some number of iterations to assemble a collection of weak
classifiers — e.g., decision stumps — and at the end uses weighted voting to de-
termine the classification of future instances. For example, AdaBoost [8] is such
an algorithm.

By interpreting the node predicates as weak classifiers, one can apply the
boosting framework also to DT learning. In top-down induction of DTs predi-
cates are assigned to the leaves of the evolving tree. Usually the predicates test
the value of a single attribute. They filter subsets of the original sample for-
ward in the tree. A splitting criterion is used to rank candidate predicates. It
favors predicates that reduce the impurity of the class distribution in the sub-
sets that result from splitting the data. Since the filtered distributions gradually
lose impurity, they usually become easier as we go down in the tree. The final
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predictor is combined from the node predicates. Thus, viewing node predicate
selection as a form of weak learning enables to explain the learning behavior of
such successful DT learners as CART [3] and C4.5 [15].

Under the weak learning hypothesis, choosing a suitable predicate class and
using an appropriate splitting criterion, the training error of the DT is driven
down polynomially in its size [9]. This bound, which is close to optimal for
any DT learning algorithm, is exponentially worse than that of AdaBoost [8].
However, empirically the error reduction with respect to the classifier size in
AdaBoost is not essentially any better than that in C4.5 [4,7].

Let T be a binary DT constructed on the basis of sample S. We denote the
set of leaves of T by L(T ). Throughout this paper we assume that leaves are
labeled by the majority class of the examples reaching them. For a node v ∈ T
let Sv ⊆ S be the set of examples reaching it. By S1

v ⊆ Sv we denote the set of
positive training examples reaching node v. The fraction of the sample reaching
node v is denoted by p̂v = |Sv|/|S| and the proportion of positive examples from
those that reach v is denoted by q̂v = |S1

v |/|Sv|.
A splitting criterion is a mapping F : [0, 1] → [0, 1]. It assigns an impu-

rity value to an observed class frequency distribution. Pure distributions, where
q̂ ∈ {0, 1}, have no impurity; i.e., for them F (q̂) = 0. The most mixed distribu-
tion is the one in which q̂ = 1/2 and it has the maximal impurity, F (1/2) = 1.
In addition to these properties, Kearns and Mansour [9] required a permissi-
ble splitting criterion F to be symmetric about 1/2, F (x) = F (1 − x) for any
x ∈ [0, 1], and to be concave. Commonly-used impurity functions fulfilling these
properties include the binary entropy of C4.5 [15] and the Gini function of the
CART algorithm [3]. Also the criterion that is used in the BP learning algorithm,
G(q̂) = 2

√
q̂(1 − q̂) [9], is permissible.

Let the index of the tree T be

F (T ) =
∑

`∈L(T )

p̂`F (q̂`).

For any h ∈ H let Th be the DT consisting of a single internal node labeled with
h and two leaves corresponding to its values 0 and 1. Let F (Th, S) denote the
index of Th as measured with respect to S. Then, the change in the index, when
node v is split using predicate h, is ∆(Sv, h) = F (q̂v) − F (Th, Sv). Selecting a
split to replace a node entails choosing the attribute that gives the most decrease
to the value of the splitting criterion. Evaluation of attributes, on its part, entails
determining the best binary partition for the domain of the attribute.

The empirical error of decision tree T is the weighted sum of the error of its
leaves

ε̂(T ) =
∑

`∈L(T )

p̂` min{ q̂`, 1 − q̂` }.

It is bounded by the index F (T ), because F (q̂`) ≥ min{ q̂`, 1 − q̂` } by the prop-
erties required from a permissible splitting criterion.

Kearns and Mansour [9] showed that when the splitting criterion G(q̂) =
2
√

q̂(1 − q̂) is used in connection with DT learning, then assuming the β-weak
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Fig. 1. Minimal BP and DT for computing the exclusive-or of three bits, x1 ⊕x2 ⊕x3.
Arcs with a black arrow head correspond to value 1 and those with a white head
correspond to value 0.

learning hypothesis for H, for any sample Sv from X there exists an h ∈ H such
that ∆(Sv, h) ≥ (β2/16)G(q̂v). Based on this result Mansour and McAllester
[12] defined that H and F satisfy the γ-weak index reduction hypothesis if for
any sample Sv from X there exists an h ∈ H such that ∆(Sv, h) ≥ γF (q̂v).

By approximating — according to the weak learning hypothesis — the reduc-
tion of the index obtained by growing the size of the tree, one can bound the
empirical error of the tree as a polynomial of its size:

ε̂(T ) ≤ F (T ) ≤ |T |−γ .

The best known bound for γ with respect to β is obtained by using the splitting
criterion G.

3 Branching Program Boosting

The polynomial reduction of a DT’s error is inefficient from the analytical point
of view [4]. Mansour and McAllester [13] showed that using the more compact
DAG representation of BPs one can exploit the γ-weak index reduction hypoth-
esis more efficiently than when DTs are used.

We are concerned with leveled BPs in the following. Let Pd be such a BP of
depth d. The nodes of Pd form a two-dimensional lattice. There are d + 1 levels
L0, L1, . . . , Ld and each Lj has its individual width. All the arcs from the nodes
of Lj go to the nodes of Lj+1. The first level consists of the root of the program
and the nodes at level d are leaves. Leaves may already appear at earlier levels.

Internal nodes of a BP contain a predicate. Leaves are labeled by one of the
two classes. Each instance x has a unique path from the root of the program
to one of its leaves: At an internal node containing the predicate h decide for
x whether h(x) = 0 or h(x) = 1 and follow the corresponding arc to the next
level. Finally, after at most d internal nodes a leaf is reached. The label of the
leaf determines the class prediction for x. Fig. 1 gives an example of a BP and
a DT recognizing the same function.
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3.1 The BP Learning Algorithm

Let us start by sketching the main points of the learning algorithm. We fill in
the missing details and describe the analytical background subsequently.

The analysis of Mansour and McAllester [13] is based on a constant γ over
all levels. No such constant is available in practice. In the following algorithm,
instead, each level j has its own γj . Together with the current index, its value
determines the width wj of a grid of potential nodes. From those the ones that get
connected to nodes of the previous level, will make up Lj . Potential nodes help
to merge leaves of Pj whose class distribution is close enough to each other. We
discuss the intuition behind potential nodes in more detail in the next subsection.
Algorithm LearnBP(S)
Initialize: Let L0 consist of the root node of the BP. Associate the whole sample
S with the root. Let P0 be this single node program.
Main Loop: For j in { 0, . . . , d − 1 } define Lj+1 as follows.

1. Let leavesj consist of the pure nodes of Lj and set L′
j = Lj \ leavesj . If L′

j is
empty, then terminate.

2. Predicate Selection: For each v ∈ L′
j choose the predicate hv that most

reduces the value of the splitting criterion F . In other words, for each v ∈ L′
j

check all attributes and determine their optimal binary splits with respect
to Sv using F . Choose the best attribute and its optimal binary split to
v. Technically, we choose v as the predicate h that maximizes ∆(Sv, h) =
F (q̂v) − F (Th, Sv).

3. Program Expansion: Let P ′
j+1 be the BP obtained from Pj by splitting the

leaves in L′
j . Determine the average reduction of index, γj+1 > 0, obtained

by P ′
j+1. That is,

γj+1 =
F (Pj) − F (P ′

j+1)
F (Pj)

. (1)

4. Potential Node Grid Choosing: Using γj+1 and F (Pj) determine the
width wj+1 (the number of subintervals) of a one-dimensional grid of poten-
tial nodes each corresponding to an interval in [0, 1]. Determine the widths
of the intervals.

5. Leaf Merging: Associate each leaf v of P ′
j+1 with the potential node that

corresponds to the subinterval of [0, 1] that contains the proportion, q̂v, of
positive examples within v.

6. Those potential nodes that have at least one incoming arc make up Lj+1.
Other potential nodes are discarded. The resulting program is Pj+1.

The parts that are not fully elaborated in the above algorithm are steps 3–6.
They also comprise the theoretically most demanding points in this algorithm.
The next subsection will review the analytical motivation behind these steps.

3.2 Analytical Background

A key difficulty in learning BPs is to have a sufficiently finely spaced grid so that
when subsets from two or more nodes get merged, the loss in index reduction is
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not too large. On the other hand, in order to restrict the growth of the hypothesis
size, one must limit the number of potential nodes in the grid. Next, we go
through those parts of the analysis of Mansour and McAllester [13] that motivate
the choice of the grid of potential nodes used in LearnBP.

Consider, first, growing a leveled BP, where the nodes never get merged. This
leveled DT growing yields the same polynomial error declination with respect
to the tree size as other DT learning algorithms. Hence, to improve the error
reduction with respect to the classifier size, nodes must be merged in the BP.

In the following we consider what happens to the index of a program, when
Pj is expanded to Pj+1 using the two-phase process, where all nodes v ∈ L′

j are
first split in two to produce P ′

j+1. By Eq. 1, the index of the expanded program
is (1−γj+1)F (Pj). After expansion the grid of potential nodes is chosen. It helps
to merge together leaves of P ′

j+1 to produce the final nodes of Pj+1.
The potential nodes n1, . . . , nwj+1 correspond to a division of [0, 1] into con-

secutive intervals Ii = [ui−1, ui), where 0 = u0 < u1 < · · · < uwj+1 = 1. Let Ni

denote those leaves v of P ′
j+1 for which q̂v ∈ Ii. The nodes belonging to Ni are

merged together to potential node ni. If Ni = ∅, the node ni is discarded.
Let us see how the index of the BP changes due to merging of nodes. Before

any such operations

F (P ′
j+1) =

∑
v∈L(P ′

j+1)

p̂vF (q̂v) =
wj+1∑
i=1

p̂iFi,

where p̂i =
∑

v∈Ni
p̂v and Fi =

∑
v∈Ni

(p̂v/p̂i)F (q̂v). After the merging, node
ni receives all the examples that arrived in P ′

j+1 to the leaves belonging to Ni.
Hence, p̂i is the proportion of examples received by ni out of all examples. Let
q̂i denote, as usual, the fraction of positive examples out of those reaching ni.
Then, the index after the mergings is

F (Pj+1) =
wj+1∑
i=1

p̂iF (q̂i).

The change in the index of the BP can, thus, be expressed as

F (Pj+1) − F (P ′
j+1) =

wj+1∑
i=1

p̂i(F (q̂i) − Fi).

Now, infx∈Ii
F (x) ≤ Fi ≤ F (q̂i) ≤ supx∈Ii

F (x), because q̂i ∈ Ii and F is concave
(see Fig. 2). Thus, the index increases, but the increase is small provided that
F maps the points of each interval Ii close to each other.

In order not to lose the whole index reduction obtained by P ′
j+1, the increase

of index due to mergings has to be small with respect to γj+1 and F (Pj). This can
be obtained by setting um = 1/2, where m = wj+1/2, and um±k = F−1

± (1/(1 +
γj+1/3)k), for 0 < k < m. Above, F− is F restricted to [0, 1/2] and F+ to [1/2, 1].
Now, supx∈Ii

F (x) = (1 + γj+1/3) infx∈Ii
F (x), whenever 1 < i < wj+1.
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Fig. 2. Leaves with a fraction of positive examples in the interval Ii = [ui−1, ui) make
up Ni and are gathered to the potential node ni. Combined these leaves have index
p̂iFi and proportion q̂i of positive examples within them. The point (q̂i, Fi) is a convex
combination of points (q̂v, F (q̂v)), v ∈ Ni and, thus, falls within the region bounded
by F (x) in between end points ui−1 and ui and the line connecting these end points.
The index value assigned to ni, p̂iF (q̂i), is higher than p̂iFi.

To keep the width of the grid under control n1 and nwj+1 are handled as
special cases. By setting

wj+1 = 2 + 2
⌈

ln(6/(γj+1F (Pj)))
ln(1 + γj+1/3)

⌉
,

it holds that 1/(1 + γj+1/3)wj+1/2 ≤ (γj+1/6)F (Pj). Hence, the first and the
last potential node represent (a subset of) those leaves v ∈ L(P ′

j+1) for which
F (q̂v) ≤ (γj+1/6)F (Pj). When the grid is chosen as presented above, then

F (Pj+1) − F (P ′
j+1) ≤ γj+1

3

wj+1−1∑
i=2

p̂i inf
x∈Ii

F (x) + (p̂1 + p̂wj+1)
γj+1

6
F (Pj)

≤
(γj+1

3
+

γj+1

6

)
F (Pj).

On the other hand, by Eq. 1, F (P ′
j+1) = (1 − γj+1)F (Pj). Thus, F (Pj+1) ≤

(1 − γj+1/2)F (Pj). In other words, at least half of the index reduction obtained
by P ′

j+1 is retained also after merging nodes together.
It remains to show that |Pj | grows slowly enough. Let us first assume that γj

equals a fixed γ > 0 and that F (Pj+1) = (1 − γ/2)F (Pj) for each j. This is the
least index reduction conforming to the above analysis. Now, the index of Pj is
at most (1 − γ/2)j . The increase in width, wj+1 − wj , depends only on γ, not
on j. Therefore, |Pj | grows only quadratically in j. Together these observations
imply that in this case the error reduction of a BP is exponential in the square
root of its size. When it is also allowed that F (Pj+1) < (1 − γ/2)F (Pj) — the
analysis becomes more complicated, because wj+1 −wj may now vary. Mansour
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and McAllester [13], nevertheless, show that the same error declination holds in
general for a fixed γ. This analysis can be extended to show that for a program
P produced by LearnBP, with γ being a uniform lower bound for γj , it holds
that

ε̂(P ) ≤ F (P ) ≤ e−Ω(γ
√

|P |).

3.3 Related Work: Decision Graph Induction

Even though a DAG is an obvious generalization of a tree, learning decision
graphs (DGs) is just an isolated strand in empirical machine learning. The DG
induction algorithms were developed to solve, in particular, the subtree replica-
tion and data fragmentation problems, which are inherent to top-down induction
of DTs. DGs resemble BPs, but are not exactly alike.

Oliver’s [14] iterative hill-climbing algorithm uses a Minimum Message
Length (MML) criterion to determine whether to split a leaf or to join a pair
of leaves in the evolving DG. In experiments the algorithm attained the same
accuracy level as MML-based DT learners and C4.5. DGs were observed to give
particularly good results in learning disjunctive concepts.

Kohavi [10], originally, proposed constructing DGs in a bottom-up manner.
Despite some empirical success, the algorithm was not able to cope with nu-
merical attributes and lacked methods for dealing with irrelevant attributes.
Subsequently Kohavi and Li [11] presented a method that post-processes a DT
top-down into a DG. Special requirements were put to the initial DT; it was
required to be oblivious, that is, test the same variable at each node in the same
level of the tree. This approach was proposed as an alternative to the bottom-
up pruning of DTs. The reported experiments exhibit classification accuracies
comparable to those of C4.5, but with smaller classifier sizes.

Despite these few approaches, learning DAG-formed classifiers has not yet
been thoroughly studied. Neither has sufficient analysis been presented for them.

4 Empirical Evaluation

We now test LearnBP in practice. As splitting criterion we use Kearns and
Mansour’s [9] function G. The analysis above only covers two class problems.
Also, the algorithm LearnBP can only handle predicates. Therefore, we restrict
our attention to domains with two classes. For nominal variables with more than
two values, we search their optimal binary grouping with respect to G and use
it. Numerical value ranges are binarized.

The classifier sizes are compared to see whether the BPs with zero empirical
error are smaller than the corresponding DTs like they should be by the analysis
(assuming the index reduction hypothesis). In order to evaluate the practical
applicability of BPs, we compare the prediction accuracies of BPs and DTs.

It suffices to test LearnBP against C4.5, because the relation of C4.5 and
AdaBoost is known [4,7]. In order to make the comparison fair to BPs, we
contrast them against unpruned DTs built by C4.5. Moreover, we force C4.5 to
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drive the empirical error to zero, if possible, like LearnBP does.1 In order to
make the comparison fair to DTs, we avoid repetitive counting of leaves, and
measure classifier sizes by the number of internal nodes.

As test domains we use well-known binary data sets from the UCI Repository
[2] and some synthetic domains. From the UCI Repository also relatively large
domains were included. (Adult has approx. 32,500 and Connect some 67,500
examples; the latter was changed into a binary problem by uniting classes draw
and lost). Some data sets were manipulated to rid the effects of missing attribute
values. The synthetic data sets used are the majority function on 10 and 50 bits
(denoted by Maj10 and Maj50, respectively), the multiplexor function with 3
address bits (Mplx3) [15], and the exclusive-or function on 6 and 8 bits (Xor6
and Xor8). For all synthetic data sets two different-sized random samples were
generated. Our test strategy is 10-fold cross-validation repeated 10 times.

Table 1 gives the average prediction accuracies and sizes for BPs and DTs.
It also records whether the observed differences are statistically significant as
measured by the two-tailed Student’s t-test at significance level 0.01 (99%).

4.1 Results on the UCI Data

On “real-world” data sets the accuracies of the learning algorithms are close to
each other. In seven out of the total fifteen UCI domains statistically significant
differences in the prediction accuracies are observed. On five of these cases the
differences are in favor of LearnBP and on two cases of the unpruned DTs
of C4.5. On some domains BPs may benefit from the fact that due to subset
mergings the split decisions are often based on a larger population of training
examples than the corresponding decisions in DTs. The obtained accuracy levels
are lower than when using pruning, but not dramatically.

In hypothesis sizes the fact that pruning is disabled is, of course, observed.
Some of the classifier average sizes are very large. On ten domains BPs are
smaller than unpruned DTs and in the remaining five UCI domains unpruned
DTs are smaller than the corresponding BPs. The algorithm that produces
smaller hypotheses tends to have the better prediction accuracy. There are only
three exceptions to this rule.

4.2 Results on Synthetic Data

On synthetic data, BPs are systematically more accurate on the majority prob-
lems. In addition to those there is only one further significant difference (in favor
of C4.5). The results on the majority domains can be explained by the utility
of merging leaves in the evolving program. Consider two leaves that are merged.
Their fractions of positive examples have to be close to each other. Thus, even
though different bits were tested en route to the leaves, the subsets associated
1 It is not possible to set the parameters of Release 8 of C4.5 to produce perfect

unpruned trees. Therefore, in this comparison we use Release 5 [15].
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Table 1. Average classification accuracies and classifier sizes (with standard devia-
tions) for LearnBP and C4.5 on the test domains. Statistically significant differences
between the two learning algorithms are indicated by a double asterisk.

Data set LearnBP C4.5 BP Size DT Size
Adult 81.6 ±0.2∗∗ 81.3 ±0.1 3, 959.6 ±50.0∗∗ 4, 870.1 ±13.5

Breast W 94.6 ±0.6 93.9 ±0.6 26.0 ±0.5∗∗ 29.6 ±1.1

Chess 99.5 ±0.1 99.7 ±0.1∗∗ 46.1 ±0.9 44.3 ±0.3∗∗

Connect 82.5 ±0.1 84.3 ±0.1∗∗ 11, 012.0 ±30.7 9, 058.0 ±9.8∗∗

Diabetes 70.3 ±1.5 69.4 ±1.0 119.9 ±2.1∗∗ 131.8 ±1.7

Euthyroid 91.0 ±0.5∗∗ 90.1 ±0.5 135.6 ±0.7∗∗ 161.4 ±2.3

German 69.4 ±0.7∗∗ 67.6 ±0.6 157.7 ±2.0∗∗ 167.1 ±1.6

Glass2 79.9 ±1.6 80.8 ±1.7 18.4 ±0.3 14.8 ±0.6∗∗

Heart H 72.7 ±2.3 72.8 ±1.2 43.9 ±0.9∗∗ 52.6 ±0.8

Hepatitis 75.7 ±2.0 78.0 ±1.9 13.6 ±0.3∗∗ 15.0 ±0.5

Ionosphere 88.4 ±1.1 89.8 ±1.3 18.0 ±0.3 15.4 ±0.8∗∗

Liver 65.4 ±1.8 63.4 ±1.5 70.7 ±1.7∗∗ 77.6 ±1.4

Sonar 77.6 ±1.6∗∗ 74.5 ±1.5 15.5 ±0.3∗∗ 16.5 ±0.5

Tic-tac-toe 93.7 ±0.9∗∗ 86.8 ±1.0 81.6 ±2.9∗∗ 107.5 ±2.1

Voting 86.6 ±0.7 86.2 ±0.6 41.0 ±1.2 35.7 ±0.3∗∗

Maj10 200 82.3 ±2.5∗∗ 78.7 ±2.5 40.2 ±1.2∗∗ 42.8 ±0.8

400 87.0 ±1.9 84.8 ±1.5 67.2 ±1.9∗∗ 74.6 ±1.4

Maj50 1000 66.2 ±1.1∗∗ 61.4 ±1.2 159.7 ±1.7∗∗ 191.1 ±2.2

2000 70.2 ±1.3∗∗ 63.8 ±0.9 296.3 ±2.1∗∗ 368.3 ±2.6

Mplx3 400 82.8 ±1.8 84.4 ±1.3 101.2 ±3.6 96.5 ±2.6∗∗

800 95.2 ±1.0 94.6 ±0.7 109.2 ±5.4 113.8 ±5.0

Xor6 300 98.1 ±0.8 98.4 ±0.7 71.5 ±2.1 59.7 ±0.1∗∗

600 99.0 ±0.8 100.0 ±0.1∗∗ 75.6 ±2.8 63.0 ±0.1∗∗

Xor8 500 81.2 ±2.2 81.6 ±0.8 257.7 ±5.5 207.6 ±0.5∗∗

1000 96.6 ±0.6 96.7 ±0.7 321.5 ±4.8 245.6 ±0.9∗∗

with the leaves are likely to consist of examples with similar numbers of positive
and negative bits. On the other hand, sometimes mergings are disadvantageous.

Over the ten synthetic domains the race for the smaller hypothesis is tied.
This time there is no exception to the rule that the algorithm that produces the
smaller hypothesis also has the better prediction accuracy.

In summary, the overall performance of BPs and unpruned DTs is very
similar in both measured parameters. Nevertheless, BPs seem to perform slightly
better than DTs.

5 Discussion

The empirical observations in the comparison between AdaBoost and C4.5 were
explained with their different advantage sequences [4], i.e., how the weak learning
parameter β changes from round to round. This depends on the algorithm and
the data. The parameter characterizes the difficulty of the classification problems



On the Practice of Branching Program Boosting 143

posed to the weak learners. While C4.5 produces increasingly refined partitions
of the sample, thus obtaining increasing advantage, AdaBoost concentrates on
the examples that are falsely classified by earlier weak classifier, thus producing
harder and harder filtered distributions and losing advantage.

Advantage sequences cannot directly be used in analyzing LearnBP, since
it chooses many weak classifiers at a time. However, there is reason to believe
that the γ-sequences of BPs are worse than those of DTs, because merging may
make the task of separating the two classes more difficult. The advantage in
LearnBP grows as the original sample is refined, but subset mergings lead to
slow growth. Consider, e.g., the exclusive-or on eight bits. Assume that LearnBP
has grown P ′

8. Let u and v be two leaves that will be merged in P8. If seven
different bits have been tested on the paths from the root to u and v, splitting
the leaves by testing the remaining bit produces pure leaves and, thus, gives
a large reduction in index. On the other hand, when u and v are merged, the
examples reaching them get mixed and it is impossible to separate the positive
and negative examples by testing a single bit. We obtain a smaller value for γ9,
and also a larger BP since all information lost has to be gathered anew.

We may note that the width of the grid of potential nodes explodes with
respect to the width of the corresponding program level. While the program
levels typically are up to 30 nodes wide, the width of the grid of potential nodes
may be close to 30,000 intervals. In the analysis of Mansour and McAllester
[13] potential nodes determine the size of a program, which is much larger than
the actual program size. Quite often the programs produced by LearnBP are
actually DTs or almost such, i.e., they have very few node mergings. Sometimes
the BP consists of several consecutive trees; i.e., there are nodes that gather all
the remaining examples and the program construction starts anew.

We have compared BPs with unpruned DTs to better relate their sizes. How-
ever, DTs can be easily pruned to enhance classifier compactness. In this respect
our empirical setting was not fair; with pruning C4.5 would easily beat LearnBP
in classifier size. On the other hand, we wanted to obtain an understanding of
the basic properties of a new interesting learning approach and test how the
boosting analysis is reflected to practice.

LearnBP can be seen to work in the same explicit merging approach as some
DG learning algorithms do, where all leaves of the evolving program are first
expanded and then merged heuristically. Using the grid of potential nodes is an
analytically motivated heuristic. Other heuristics could be used as well.

6 Conclusion

Constructing DAG-formed classifiers rather than tree-formed ones is a natural
idea. However, since the former are harder to interpret and prune, they have
not become more popular. Moreover, no evident advantage for using BPs has
been known. The new analysis [13] gives a promise of a concrete advantage that
could bear fruit in practice. However, our empirical evaluation indicates that this
theoretical advantage does not directly materialize in experiments. The results,
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though, are comparable to those obtained using unpruned DTs. Altogether,
learning BPs (or DGs) is an interesting new idea which might deserve more
empirical attention.
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